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AbstractThe Allen-Cahn equation with a mass constraint is analyzed asymptotically and numericallyin a two-dimensional domain. This problem models the phase separation of a binary mixturein the presence of a mass constraint. Solutions develop internal layers, or interfaces, thatpropagate depending on the curvature of the interfaces while keeping the area they encloseconstant. Small interfaces attached to the boundary of the domain are shown to move alongthe boundary in the direction of increasing boundary curvature. The motion of the interfacesis simulated numerically to verify these asymptotic results. The slow motion behavior of asemi-circular interface intersecting a at boundary segment is also analyzed. The projectionmethod is used to derive an explicit ordinary di�erential equation for the location of the centerof such a semi-circular interface.
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Chapter 1IntroductionA simple model for problem of phase separation in a binary mixture is the Allen-Cahn equationwith a mass constraint: ut = �2�u+ Q(u)� � ; x 2 D � R2 ; (1.1a)@nu = 0 ; x 2 @D ; (1.1b)ZD u(x; t) dx=M : (1.1c)Here u = u(x; t) is the concentration of one of the two species, x = (x; y), �� 1, D is a boundedtwo-dimensional domain, and the mass M is constant. We assume that Q(u) = �V 0(u), whereV (u) is a double-well potential with wells of equal depth at u = s�. Thus Q(u) has three zeroeslocated at u = s� < 0, u = 0, and u = s+ > 0 and is taken to satisfyQ(s�) < 0 ; Q(0) > 0 ; V (s+) = 0 ; V (u) = � Z us� Q(�) d� : (1.2)To satisfy the mass constraint (1.1c), the function � = �(t) is given by� = 1jDj ZD Q(u) dx : (1.3)In (1.3), jDj is the total area of D. Notice that due to the form of �, (1.1a) is a nonlocalreaction di�usion equation.This problem has been well studied from several viewpoints (see [1], [13], [18]). The analysisin these papers have revealed many aspects of the dynamics of the solution to (1.1). Startingfrom arbitrary initial data, the solution develops internal layers, or interfaces, on an O(1=�)time interval. These layers have width O(�) and separate regions in which u � s� from regionsin which u � s+. The asymptotic analysis of Rubinstein and Sternberg in [13] as �! 0 showed1



Chapter 1. Introduction 2that the normal velocity v of the interfaces, denoted by �, satis�es the area preserving meancurvature ow v � �2 �� � 1j�j Z� � ds� : (1.4)Here � is the curvature of �, j�j is the total length of all interfaces, and R� denotes integrationover all interfaces. This holds for interfaces in the interior of D and for interfaces connectedto @D with the added condition that the interface must intersect the boundary orthogonally.A single closed convex interface evolving according to (1.4) will tend to a circle enclosing thesame area [9]. When there are several interfaces, interfaces enclosing large areas grow at theexpense of smaller interfaces while preserving the total area enclosed by all interfaces [13]. Thisis referred to a a coarsening process. With appropriate initial data, this can lead to the case ofa single closed circular interface inside the domain D. A numerical method has been used tosimulate the dynamics of (1.4) for closed interfaces in [7]. For the case of a circular interface, orbubble, contained in D equation (1.4) gives no motion since v = 0 for a circle. Ward was ableto show in [18] that a bubble solution to (1.1) drifts exponentially slowly towards the closestpoint on @D without a change in shape. Speci�cally, the distance between the center of thebubble and the closest point on the boundary of D, rm(t), satis�es the asymptotic ODEr0m(t) � � �3=2�r�1=2m(1�Kmrm)1=2e�2��+��1(rm�rb) : (1.5)Here Km is the curvature of @D at the point closest to the circular interface (positive for aconvex domain D), rb is the bubble radius, and � and ��+ are constants that depend on �.When the distance between the interface and @D is O(�), a fast transformation takes placeresulting in an interface intersecting @D orthogonally. This interface remains connected to @Dand it evolves according to (1.4) until a steady state is attained. When the length scale ofan interface is su�ciently small compared to the radius of curvature of @D the interface willbecome approximately semi-circular in shape. Alikakos, Chen, and Fusco show in [1] that thecenter of such a small drop satis�es the following di�erential equation as � ! 0 subject to



Chapter 1. Introduction 30 < � < �3: �0(t) � 4�2�3� K 0D(�(t)) : (1.6)In (1.6), � is an arclength parameter for @D, � is the radius of the drop, and KD is the curvatureof @D (positive for a convex domain D).In this thesis, we derive some of the results stated above, simulate (1.4) numerically, andshow a new result for the motion of a semi-circular interface along a at boundary portion of@D. In x2 the method of matched asymptotic expansions is used in a multiple time scale settingto derive (1.4), the motion by area preserving mean curvature result. In x3 the derivation of(1.6), the asymptotic di�erential equation for the motion of a small drop along the domainboundary, is presented. Next, we use the numerical method of [7], modi�ed for general domainboundary curves, to simulate motion of interfaces by (1.4) in x4. Numerical results are comparedto known asymptotic results for closed interfaces and interfaces intersecting @D. In particularwe compare the numerical motion of small interfaces along the domain boundary to (1.6). Inx5 we apply the projection method developed by Ward ([17], [18]) to a metastable problemfor the evolution of a straight line interface for the unconstrained Allen-Cahn equation. Thisresult agrees with the results of [3] and [12]. Finally, we note that (1.4) gives no indicationof the motion of a semi-circular interface intersecting a at portion of the domain boundary.We examine this metastable problem in x6 for a domain with a straight-line boundary segmentbetween (xL; 0) and (xR; 0). The projection method introduced in x5 is used to determine anexplicit asymptotic ODE for the center of such a semi-circular interface, x0(t), as it movesslowly along the at boundary portion of D. The ODE is found to bex00(t) � 2�a2+(��+)2�� 8<: KRxR � x0 e�2��+��1(xR�x0�rb) �2��+!�R+1 �(�R + 1)� KLx0 � xL e�2��+��1(x0�xL�rb) �2��+!�L+1 �(�L + 1)9=; : (1.7)Here KL, �L and KR, �R are constants used to describe the shape of @D near (xL; 0) and(xR; 0) respectively. In addition, rb is the radius of the semi-circular interface and a+, ��+, and



Chapter 1. Introduction 4� are constants that depend on � and can be calculated asymptotically for a given Q(u). Figure1.1 depicts all of the types of motion of solutions to (1.1) described in this thesis after a singlesmall closed convex interface has developed inside a particular domain D.



Chapter 1. Introduction 5
(a) (b)
(c) (d)
(e) (f)Figure 1.1: Evolution of a small convex interface inside a domain D. (a) The convex interfaceevolves by (1.4) into a circle. (b) The circular interface drifts, satisfying (1.5), towards theclosest point on @D. (c) The interface attaches to @D, intersecting orthogonally. (d) Theinterface moves along @D satisfying (1.4). (e) If the interface encounters a at portion of @D,it moves along this at portion according to (1.7). (f) When a curved part of @D is reached,the interface again evolves by (1.4) until a steady state is attained.



Chapter 2Area Preserving Motion by CurvatureIn this chapter the solution to (1.1) is examined as � ! 0 to obtain the motion by areapreserving mean curvature result, equation (1.4), �rst derived in [13]. We use the method ofmatched asymptotic expansions with multiple time scales in this analysis. For this problem, weintroduce a fast time variable t� = t, a slow time variable � = �t, and a very slow time variable� = �2t. Outer and inner solutions are obtained and analyzed to determine the motion of theinternal layers of the solution as t� and � !1.2.1 The Outer SolutionUsing multiple time scales, we expand the solution to (1.1) and �(t) in the formu(x; t; �) = v0(x; t�; �; �)+ �v1(x; t�; �; �)+ O(�2) ; (2.1)�(t; �) = �0(t�; �; �)+ ��1(t�; �; �)+ O(�2) : (2.2)Substituting (2.1) in (1.1) and collecting powers of � we obtain to leading order(v0)t� = Q(v0)� �0 ; (2.3a)@nv0 = 0 ; (2.3b)ZD v0(x; t�; �; �) dx=M : (2.3c)Thus v0(x; t�; �; �) approaches a steady state, v0(x;1; �; �), in the limit t� ! 1. From (2.3a),this steady state satis�es Q[v0(x;1; �; �)] = �0(1; �; �) : (2.4)6



Chapter 2. Area Preserving Motion by Curvature 7
0 uQ(u) �0s+S+s�S� A� A+

Figure 2.1: Plot of a typical function Q(u). The values of S+(�; �) and S�(�; �) are shown fora given �0(1; �; �). The hatched areas represent A+(�; �) and A�(�; �).The steady state is of the following form:v0(x;1; �; �) = 8><>: S�(�; �) ; x 2 Ds�(�; �) ;S+(�; �) ; x 2 Ds+(�; �) ; (2.5)where Ds�(�; �)[Ds+(�; �) = D ; (2.6)S�(�; �)jDs�(�; �)j+ S+(�; �)jDs+(�; �)j=M : (2.7)Here S�(�; �) and S+(�; �) are the leftmost and rightmost roots of (2.4) respectively. (SeeFigure 2.1.) Thus, we have obtained that as t� !1, the domain D is divided into subdomains,Ds� and Ds+ , with v0 approaching a value independent of x in each subdomain. This outersolution satis�es the boundary condition (1.1b) to leading order. The solution is assumed tohave a layered structure so that (2.7) represents the leading order approximation to the massconstraint (1.1c).



