# Mathematical Physics

##### Group Overview

We develop and apply mathematical methods to understand physical theories. These include in particular probabilistic and functional analytic tools, with possible further mathematical excursions. We are interested in many-body theory and statistical mechanics, quantum field theory, Schroedinger operators, non-linear PDEs. Current keywords include renormalization, topological phases, non-linear dynamics, resonances.

##### info for prospective students

Besides the seminars 'Differential Geometry, PDEs and Mathematical Physics' and Probability', we regularly offer graduate level courses related to the group members' research interests. Prospective graduate students are encouraged to contact a potential advisor as we usually have a few open positions each year. Those who already hold a Master's degree are able to start directly in the PhD program.

## People

Faculty | Research Interests |
---|---|

Sven Bachmann | |

Stephen Gustafson | Nonlinear PDEs from applied mathematics and mathematical physics, evolution equations, stability theory, scattering. |

Young-Heon Kim | Optimal transport, partial differential equations, and geometry. |

Tai-Peng Tsai | Partial differential equations from mathematical physics, including fluid and dispersive PDEs |

Emeritus | Research Interests |
---|---|

Joel Feldman | Many-body Theory and Quantum Field Theory |

Richard Froese | SchrÃ¶dinger Operators, Spectral theory of elliptic operators. |