Sergi Elizalde
Speaker Affiliation: 
Dartmouth College
Speaker Link: 

March 8, 2022

Zoom - https://ubc.zoom.us/j/62676242229?pwd=RURtUC9UYXEweVZTMTNGT1EvY1FLZz09
Vancouver, BC V6T1Z2

View All Events


We give a natural definition of rowmotion for 321-avoiding permutations, by translating, through bijections involving Dyck paths and the Lalanne-Kreweras involution, the analogous notion for antichains of the positive root poset of type A. We prove that some permutation statistics, including the number of fixed points, are homomesic under rowmotion, meaning that they have a constant average over its orbits. We also show that the Armstrong-Stump-Thomas equivariant bijection between order ideals in type A and non-crossing matchings can be described in terms of the Robinson–Schensted–Knuth correspondence on permutations. This is joint work with Ben Adenbaum.

Event Topic: 

Event Details

March 8, 2022

4:00pm to 5:00pm

Zoom - https://ubc.zoom.us/j/62676242229?pwd=RURtUC9UYXEweVZTMTNGT1EvY1FLZz09

Vancouver, BC, CA

View Map


  • Seminars