Chapter 2. Area Preserving Motion by Curvature 82.2 The Inner SolutionSeparating the subdomains are internal layers or interfaces in which u has large gradients. Todetermine the asymptotic behavior of u near these interfaces we construct an inner solution.We refer to the interfaces as �(�; �) and describe their location in terms of a function �(x; �; �).At � = 0, � is the signed distance from x 2 D to the interface and we set � > 0 for x 2 Ds+ .Then, near an interface we use the following expansion:u(x; t; �) = u0(z;x; t�; �; �)+ �u1(z;x; t�; �; �)+O(�2) ; (2.8)where z = �(x; �; �)=� : (2.9)Substituting (2.8) in (1.1a) and collecting powers of � we obtain that u0 and u1 satisfy(u0)t� + ��(u0)z � (r�)2(u0)zz �Q(u0) + �0(1; �; �) = 0 ; (2.10)(u1)t� + �� (u1)z � (r�)2(u1)zz + Q0(u0)u1 � �1(1; �; �) =� (u0)� + (��)(u0)z + 2r� � r(u0)z � ��(u0)z : (2.11)We assume for large t� that u0 and u1 tend to travelling waves. Then we setu0(z;x; t�; �; �)� F (z � ct�;x; �; �) as t� !1 ; (2.12)u1(z;x; t�; �; �)� G(z � ct�;x; �; �) as t� !1 : (2.13)Here c is the constant speed of the waves. Using (2.12) and (2.13) in (2.10) and (2.11) we �ndthat F and G satisfy the di�erential equations(�� � c)F 0 � (r�)2F 00 �Q(F ) + �0(1; �; �) = 0 ; (2.14)(�� � c)G0 � (r�)2G00 �Q0(F )G+ �1(1; �; �) = �F� + (��)F 0 + 2r� � r(F 0)� ��F 0 : (2.15)In (2.14) and (2.15), the primes represent di�erentiations with respect to z. To match to theouter solution in (2.5), we have that F tends to S�(�; �) as z ! �1 and to S+(�; �) as z !1.



Chapter 2. Area Preserving Motion by Curvature 9Then we multiply (2.14) by F 0, integrate the result from z = �1 to z = 1, and rearrange toobtain �� � c = V [S�(�; �)]� V [S+(�; �)]� �0(1; �; �) [S+(�; �)� S�(�; �)]R1�1(F 0)2 dz= A+(�; �)�A�(�; �)R1�1(F 0)2 dz : (2.16)Here we have used V (u) de�ned in (1.2). We also use the notation here that A�(�; �) representsthe area of the region above the graph of Q(u) and below the line �0(1; �; �) and A+(�; �)represents the area of the region below the graph of Q(u) and above the line �0(1; �; �). (SeeFigure 2.1.) To determine the evolution of the interfaces on the � time scale, we use the function (x; �; �) = �(x; �; �)� c� : (2.17)The location of the interface is then determined by the zero set of  . We use the new variables and the function R(s; �; �) de�ned bys = z � ct�jr j ; R(s; �; �) = F (z � ct�;x; �; �) : (2.18)We substitute (2.18) in (2.14) and (2.16) to determine thatRss � A+(�; �)� A�(�; �)R1�1(Rs)2 ds Rs +Q(R)� �0(1; �; �) = 0 ; (2.19a)R(�1; �; �) = S�(�; �) ; R(1; �; �) = S+(�; �) ; (2.19b)and  �jr j = A+(�; �)� A�(�; �)R1�1(Rs)2 ds : (2.20)To interpret the motion determined by (2.20), we notice that  �=jr j is just the normalvelocity of a level set of  . Then (2.20) is an equation for the normal velocity of the interfaceson the � time scale. We di�erentiate (2.7) with respect to � to �nd that(S�)� jDs�(�; �)j+ S�jDs� j� + (S+)� jDs+ j+ S+jDs+ j� = 0 : (2.21)When A� < A+, (2.20) gives  � > 0. Thus the interfaces are propagating is such a way so thatDs� is decreasing is size while Ds+ increases. In this situation we have jDs�j� < 0, jDs+ j� > 0



Chapter 2. Area Preserving Motion by Curvature 10and from (1.2) we know that S� < 0 and S+ > 0. Putting this information into (2.21), we�nd that S� and S+ must both decrease. Referring to Figure 2.1 we see that �0(1; �; �)must increase for this to be true. This causes A� to grow and A+ gets reduced. Similarly,when A� > A+, the interfaces move to decrease A� and increase A+. So, as � ! 1, S+and S� approach values such that A� = A+. From (1.2) we see that this can only happen ifS�(1; �) = s� and �0(1;1; �) = 0. Summarizing our results, as � !1 we havev0(x;1;1; �) = 8><>: s� ; x 2 Ds�(1; �) ;s+ ; x 2 Ds+(1; �) ; (2.22) �jr j = A+(1; �)�A�(1; �)R1�1(Rs)2 ds = 0 : (2.23)Note that we have found that v0, �0, S�, and A� are all independent of �.Next we �nd the motion of the interfaces on the � time scale. As � ! 1 we use �� � c = � = 0, and F� = 0 in (2.15) to �nd that G satis�es�(r�)2G00 � Q0(F )G = (��+ 2r� � r)F 0 � ��F 0 � �1(1;1; �) : (2.24)We multiply (2.24) by F 0 and integrate from z = �1 to z =1. Two integrations by parts canbe used to show that the left side of this equation can be written as� Z 1�1 h(r )2F 000 + Q0(F )F 0iGdz : (2.25)Di�erentiating (2.14) with respect to z as � !1 we �nd(r )2F 000 + Q0(F )F 0 = 0 : (2.26)Therefore the left side of our result equals zero and using �� =  �, r� = r , and �� = � ,the remaining terms can be rearranged to obtain � = � + hr � r R1�1(F 0)2 dz � �1(1;1; �)(s+ � s�)iR1�1(F 0)2 dz : (2.27)We write this in terms of R and s using (2.18) and get � = � + jr j �r � r� 1jr j�� (�)� ; (2.28)



Chapter 2. Area Preserving Motion by Curvature 11where (�) = �1(1;1; �)(s+� s�)R1�1(Rs)2 ds : (2.29)Here we use that the normal velocity on the � time scale, v, and mean curvature, �, of a levelset of  are given by v =  �=jr j and � = r � (r =jr j). Then we use (2.28) to show thaton the � time scale, the interfaces �(x;1; �), given by fx :  (x;1; �) = 0g evolve according tov = ��  : (2.30)To determine  we use (2.6), (2.7), and (2.22) to obtain that as � !1,jDs� j+ jDs+ j = jDj ; (2.31)s�jDs� j+ s�jDs�j =M : (2.32)Taking the � derivative of (2.31) and (2.32) we �nd that the following condition must hold:jDs� j� = jDs+ j� = 0 : (2.33)Next we use the identity [13] jDs+ j� = Z� v ds : (2.34)We substitute (2.30) into (2.34) and use (2.33) to solve for : = 1j�j Z� � ds : (2.35)Here j�j is the total length of the interfaces. Finally, the normal velocity of the interfaces onthe � time scale is obtained by putting (2.35) in (2.30):v = � � 1j�j Z� � ds : (2.36)2.3 Summary and ExtensionsIn this section we write out results in terms of the original time variable, t. We have shown thatstarting from initial data, as �t ! 1, the solution to (1.1) develops interfaces, �, separating



Chapter 2. Area Preserving Motion by Curvature 12regions where u � s+ from regions where u � s�. (See Figure 2.2.) The subsequent evolutionis such that the normal velocity, v, of the interfaces is governed byv = �2 ��� 1j�j Z� � ds�+O(�3) : (2.37)Note that from (2.9), (2.17), and (2.18) we have as t!1 thatu(x; t; �) � R  (x; �t; �2t)�jr j ! : (2.38)If an interface has an endpoint on @D, we apply the boundary condition (1.1b) to (2.38) toobtain that on @D, R0  (x; �t; �2t)�jr j !@n   (x; �t; �2t)�jr j ! = 0 : (2.39)Since the interface is given by fx :  (x; �t; �2t) = 0g, (2.39) reduces to@n (x; �t; �2t) = 0 ; x 2 @D \ fx :  (x; �t; �2t) = 0g : (2.40)This shows that when an interface intersects the boundary, it intersects orthogonally.From (2.33) we see that the motion of the interfaces by (2.37) keeps the area enclosed by theinterfaces constant. Because of this, the ow (2.37) is referred to as motion by area preservingmean curvature. Several other properties of this motion are derived in [9] and [13]. In [9],Gage shows that (2.37) shortens the length of the interfaces as time evolves and that a singleclosed convex interface converges to a circle as t ! 1. In addition, from [13], when there aremultiple interfaces a coarsening process occurs in which interfaces enclosing large areas growat the expense of those enclosing smaller areas until only one circular interface remains. Theseresults have been veri�ed numerically in [7] and in Chapter 4.
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u � s�O(�) u � s+D @D�Figure 2.2: Plot of a solution to (1.1) that has developed a single closed interface. The interfaceevolves according to (2.37).



Chapter 3Motion of a Small Drop Along the BoundaryIn this chapter we consider the evolution of a single small interface intersecting the domainboundary. If the length scale of the interface is relatively small compared to the radius ofcurvature of the domain boundary the results of Chapter 2 suggest that the shape of thisinterface will become approximately semi-circular while intersecting @D at right angles. Sinceevolution by (1.4) shortens the length of interfaces, we expect that this drop will move alongthe domain boundary in the direction where the curvature of @D is increasing the most. Thisshould continue until the drop attains a steady state surrounding a point on @D where theboundary curvature is a local maximum.We examine the motion of such small drops using the procedure in [1]. To do this we considerthe situation in which the solution to (1.1) is a drop solution. That is, u has developed a singlesmall approximately semi-circular interface centered at z(�) with radius � � 1 and intersecting@D orthogonally. Here @D is parameterized by z(�) where � is a counterclockwise arclengthparameter and we assume that the curvature of @D is O(1). We take u � s� inside and u � s+outside of the drop. We also assume that the shape of the interface remains approximatelysemi-circular as it moves along the boundary so that u(x; t) = û(x; �(t)) and �(t) = ��̂(�(t)).The function � = �(t) represents the arclength coordinate of the center of the semi-circular dropon @D. Writing �0(t) = �2c(�) and using (1.1), we take û to satisfy�2�û+Q(û)� ��̂ � �2cû� = 0 ; x 2 D � R2 ; (3.1a)@nû = 0 ; x 2 @D ; (3.1b)ZD û(x; �) dx= s+jDj � (s+ � s�)��2=2 : (3.1c)Here jDj is the area of D and we have used the result from Chapter 2 that as t ! 1 then14



Chapter 3. Motion of a Small Drop Along the Boundary 15� = O(�). We also assume that � satis�es0 < �� �3 � 1 : (3.2)As shown in [1], the condition 0 < � � �3 guarantees that a semi-circular interface is theleast-energy solution and hence the drop will maintain its shape and will not spread out on theboundary. We use (3.1) to �nd conditions on the shape of the interface, �(�), as �! 0. Next,we solve (3.1) as � ! 0 subject to (3.2) to determine c(�) and produce an asymptotic ODE forthe motion of a drop along @D.3.1 The �-Series ExpansionIn the region near the interface we introduce the local coordinates �(x; �) and s(x; �). We set� = ��1r, where �r is the distance from x inside the drop to �(�), and we let s be a coordinateorthogonal to r. When r = 0, s is a counterclockwise arclength parameter for �(�). In thesecoordinates we have�2�x = @�� + ��(1 + ���)�1@� + �2(1 + ���)�2@ss � �3��s(1 + ���)�3@s ; (3.3a)@� = ��1r�@� + s�@s + @� : (3.3b)Here �(s; �) is the curvature of �(�). In this region we use the following expansions:û(x; �; �) = û0(�) + 1Xj=1 �j ûj(�; s; �) ; (3.4a)�̂(�; �) = 1Xj=0 �j �̂j(�) ; (3.4b)Q(û) = Q(û0) + �Q0(û0)û1 + O(�2) ; (3.4c)�(s; �; �) = 1Xj=0 �j�j(s; �) ; (3.4d)c(�; �) = 1Xj=0 �jcj(�) ; (3.4e)r�(x; �; �) = 1Xj=0 �jr�j (�; s; �) ; (3.4f)



Chapter 3. Motion of a Small Drop Along the Boundary 16s�(x; �; �) = 1Xj=0 �js�j(�; s; �) : (3.4g)Substituting (3.3) and (3.4) into (3.1a) and collecting powers of �, we get the leading orderproblem as �! 0 û000 + Q(û0) = 0 ; �1 < � <1 : (3.5)To match to the outer solution, we requireû0 � s� ; as �! �1 : (3.6)The �rst order problem is given byLû1 � (û1)�� +Q0(û0)û1 = ��0 � c0r�0� û00 + �̂0 : (3.7)Di�erentiating (3.5) we see that û0 satis�es Lû00 = 0. Thus we obtain the solvability conditionthat (Lû1; û00) = 0 where (u; v) � R1�1 uv d�. Applying this solvability condition to (3.7) yields�0 � c0r�0 + a0�̂0 = 0 ; (3.8)where a0 � s+ � s�R1�1 (û00)2 d� : (3.9)Summarizing, we have obtained, as �! 0, that û is given asymptotically byû(x; �(t)) = 8>>>>><>>>>>: s+ +O(�) ; x 2 Ds+ ; � 6= O(1) ;û0(�) +O(�) ; � = O(1) ;s� +O(�) ; x 2 Ds� ; � 6= O(1) : (3.10)In (3.10) Ds� and Ds+ are the regions inside and outside of the drop respectively. Since wehave assumed that � intersects @D orthogonally, (3.10) satis�es the boundary condition (3.1b)to leading order. In addition, the following expression is satis�ed asymptotically� � cr� + a0�̂ = O(�) : (3.11)To represent @D, as in [1] it is convenient to use to a complex valued function z(�) =(z1(�)+ iz2(�)) where � is a counterclockwise arclength parameter. Then the boundary is given



Chapter 3. Motion of a Small Drop Along the Boundary 17by @D = �(z1(�); z2(�)) : 0 � � � j@Dj	 where j@Dj is the length of @D. If we let z0(�) = ei�(�)where �(�) is a known real valued function representing the angle between @D and the positivex-axis, then we have �0(�) = KD(�). Here KD(�) is the curvature of @D at � which we assumeto be O(1). We use the sign convention that KD is positive if D is convex. Similarly we describethe location of the interface, �(�), by a complex function w(s; �) = (w1(s; �)+ iw2(s; �)) so that�(�) = �(w1(s; �); w2(s; �)) : 0 � s � j�(�)j	 where j�(�)j is the length of �(�). Then there is areal function  (s; �) such that [1]ws(s; �) = ei[ (s;�)+�(�)+�=2] : (3.12)Using this, the curvature of the interface is given by�(s; �) =  s(s; �) : (3.13)Since the interface is close to a semi-circle of radius � we expect that � = O(��1).The interface and the domain boundary must intersect at two places. Thus, using thenotation above we have w(0; �) = z(� + g(�)) ; (3.14a)w(j�(�)j; �) = z(� � g(�)) : (3.14b)Here g(�) is a positive function and since �(�) is close to a small semi-circle, we expect thatg = O(�). To satisfy (3.12) and (3.14a) we take w(s; �) in the formw(s; �) = z(� + g(�)) + Z s0 ei[ (~s;�)+�(�)+�=2] d~s : (3.15)Then to satisfy (3.14b) we requireZ j�(�)j0 ei[ (~s;�)] d~s = i Z g(�)�g(�) ei[�(�+�)��(�)] d� : (3.16)We have assumed that the interface and the domain boundary intersect orthogonally sothat n̂ � N̂ = 0 at the intersection points. Here n̂ is the outward unit normal to �(�) and N̂



Chapter 3. Motion of a Small Drop Along the Boundary 18is the outward unit normal to @D. Using the expressions for w and z above, these vectors aregiven by n̂ = ei[ (s;�)+�(�)] ; N̂ = ei[�(�)��=2] : (3.17)Thus at the intersection points we havesin ( (0; �) + �(�)� �(� + g)) = 0 ; (3.18a)sin ( (j�j; �) + �(�)� �(� � g)) = 0 : (3.18b)Then from (3.18) we then have that  satis�es (0; �) = �(� + g(�))� �(�) ; (3.19a) (j�j; (�)) = � + �(� � g(�))� �(�) : (3.19b)We can convert (3.11) into a di�erential equation for  (s; �) using (3.13). To do this weneed to express r� in terms of  . The relationship between r and x isx = w(s; �) + r(x; �)n̂ : (3.20)Di�erentiating (3.20) with respect to � we getr�(x; �) = �w� � n̂ : (3.21)Substituting (3.15) and (3.17) into (3.21) we obtainr� = �(1+g�) cos (�(� + g)� �(�)�  )+Z s0 [ �(~s; �) + ��(�)] cos ( (~s; �)�  (s; �)) d~s : (3.22)Now (3.11) can be written as s(s; �) = �a0�̂ � c(1 + g�) cos (�(� + g)� �(�)�  (s; �))+ c Z s0 [ �(~s; �) + ��(�)] cos ( (~s; �)�  (s; �)) d~s+O(�) : (3.23)To asymptotically evaluate the mass constraint (3.1c) we decompose it asZD u(x; �) dx= s+(jDj� jDs�j)+ s�jDs� j+ ZDs+ (û� s+) dx+ ZDs� (û� s�) dx+O(�) : (3.24)



Chapter 3. Motion of a Small Drop Along the Boundary 19Here jDs� j and jDs+ j are the areas of Ds� and Ds+ . Using (3.10) we can evaluate the integralsin (3.24) as � ! 0 since dominant contributions to these integrals arise from the regions nearthe interface. Thus we obtainZD u(x; �) dx= s+jDj � (s+ � s�)jDs�j+O(�) : (3.25)Now from the mass constraint condition, (3.1c), we getjDs� j = ��2=2 + O(�) : (3.26)Next we can calculate jDs�j usingjDs� j = 12 Z@Ds�(xdy � ydx) = �12=(Z@Ds� z dz) = �12=(Z@Ds� [z� z(� + g)] dz) : (3.27)Here = denotes the imaginary part of a complex function and we have used that the integralof z(� + g) over @Ds� is zero since @Ds� is a closed curve. Using our expressions for z and wwe then obtainjDs� j = �12=(Z �+g��g [z(~�)� z(� + g)]z0(~�) d~� + Z j�j0 [w(~s; �)�w(0; �)]ws(~s; �)d~s)= �12 (Z �+g��g Z ~��+g sin(�(�̂)� �(~�)) d�̂ d~� + Z j�j0 Z ~s0 sin( (ŝ; �)�  (~s; �)) dŝd~s) : (3.28)Substituting (3.28) into (3.26) we obtain that  satis�esZ �+g��g Z ~��+g sin(�(~�)� �(�̂)) d�̂ d~� + Z j�j0 Z ~s0 sin( (~s; �)�  (ŝ; �)) dŝd~s = ��2 +O(�) : (3.29)3.2 The �-Series ExpansionIn this section we expand all of the unknown coe�cients in powers of � and proceed to solve(3.16), (3.19), (3.23), and (3.29) as � ! 0. These equations are now contain double seriesexpansions. Since we have assumed that 0 < � < �3 � 1, the various terms in the equationscan be ordered using ��1 � 1 � � � �2 � �3 � �. Speci�cally, we use the following



Chapter 3. Motion of a Small Drop Along the Boundary 20expansions:  (s; �; �) = ��1 1Xj=0 �j j(s; �) ; (3.30a)g(�; �) = 1Xj=0 �jgj(�) ; (3.30b)j�(�; �)j = 1Xj=0 �jLj(�) ; (3.30c)�̂(�; �) = ��1 1Xj=0 �j �̂j(s; �) ; (3.30d)c(�; �) = 1Xj=0 �jcj(�) : (3.30e)In addition, we expand �(� + �) in a Taylor expansion as�(� + �) = �(�) +KD(�)� + 12K 0D(�)�2 + � � � : (3.31)In (3.31)KD(�) is the curvature of @D at �. To simplify the calculations, we assume throughoutthat g = O(�), g� = O(�2), �̂ = O(��1), and c = O(�). Also note that all calculations donehere are valid up to O(�) but we suppress writing this in each equation.First we solve the di�erential equation (3.23) with the initial condition (3.19a) up to O(�): (s; �) = �(� + g(�))� �(�)� a0�̂s+O(�2) : (3.32)Here we have assumed that the terms containing c in (3.23) are O(�2). Substituting this backinto (3.23), we can solve up to O(�2) to obtain (s; �) = �(� + g)� �(�)� a0�̂s + c ��sin(a0�̂s)a0�̂ +KD 1� cos(a0�̂s)(a0�̂)2 �+O(�3) : (3.33)To satisfy (3.19b) we requirea0�̂j�j = �� + �(� + g)� �(� � g) + c ��sin(a0�̂j�j)a0�̂ +KD 1� cos(a0�̂j�j)(a0�̂)2 �+ O(�3) : (3.34)Using (3.31), the Taylor expansions of sin and cos about ��, and the assumptions that g = O(�)and c = O(�) we can show that the term containing c in (3.34) is O(�3). Thus we can write(3.34) as a0�̂j�j = �� + 2KDg +O(�3) : (3.35)



Chapter 3. Motion of a Small Drop Along the Boundary 21Next we need that  satis�es (3.16). Using (3.31), the right side can be evaluated asi Z g�g ei[�(�+�)��(�)] d� = i Z g�g �1 + i(KD� + 12K0D�2 + � � �)� 12(KD� + � � �)2 + � � �� d�= 2gi+ 13 �iK2D �K 0D� g3 + O(�4) : (3.36)Using (3.33) the left side of (3.16) becomesZ j�j0 ei ds = A(�; g) Z j�j0 e�ia0 �̂s �1 + ic ��sin(a0�̂j�j)a0�̂ +KD 1� cos(a0�̂j�j)(a0�̂)2 �+O(�3)� ds= A(�; g)ei[�(�+g)��(�)](e�ia0 �̂j�j � 1�ia0�̂ + ic e�2ia0 �̂j�j � 14(a0�̂)2 + ij�j2a0�̂!+ icKD e�ia0 �̂j�j � 1�i(a0�̂)3 � j�j2(a0�̂)2 + e�2ia0 �̂j�j � 14(a0�̂)3 !)+ O(�4) ; (3.37)where A(�; g)� ei[�(�+g)��(�)] : (3.38)We can evaluate (3.37) using (3.31), (3.34), Taylor expansions and assuming that g = O(�) and�̂ = O(��1) to obtainZ j�j0 ei ds = 1a0�̂ �K 0Dg2 � c j�j2 + i(�2 +K2Dg2)�+O(�4) : (3.39)Equating the real and imaginary parts of (3.36) and (3.39) we getc = 2K0Dg2j�j (1 + 13a0�̂g) +O(�4) ; (3.40)a0�̂g = �2 +K2Dg2(1� 13a0�̂g) + O(�3) : (3.41)Finally we solve (3.29). Using a Taylor expansion and (3.31) we can express �rst term onthe left side of (3.29) asZ �+g��g Z ~��+g sin(�(~�)� �(�̂)) d�̂ d~� = Z g�g Z �g sin(�(� + �)� �(� + �̂)) d�̂ d�= Z g�g Z �g �KD(� � �̂) + 12K 0D(�2 � �̂2) + � � �� d�̂ d�= 43KDg3 + O(�4) : (3.42)



Chapter 3. Motion of a Small Drop Along the Boundary 22Here we have again assumed that g = O(�). Similarly the second term on the left side of (3.29)becomesZ j�j0 Z ~s0 sin( (~s; �)�  (ŝ; �)) dŝd~s = Z j�j0 Z ~s0 sin ha0�̂(ŝ� ~s) +O(�2)i dŝ d~s= sin(a0�̂j�j)� a0�̂j�j(a0�̂)2 + O(�4)= � � 4KDg(a0�̂)2 + O(�4) : (3.43)Here we have used c = O(�), � = O(��1), and (3.34). Substituting these expressions into (3.29)we obtain (a0�̂)2��2 = � � 4KDg(1� 13(a0�̂)2g2) + O(�2) : (3.44)We now use the �-series expansions, (3.30), in equations (3.35), (3.40), (3.41), and (3.44) todetermine �̂, g, j�j, and c. To leading order, equation (3.44) produces�̂0 = �a�10 : (3.45)In (3.45) we have used from (3.35) that �̂ < 0 since j�j and a0 are positive. Using this resultin (3.41) we get g0 = 0 ; (3.46)g1 = 1 : (3.47)Substituting (3.45) in (3.35) we �nd L0 = �� : (3.48)Finally, we use these results in equation (3.40) to obtainc0 = 0 ; (3.49)c1 = 43�K 0D : (3.50)Note that we have found that g = O(�), g� = O(�2), �̂ = O(��1), and c = O(�) which is whatwe assumed to simplify the calculations.



Chapter 3. Motion of a Small Drop Along the Boundary 233.3 Summary and Alternate DerivationUsing the results of the previous section, we have obtained an ordinary di�erential equation forthe location of the center of a small drop moving along the domain boundary. This ODE issatis�ed asymptotically as � ! 0 for 0 < �� �3 and is given by�0(t) = 4�2�3� K 0D(�(t)) + O(�2�3) : (3.51)Recall that KD(�) is the curvature of @D at �. Thus according to (3.51), the drop will movein the direction of increasing curvature of @D as expected and attain a steady state at a localmaximum of the boundary curvature. We note that while we have used the condition 0 < �� �3to order the terms in our double series expansion, this restriction is necessary. It is shown in[1] that if � is smaller than an O(�1=3) critical size, a constant solution to (1.1) is more energye�cient than a small drop solution. Because of this drop solutions will not occur for very small�. The result (3.51) can also be directly derived from (1.4) without any reference to (1.1).To do this we use the same notation for w(s; �) and z(�) introduced in x3.1. The endpointcondition, equation (3.16), must still be satis�ed. The interface intersects the boundary atright angles, so (3.19) is needed. We also assume that the interface encloses an area of ��2 sothat (3.29) is satis�ed. Next, instead of deriving (3.23) using (3.1), we assume that the interfaceevolves by (1.4) so that cw� = wss � 1j�j �Z�wss � n̂ds� n̂ +O(�) : (3.52)This is because the projection of (3.52) in the direction of n̂ produces (1.4). Substituting (3.15),(3.17), and z0(�) = ei�(�) into (3.52) we obtainc(1 + g�)ei�(�+g) � c Z s0 [ �(ŝ; �) + ��(�)]ei[ (ŝ;�)+�(�)] dŝ =� s(s; �)ei[ (s;�)+�(�)]+ 1j�j [ (j�j; �)�  (0; �)]ei[ (s;�)+�(�)]+ O(�) : (3.53)We multiply this by e�i[ (s;�)+�(�)], take the real part and rearrange terms to get that  (s; �)



Chapter 3. Motion of a Small Drop Along the Boundary 24satis�es the asymptotic di�erential equation s(s; �) = 1j�j [ (j�j; �)�  (0; �)]� c(1 + g�) cos (�(� + g)� �(�)�  (s; �))+ c Z s0 [ �(~s; �) + ��(�)] cos ( (~s; �)�  (s; �)) d~s+O(�) : (3.54)Now we can solve (3.16), (3.19), (3.29), and (3.54) as in x3.2 to obtain (3.51). Note that using(3.19) and (3.34) we obtain that[ (j�j; �)�  (0; �)] = � + �(� � g)� �(� + g) = �a0�̂j�j+O(�3) : (3.55)Thus (3.23) and (3.54) give the same di�erential equation for  .



Chapter 4Numerical Motion by Area Preserving Mean CurvatureIn this chapter we model the Allen-Cahn equation numerically . Speci�cally, we examine anumerical model for the normal velocity of the interfaces developed by solutions to (1.1) as�t ! 1. If there are several interfaces in the domain, the normal velocity of the ith interface,�i, is determined from the motion by area preserving mean curvature result (1.4):vi � �2 �i � 1j�jXi Z�i �i ds! : (4.1)Here vi is the normal velocity of �i, �i is the curvature of �i, and j�j is the total length of allinterfaces [13]. To be consistent with the de�nitions in Chapter 2, we use the sign conventionthat when �i is convex, vi is in the outward normal direction and �i is negative. If an interfaceintersects the boundary it must intersect orthogonally.This chapter is organized as follows. In x4.1 a numerical method based on the method oflines for computing motion by area preserving mean curvature is described. Some numericalresults are presented in x4.2. These numerical results are compared to asymptotic propertiesof solutions to the Allen-Cahn equation presented in Chapter 1. In particular, we examinethe numerical evolution of approximately semi-circular interfaces intersecting @D. The radii ofthese semi-circular interfaces, called drops, are assumed to be small compared to the radius ofcurvature @D. We then compare the numerical motion of these small drops to the asymptoticresult for the Allen-Cahn equations derived in Chapter 3 which states that�0(t) � 4�2�3� K 0D(�(t)); (4.2)where � ! 0 and 0 < � � �3. Here � is an arc length parameter for @D, � is the radius of thedrop, and KD is the curvature of @D. We use the sign convention that KD is positive for aconvex domain. 25



Chapter 4. Numerical Motion by Area Preserving Mean Curvature 264.1 Numerical Model for Motion by Area Preserving Mean CurvatureIn this section, we set up a discretization scheme based on [7] for modelling motion by curvatureas given by (4.1). A front tracking method is used. First, partial di�erential equations thatdescribe motion by curvature are presented. We then apply the method of lines to theseequations, discretizing in space and stepping forward in time.4.1.1 Equations of MotionTo eliminate the dependence on �, we use the change of variables, � = �2t. We assume that theinterfaces, �i, are described parametrically by xi(�; �) = (xi(�; �); yi(�; �)) where � 2 [0; 1]. Inthis situation, a partial di�erential equation that describes the motion given by (4.1) isxi� = xi��jxi�j2 � 1j�j  Xi Z�i xi��jxi�j2 � n̂i ds! n̂i ; (4.3)where n̂i is a unit normal to �i. It is easily seen that the projection of (4.3) in the normaldirection of a given interface agrees with equation (4.1). Note that (4.1) is arbitrary up to anyvelocity in the tangential direction.If the interfaces are closed curves, then we havexi(0; �) = xi(1; �) : (4.4)If the interfaces intersect the boundary, then they intersect at a normal angle. Thus if theboundary, @D, is parameterized by z(�), where � is an arclength parameter, then this boundarycondition can be written as xi�(0; �) � z0(�i0(�)) = 0 ; (4.5a)xi�(1; �) � z0(�iN+1(�)) = 0 ; (4.5b)where xi(0; �) = z(�i0(�)) ; (4.6a)xi(1; �) = z(�iN+1(�)) ; (4.6b)for some �i0(�) and �iN+1(�).



Chapter 4. Numerical Motion by Area Preserving Mean Curvature 274.1.2 DiscretizationThe discretization procedure described here is as in [7]. We apply the method of lines, discretiz-ing in space. A staggered grid in � and second order centered approximations are used. We letXij(�) approximate xi((j� 1=2)h; �) for j = 0; 1; : : : ; N;N + 1, where h is the grid spacing andN = 1=h is the number of interior grid points. Then to second order we havexi(jh) � (Xij+1 +Xij)=2 : (4.7)The explicit dependence on time will be suppressed for the remainder of this section. Denot-ing the second order centered approximation of the kth derivative by Dk, we use the followingapproximations: xi� � D1Xij � (Xij+1 �Xij�1)=2h ; (4.8)xi�� � D2Xij � (Xij+1 � 2Xij +Xij�1)=h2 : (4.9)We estimate the normal vector, n̂i, to an interface, �i, byn̂i � (D1Xij)?���(D1Xij)��� : (4.10)The integral in the second term on the right hand side of equation (4.3) is approximated usingthese discretizations and the trapezoid rule:�a � 1j�jXi Z�i xi��jxi�j2 � n̂i ds � hj�j NXj=1 D2Xij���D1Xij���2 � (D1Xij)? : (4.11)The length of the interfaces is also approximated using a trapezoid scheme:j�j �Xi h NXj=1 ���D1Xij��� : (4.12)We use the approximations (4.8), (4.9), (4.10), (4.11), and (4.12), to discretize equation(4.3): dd�Xij = D2Xij���D1Xij���2 � �a (D1Xij)?���D1Xij���2 : (4.13)



Chapter 4. Numerical Motion by Area Preserving Mean Curvature 28Here �a is as given in (4.11). Note that equation (4.13) is independent of h. For closed interfaces,(4.4) requires Xi0 = XiN ; Xi1 = XiN+1 : (4.14)If an interface is closed, we apply second order forward di�erencing and averaging to (4.5) and(4.6) to yield the following conditions:(Xi1 � z(�i0)) � z0(�i0) = 0 ; (4.15a)Xi0 = 2z(�i0)�Xi1 ; (4.15b)and (XiN � z(�iN+1)) � z0(�iN+1) = 0 ; (4.16a)XiN+1 = 2z(�iN+1)�XiN : (4.16b)Here z(�i0) and z(�iN+1) are unknown points on the boundary curve. These equations can beinterpreted geometrically. From (4.15a) and (4.16a) we see that z(�i0) and z(�iN+1) must be thepoints on the boundary that are closest to Xi1 and XiN respectively. The points Xi0 and XiN+1are then reections of Xi1 and XiN through the closest point on the boundary.4.1.3 Solving the Discrete Equations NumericallyGiven arbitrary initial data, information on whether the curve is closed or intersects the bound-ary, and a boundary curve, the system of ordinary di�erential equations, (4.13), and the bound-ary conditions (4.14) or (4.15) and (4.16), need to be solved in time using some numericalscheme. The code used in this thesis employs the explicit fourth order Runge Kutta method.Other appropriate methods for time stepping are discussed in [7]. For stability, the time steps,k, are chosen to satisfy k = h24 mini;j ���D1Xij���2 : (4.17)If a given interface is closed, then we use (4.14) to ensure that the curve remains closed.We advance equation (4.13) for j = 0; 1; : : : ; N by one time step using the explicit fourth order



Chapter 4. Numerical Motion by Area Preserving Mean Curvature 29Runge Kutta method and values of Xij at the previous time step. This procedure is repeatedto advance further in time.For an interface that intersects the boundary, �rst we use equations (4.15) and (4.16) to �ndXi0 and XiN+1 to ensure that the interface intersects the boundary curve orthogonally. We dothis using geometrical reasoning for simple boundaries such as circles or squares. For generalboundaries parameterized by z(�), we solve (4.15a) and (4.16a) using the bisection method andNewton's method to determine �i0 and �iN+1. We used several iterations of the bisection methodto obtain good initial guesses for Newton's method and then Newton's method is repeated untilconvergence is attained. Equations (4.15b) and (4.16b) are then used to �nd Xi0 and XiN+1.We again use the explicit fourth order Runge Kutta method on (4.13) for j = 1; 2; : : : ; N toadvance one time step. We repeat this procedure for subsequent time steps.The code used in this chapter, based on [7], employs regridding to maintain at least onegrid point for every arc length h along an interface curve. Surgeries are also done to eliminatecurves when they get too short and for other singularities. This is not important for this thesisand the reader is referred to [7] for more information.4.2 Numerical ResultsIn this section we examine the evolution of interfaces in several situations using the numericalmethod described in x4.1. The motion of both closed interfaces and interfaces intersecting theboundary are considered. We make comparisons with analytical results.4.2.1 Closed InterfacesWe studied the dynamics of a single closed interface using the numerical method. If the initialshape of the interface was convex, the interface would become circular after a while and wouldremain in this shape for all subsequent time. This agrees with the result stated in the introduc-tion and proven in [9]. See Figure 4.1 for an example of the evolution of a single closed curve.With nonconvex initial conditions, the interface may also become circular as time progresses,



Chapter 4. Numerical Motion by Area Preserving Mean Curvature 30� = 0 � = 0.1� = 0.2 � = 0.3
Figure 4.1: Evolution of a closed interface by numerical mean curvature.but the interface may self-intersect during this evolution. When an interface self-intersects,changes in topology are needed in this case to split the interface into more than one noninter-secting curves. This is not done in this thesis. A di�erent method, such as in [15], is bettersuited to handle these situations. However, the method used here is more easily applied toconsidering the motion of curves intersecting a general boundary which is the primary aim ofthis chapter.We also examined the evolution of several disjoint closed interfaces. If initial conditionsare set so that the interfaces do not self-intersect as time increases, a coarsening process wasobserved. Each interface becomes circular and then the interfaces enclosing large areas growwhile interfaces enclosing small areas shrink. Eventually only one circular interface remains.The evolution of two closed curves is depicted in Figure 4.2. We can estimate the total areaenclosed by a closed curve using the trapezoid rule and second order forward di�erencing andaveraging: Ai � NXj=1(U ij+1 � U ij)(V ij+1 + V ij )=2 : (4.18)



Chapter 4. Numerical Motion by Area Preserving Mean Curvature 31� = 0 � = 0.25� = 0.5 � = 0.75
Figure 4.2: Evolution of two closed interfaces by numerical mean curvature.Here Xij = (U ij ; V ij ). Using this we have veri�ed that the total area enclosed by the closedinterfaces is approximately constant for one and several interfaces. In fact, aside from the errorsassociated with the explicit fourth order Runge Kutta method and regridding, the discretizationused here preserves discrete area de�ned by (4.18) [7].4.2.2 Interfaces Intersecting the BoundaryBoundaries With Constant CurvatureWe used the numerical method to track the evolution of interfaces intersecting a boundary thathas constant curvature, for example circles and squares. For these two simple boundary curves,Newton's method is not needed to solve (4.15a) and (4.16a). Instead, the closest point on theboundary to the �rst and last interior grid points can be determined geometrically to ensurethat the interfaces intersect the boundary orthogonally. See Figure 4.3 for the evolution of aninterface intersecting the unit circle. For the unit circle, we found that interfaces quickly evolveinto a smooth convex steady state close to the arc of a circle and the interface does not move



Chapter 4. Numerical Motion by Area Preserving Mean Curvature 32� = 0 � = 1
Figure 4.3: Evolution of an interface intersecting the unit circle.along the boundary. This is as expected since evolution by (1.4) wants to minimize the length of� that encloses a speci�ed area [9] and for this boundary, the length of � does not change if thecontact points with @D move along @D. This can also be seen explicitly using the asymptoticresult for small drops, (4.2) which yields �0 = 0 since K 0D = 0 for a circle. When the boundarywas a square, the situation is similar.The convergence of the method is examined for the data used in Figure 4.3 at � = 1. Sincethe exact solution is not known, we estimate the error, eh, by comparing the numerical solutionwith step size h to the numerical solution on a grid with step size h=2. Note that interpolationis needed to compare solutions on di�erent grids since a staggered grid was used. Table 4.1displays the maximum errors in the euclidean norm and convergence rate of the method. Theconvergence is second order as expected.N = 1=h eh rate8 0.2091e-216 0.5300e-3 1.9832 0.1325e-3 2.0064 0.3336e-4 1.99Table 4.1: Estimated errors and convergence rates at � = 1 for initial data of Figure 4.3.



Chapter 4. Numerical Motion by Area Preserving Mean Curvature 33� = 0 � = 2� = 4 � = 6Figure 4.4: Evolution of an interface intersecting the boundary curve y = x3.Boundaries With Changing CurvatureNext, we examined the evolution of interfaces intersecting boundaries with nonconstant cur-vature. Given a parameterization of the boundary curve, the bisection method and Newton'smethod are used to solve (4.15a) and (4.16a) to �nd the closest points on the boundary tothe �rst and last interior grid points respectively. We found that the interfaces develop intosmooth convex shapes intersecting the boundary at right angles, then the interfaces will movealong the boundary until a steady state is attained. For small drops, for which the length scaleof the drop is small compared to the radius of curvature of the boundary, we observed thatthe interfaces move along the boundary in the direction of increasing boundary curvature andreach a steady state with the endpoints of the interface surrounding a local maximum of theboundary curvature. See Figures 4.4 and 4.5.We studied the evolution of an interface intersecting a boundary curve composed of anellipse with major axis 2 and minor axis 1. This boundary curve, @D can be parameterized byz(�) = (2 cos�; sin �) ; 0 � � � 2� : (4.19)See Figure 4.5 for the evolution of some initial data intersecting this boundary curve. For thisinitial data and boundary curve, we found the convergence to be of second order as shown inTable 4.2.The numerical trajectories of the center of small interfaces intersecting the boundary, or



Chapter 4. Numerical Motion by Area Preserving Mean Curvature 34� = 0 � = 2� = 4 � = 6
Figure 4.5: Evolution of an interface intersecting an ellipse.N = 1=h eh rate8 0.7214e-116 0.2101e-1 1.7832 0.5476e-2 1.9464 0.1407e-2 1.96Table 4.2: Estimated errors and convergence rates at � = 1 for initial data of Figure 4.5.drops, were compared to the asymptotic result (4.2) for several di�erent boundary curves. Todo this, we took the location of the center of the drop to be the closest point on the boundarycurve to the point midway between the two intersections of the interface with the boundary. Wefound the boundary parameter, �(�), for the center using the bisection method and Newton'smethod. We estimated the area enclosed by the drop and the boundary curve using equation(4.18) and XiN+1 = Xi0. The radius of the drop, �, was estimated by assuming the interfacewas approximately semi-circular and using the area it enclosed to determine �. We then trackthe trajectory of �(�) in time as the interface evolves under the numerical method. To comparewith the asymptotic result, the di�erential equation, (4.2), is solved numerically using fourth



Chapter 4. Numerical Motion by Area Preserving Mean Curvature 35order Runge Kutta for the given boundary.For the elliptical boundary curve de�ned in (4.19), the curvature is given byKD(�) = 2(sin2 � + 4 cos2 �)�3=2 : (4.20)The asymptotic result, (4.2), then becomes�0(�) = �24�� sin � cos �(4 sin2 � + cos2 �)7=2 : (4.21)We start with the initial data of a small semi-circle centered around the point on @D where�(0) = �=4. We observed that these drops move along the boundary in the direction of increas-ing boundary curvature and a steady state was reached at the local maximum of boundarycurvature when � = 0. The trajectories of �(�) for the numerical method and the asymptoticdi�erential equation (4.21) are compared for several di�erent drop radii in Figure 4.6. We noticethat the numerical trajectory gets closer to the asymptotic trajectory as � is decreased. Forvery small radii, both trajectories are very similar.We also considered boundary curves of the following form [11]:z(�) = (p(�) cos � � p0(�) sin �; p(�) sin � + p0(�) cos �) ; 0 � � � 2� : (4.22)Given any p(�) such that p(�) = p(� + 2�), p(�) > 0, and p(�) + p00(�) > 0, (4.22) generates astrictly convex domain. The curvature of such a domain is given byKD(�) = �p(�) + p00(�)��1 : (4.23)For these boundary curves, the asymptotic di�erential equation for the center of a drop, (4.2),becomes �0(�) = � 4�3� (p0(�) + p000(�))(p(�) + p00(�))4 : (4.24)We examined the numerical evolution of small interfaces intersecting @D for the following twoforms of p(�): p = p1(�) � 3 + 0:4 sin3 � � 0:5 cos2 � ; (4.25)p = p2(�) � 3 + 1:4 sin3 � : (4.26)



Chapter 4. Numerical Motion by Area Preserving Mean Curvature 36These domains are plotted in Figure 4.7 and Figure 4.8. We started with the initial data of asmall semi-circle centered around the point on @D for which �(0) = �=3. The location of thecenter of the drop and the radius are determined as for the elliptical boundary. Trajectories of�(�) for the numerical method and for the asymptotic result, (4.24), are displayed in Figure 4.9and Figure 4.10. Referring to Figures 4.6, 4.9, and 4.10, we see that the motion by numericalarea preserving mean curvature is very similar to the asymptotic result for motion of smalldrops along a boundary curve, (4.2), as � ! 0. Thus the results in this chapter numericallyverify (4.2).
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Chapter 5Metastable Motion In The Unconstrained Allen-Cahn EquationA model for phase separation of a binary mixture without a mass constraint is the (uncon-strained) Allen-Cahn equation [14]:ut = �2�u+ Q(u) ; x 2 D � R2 ; (5.1a)@nu = 0 ; x 2 @D : (5.1b)In the above, x = (x; y), � � 1, D is a bounded two-dimensional domain, and Q(u) has threezeroes located at u = s� < 0, u = 0, and u = s+ > 0. In addition Q(u) satis�esQ(s�) < 0 ; Q(0) > 0 ; V (s+) = 0 ; V (u) = � Z us� Q(�) d� : (5.2)As for the constrained Allen-Cahn equation, the method of matched asymptotic expansioncan be used to show that, given initial data, the solution to (5.1) will quickly evolve into regionswhere u � s+ and u � s� with internal layers of width O(�) separating these two phases. For theAllen-Cahn equation, the normal velocity, v, of such an internal layer, also called an interface,is governed to leading order by (see [14]) v � �2� : (5.3)Here � is the mean curvature of the interface. This is referred to as motion by mean curvature.If an interface intersects the boundary of the domain, @D, then it must do so orthogonally.In this chapter, we describe the dynamics of (5.1) when (5.3) fails to give any informationabout the motion of an interface. This happens when the interface is a straight line as then� = 0. A scenario in which this can happen is examined. The goal then is to calculate furtherterms in the expansion of the interface velocity. The 2-dimensional domain, D, is taken be41
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(0; 0) (1; 0)(0; b) (1; b)x0O(�) D+D� K1 < 0K2 < 0 K3 < 0K4 > 0u � s� u � s+Figure 5.1: Plot of a typical domain D and an interface located at x0.D = R[D� [D+ where R is the rectangle [0; 1]� [0; b], and D� and D+ are two attachmentson its sides (see Figure 5.1). From initial data, the solution to (5.1) is assumed to have developeda single vertical straight line interface located at x = x0 with 0 < x0 < 1. Notice that there arean in�nite number of such solutions that are equilibria for (5.3).The points (0; 0), (0; b), (1; 0), and (1; b) are referred to as the corners of R. It is assumedthat the domain boundary is smooth and that near the corners of the rectangle, @D can berepresented as the graph of a function. That is, near each corner, @D = f(x; y) j y =  i(x)gwhere near (0,0), y =  1(x); (5.4a)near (0,b), y =  2(x) + b; (5.4b)near (1,0), y =  3(x); (5.4c)near (1,b), y =  4(x) + b: (5.4d)It is assumed that there exist numbers Ki 6= 0, �i > 1, for i = 1; : : : ; 4 such that 01(x) � �K1(�x)�1; as x! 0�; (5.5a) 02(x) � K2(�x)�2 ; as x! 0�; (5.5b) 03(x) � K3(x� 1)�3; as x! 1+; (5.5c)



Chapter 5. Metastable Motion In The Unconstrained Allen-Cahn Equation 43 04(x) � �K4(x� 1)�4; as x! 1+: (5.5d)When �i = 2, the constant Ki is proportional to the curvature of the ith corner.In this situation the conventional method of matched asymptotics fails to determine themotion of the straight line interfaces. Instead, the projection method, [17], [18], is used tocalculate the dynamics. First, an equilibrium solution to (5.1) in R is constructed. Next, thespectral properties obtained by linearizing (5.1) around the equilibrium solution are analyzedasymptotically. The principal eigenvalue is found to be exponentially small, so metastablemotion is expected. Finally, this information is combined with the projection method to derivean explicit ODE for the motion of the interface location.5.1 The Equilibrium SolutionIn the limit � ! 0, an equilibrium solution to (5.1) in the rectangle, R, is found. We assumethat this solution is only a function of x and has exactly one internal layer centered at x = x0,0 < x0 < 1. Denoting this equilibrium solution as Ub(z) where z = ��1(x� x0), it satis�esU 00b + Q(Ub) = 0; �1 < z <1; (5.6a)Ub(0) = 0; Ub(z) � s�; as z ! �1: (5.6b)Thus, asymptotically Ub(z) is given byUb(z) � 8><>: s+ � a+e��+z ; z ! +1 ;s� + a�e��z; z ! �1 : (5.7)Here the positive constants �� and a� are de�ned by�� = ��Q0(s�)�1=2 ; (5.8)log a� = log(�s�) + Z s�0 � ���[2V (�)]1=2 + 1� � s�� d� : (5.9)



Chapter 5. Metastable Motion In The Unconstrained Allen-Cahn Equation 445.2 Spectral Estimates for the Linearized ProblemThe eigenvalue problem associated with linearizing (5.1) about the equilibrium solution Ub[��1(x�x0)] is L�� � �2��+Q0(Ub)� = �� ; x 2 D ; (5.10a)@n� = 0 ; x 2 @D ; (5.10b)(�; �) = ZD �2 dx : (5.10c)Here (u; v) � RD uv dx . The eigenvalues and eigenfunction of (5.10) are labeled by �j and �jrespectively for j = 0; 1; : : :, with �j ! �1 as j !1.To estimate the principal eigenpair it is assumed that the distance from the interface tothe corners of R is O(1). Notice that L�U 0b[��1(x � x0)] = 0. Then from (5.7), U 0b[��1(x �x0)] fails to satisfy the boundary condition (5.10b) by only exponentially small terms. Thus,�0 � N0 [U 0b + �L0 ] where N0 is a normalization constant and �L0 is a boundary layer functionlocalized near the curved parts of @D that is used to satisfy the boundary condition (5.10b).Green's identity can be applied to (5.10a) and U 0b to estimate the principal eigenvalue:�0(U 0b; �0) = ��2 Z@D �0@nU 0b ds : (5.11)To calculate �L0 , a local coordinate system de�ned near @D is used. We set � = n=�, where�n is the distance from x 2 D to @D, and let � be a coordinate perpendicular to n. Then,when � = O(1) and x < x0, Ub � s� so (5.10) gives@���L0 � �2��L0 = 0 ; � < 0 ; �L0 ! 0 ; as � ! �1 ;@��L0 j�=0 = ��@nU 0bj�=0 : (5.12)Similarly, when � = O(1) and x > x0, Ub � s+ and so we get@���L0 � �2+�L0 = 0 ; � < 0 ; �L0 ! 0 ; as � ! �1 ;@��L0 j�=0 = ��@nU 0bj�=0 : (5.13)



Chapter 5. Metastable Motion In The Unconstrained Allen-Cahn Equation 45Solving these equations we get�L0 = 8><>: [��@nU 0b] j�=0e��� x < x0 ;[��@nU 0b] j�=0e�+� x > x0 : (5.14)Using (5.7), we obtain that U 0b � 8><>: a���e����1(x�x0) x < x0 ;a+�+e��+��1(x�x0) x > x0 ; (5.15)and @nU 0b � 8><>: a��2���1e����1(x�x0)nx x < x0 ;�a+�2+��1e��+��1(x�x0)nx x > x0 : (5.16)Here n̂ = (nx; ny) is the outward unit normal vector to @D. Substituting (5.16) into (5.14) andusing (5.14) and (5.15) in �0 � N0 [U 0b + �L0 ] we get�0 � 8><>: N0a���e����1(x�x0) �1� ��nxe����1�� x < x0 ;N0a+�+e��+��1(x�x0) �1 + �+nxe�+��1�� x > x0 : (5.17)So on @D, �0 is given by�0 � 8><>: N0a���e����1(x�x0) (1� ��nx) x < x0 ;N0a+�+e��+��1(x�x0) (1 + �+nx) x > x0 : (5.18)To estimate N0 and �0, (U 0b; U 0b) needs to be evaluated. This is done using a Laplace typeargument as U 0b is localized near x = x0. This yields(U 0b; U 0b) � Z b0 Z 1�1 � �U 0b(z)�2 dz dy � �b� ; (5.19)where � � Z 1�1 �U 0b(z)�2 dz : (5.20)Since �0 � N0U 0b, the normalization constant, N0, satis�esN0 � (�b�)�1=2 : (5.21)



Chapter 5. Metastable Motion In The Unconstrained Allen-Cahn Equation 46To evaluate the right side of (5.11) we notice from (5.16) that @nU 0b = 0 except along the twoattachments to the rectangle, D+ and D�, since nx = 0 on R. Using this and substituting(5.16), (5.18), and (5.19) into (5.11), we obtain the following asymptotic estimate for �0:�0 � 1b� fI2 � I1g : (5.22)In equation (5.22), I1 and I2 are given byI1 = Z@D� a2��3�e2����1(x�x0)(1� ��nx)nx ds ; (5.23)I2 = Z@D+ a2+�3+e�2�+��1(x�x0)(1 + �+nx)nx ds : (5.24)Here @D� and @D+ are traversed in the counterclockwise direction. Near the corners, the xcomponent of the outward normal vectors to D can be calculated from (5.5) to yieldnx = �K1(�x)�1[K21 (�x)2�1+1]1=2 near (0; 0) as x! 0� ; (5.25a)nx = �K2(�x)�2[K22 (�x)2�2+1]1=2 near (0; b) as x! 0� ; (5.25b)nx = K3(x�1)�3[K23(x�1)2�3+1]1=2 near (1; 0) as x! 1+ ; (5.25c)nx = K4(x�1)�4[K24(x�1)2�4+1]1=2 near (1; b) as x! 1+ : (5.25d)Because the integrands in (5.23) and (5.24) are exponentially decreasing away from the locationof the interface, x = x0, the dominant contribution to these integrals arises from O(�) regionsnear the corners. In these regions, nx � n2x, so I1 and I2 can be estimated using (5.25) andLaplace's method as follows:I1 � a2��3� �K1 Z �10 (�x)�1e2����1(x�x0) dx+K2 Z �10 (�x)�2e2����1(x�x0) dx� ; (5.26)I2 � a2+�3+ �K3 Z 11 (x� 1)�3e�2�+��1(x�x0) dx+K4 Z 11 (x� 1)�4e�2�+��1(x�x0) dx� : (5.27)These integrals can be evaluated to obtainI1 � �a2��3� "K1� �2����1+1 �(�1 + 1) +K2� �2����2+1 �(�2 + 1)# e�2����1x0 ; (5.28)I2 � a2+�3+ "K3� �2�+��3+1 �(�3 + 1) +K4� �2�+��4+1 �(�4 + 1)# e�2�+��1(1�x0) : (5.29)



Chapter 5. Metastable Motion In The Unconstrained Allen-Cahn Equation 47Therefore, the principal eigenvalue, �0, is exponentially small and is given asymptotically by�0 � 1b� (a2��3� "K1� �2����1+1 �(�1 + 1) +K2� �2����2+1 �(�2 + 1)# e�2����1x0+ a2+�3+ "K3� �2�+��3+1 �(�3 + 1) +K4� �2�+��4+1 �(�4 + 1)# e�2�+��1(1�x0)) :(5.30)5.3 The Projection MethodThe projection method is now applied to determine the trajectory of the interface location,x0 = x0(t), for the time dependent problem, (5.1), in the domain D. It is assumed that theinitial data is an equilibrium solution u(x; 0) = Ub[��1(x � x00)] with x0(0) = x00. We setu(x; t) = Ub[��1(x� x0(t))] + w(x; t). It is assumed that w � Ub and wt � @tUb uniformly intime. Using this, we linearize (5.1) about Ub to produceL�w � �2�w+ Q0(Ub)w = @tUb ; x 2 D ; (5.31a)@nw = �@nUb; x 2 @D : (5.31b)The solution to (5.31) is expanded in terms of the eigenfunctions of (5.10) as w =P1j=0 cj�j=�j .Integrating by parts, we get(�j ; L�w)� (w;L��j) = (�j ; @tUb)� �j(w; �j) : (5.32)Next, using Green's identity and �j(w; �j) = cj in (5.32), it is found that the coe�cients cj forj = 0; 1; : : :, satisfy cj = (�j ; @tUb) + �2 Z@D �j@nUb ds : (5.33)Since �0, as estimated in (5.30), is exponentially small, to ensure that w � Ub over expo-nentially long time intervals it is required that c0 = 0. Then (5.33) produces the slow motionequation: (�0; @tUb) = ��2 Z@D �0@nUb ds : (5.34)Next the terms in (5.34) are evaluated to determine the motion of the interface. To calculate(�0; @tUb), we substitute @tUb = ���1x00(t)U 0b in (5.34) and use the result of (5.19) to obtain(�0; @tUb) � �b�x00(t) : (5.35)



Chapter 5. Metastable Motion In The Unconstrained Allen-Cahn Equation 48To evaluate the right side of (5.34), (5.7) is used to determine that@nUb � 8><>: a�����1e����1(x�x0)nx x < x0 ;a+�+��1e��+��1(x�x0)nx x > x0 : (5.36)Thus, an argument similar to that used to derive (5.22) produces�2 Z@D �0@nUb ds � ���1� I1 + ���1+ I2 ; (5.37)where I1 and I2 are de�ned in (5.23) and (5.24) respectively. Combining the results of (5.28),(5.29), (5.35), and (5.37) determines the di�erential equation governing the slow motion of theinterface:x00(t) � �b� (a2+�2+ "K3� �2�+��3+1 �(�3 + 1) +K4� �2�+��4+1 �(�4 + 1)# e�2�+��1(1�x0)� a2��2� "K1� �2����1+1 �(�1 + 1) +K2� �2����2+1 �(�2 + 1)# e�2����1x0) : (5.38)It is seen that the motion of the interface location is determined by the shape of the boundaryat the corners of the rectangle and the distance from the interface to these corners. The interfacewill move according to (5.38) until a steady state is attained or until the interface has moved toone of the sides of R. In the latter case, the subsequent evolution of the interface is determinedby (5.3). This result agrees with [3] and [12] obtained using a di�erent method.5.4 Steady StatesSteady state locations for the interface can be determined from (5.38). LabellingA� = K1� �2����1+1 �(�1 + 1) +K2� �2����2+1 �(�2 + 1) ; (5.39a)A+ = K3� �2�+��3+1 �(�3 + 1) +K4� �2�+��4+1 �(�4 + 1) ; (5.39b)a steady state exists when A�A+ > 0. The unique equilibrium interface location is given byxe0 � �+�+ + �� + �2(�+ + ��) log a2��2�A�a2+�2+A+! : (5.40)



Chapter 5. Metastable Motion In The Unconstrained Allen-Cahn Equation 49This equilibrium solution is asymptotically stable when A� < 0 and A+ < 0. If Ki < 0 fori = 1; : : : ; 4, then this corresponds to a domain that is nonconvex near the corners. (See Figure5.3.) When A� > 0 and A+ > 0, then the equilibrium is unstable. A su�cient condition forthis is that Ki > 0 for i = 1; : : : ; 4. This corresponds to the case of a domain that is convexnear the corners. When a steady state exists we note that it is located an O(�) distance from�+�++�� .5.5 Examples of Slow DynamicsThe following form was considered for Q(u):Q(u) = 2(u� u3) : (5.41)In this case, from (5.6), the equilibrium solution, Ub(z), is given byUb(z) = tanh z : (5.42)In addition, using (5.8), (5.9), and (5.20), the constants ��, a�, s�, and � are found to be�� = 2 ; a� = 2 ; s� = �1 ; � = 4=3 : (5.43)For this example, we suppose that �1 = �2 = �3 = �4 = �. Then the ODE for the interfacelocation, (5.38), isx00 � 12��+2�(�+ 1)b4�+1 h(K3 +K4)e�4��1(1�x0) � (K1 +K2)e�4��1x0i : (5.44)The steady state interface location, (5.40), becomesxe0 � 12 + �8 log�K1 +K2K3 +K4� : (5.45)If Ki < 0 for i = 1; : : : ; 4, then this steady state is stable. See Figure 5.2 for an example of sucha domain. If Ki > 0 for i = 1; : : : ; 4, then the steady state is unstable.Notice that when K1, K2 < 0 and K3, K4 > 0, then from (5.44), x00 > 0 for all time. In thiscase, the interface location, x0 will monotonically approach 1. See Figure 5.3 for an example of
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x0Figure 5.2: Plot of a domain, D, that exhibits a stable steady state interface location. Ki < 0for i = 1; : : : ; 4, in this domain and for the parameter values in x5.5, the steady state interfacelocation, xe0 is given by (5.45).

Figure 5.3: Plot of a domain, D, in which the interface moves toward the right. K1, K2 < 0and K3, K4 > 0 for this domain.



Chapter 5. Metastable Motion In The Unconstrained Allen-Cahn Equation 51such a domain. For the domain in Figure 5.3, the interface will move according to (5.44) untilit reaches x0 = 1. Then the interface dynamics will be determined by (5.3) and the interfacewill eventually disappear against the right side boundary of D. Similarly, when K1, K2 > 0,and K3, K4 < 0, x00 < 0 and the interface location will monotonically approach 0.



Chapter 6Metastable Motion Along @D In The Constrained Allen-Cahn EquationThe Allen-Cahn equation with a mass constraint is:ut = �2�u+ Q(u)� � ; x 2 D � R2 ; (6.1a)@nu = 0 ; x 2 @D ; (6.1b)ZD u(x; t) dx=M : (6.1c)Here x = (x; y), � � 1, D is a bounded two-dimensional domain, and Q(u) has three zeroeslocated at u = s� < 0, u = 0, and u = s+ > 0. As in earlier chapters, Q(u) is taken to satisfyQ(s�) < 0 ; Q(0) > 0 ; V (s+) = 0 ; V (u) = � Z us� Q(�) d� : (6.2)Recall from Chapter 2 that the solution to (6.1) quickly develops interfaces that evolve toleading order by v � �2 �� � 1j�j Z� � ds� ; (6.3)where v is the normal velocity of an interface, �. Here � is the curvature of �.For an interface where � is a constant, (6.3) yields v = 0 and hence it gives no indicationof the nature of the motion of such an interface. This happens when the interface is a circlelying completely inside the domain, or when the interface is an arc of a circle intersecting theboundary at right angles. Metastable motion for the case of a circular interface inside a domainwas examined in [18] using the projection method. In this chapter, the case of a semi-circularinterface intersecting a at boundary is studied. The following situation is considered. Thetwo-dimensional domain, D, is taken to have a smooth boundary which has a straight-linesegment between (xL; 0) and (xR; 0) (see Figure 6.1). The solution to (6.1) is assumed to have52
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(x0; 0)(xL; 0) (xR; 0)O(�)u � s�u � s+ r = rb D @DKL > 0 KR > 0

n̂
Figure 6.1: Plot of a two-dimensional domain D with a at boundary segment and asemi-circular interface of radius r = rb centered at x0.developed a single semi-circular interface of radius r = rb that intersects the boundary of Don this straight-line segment. This interface is taken to be centered around x0 = (x0; 0) wherexL < x0 < xR (see Figure 6.1). In this chapter we let @D = @Dc [@Ds where @Ds refers to thestraight-line segment of the boundary and @Dc denotes the remaining curved part of @D. Thedistance between the interface and @Dc is assumed to be O(1). In addition we assume that thedistances from the interface to (xL; 0) and (xR; 0) are less than the distance from the interfaceto the rest of @Dc.Near each end of the at segment, it is assumed that the domain boundary can be rep-resented by the graph of a function. Then near (xL; 0) as x ! x�L , @D can be written asy =  L(x). Similarly near (xR; 0) as x! x+R, @D is given by y =  R(x). We assume that thereexist constants KL, KR 6= 0, and �L, �R > 1 such that 0L(x) � �KL(xL � x)�L ; as x! x�L ; (6.4a) 0R(x) � KR(x� xR)�R ; as x! x+R: (6.4b)When �L = �R = 2, then KL and KR are proportional to the curvature of the left and rightends of the straight-line segment respectively.



Chapter 6. Metastable Motion Along @D In The Constrained Allen-Cahn Equation 54As in Chapter 5, the projection method [18] is used to determine the motion of the semi-circular interface. First, an equilibrium solution to (6.1a) with a semi-circular interface centeredat (x0; 0) is found. We asymptotically analyze the eigenvalue problem associated with thelinearization of (6.1) about the equilibrium solution. An explicit ordinary di�erential equationfor the slow motion of the center of the interface, x0 = x0(t), is then found using the projectionmethod and the spectral information.6.1 The Equilibrium SolutionTo use the projection method, an equilibrium solution, Ub(r; �) and �b(�), to (6.1a) is required.This solution must have a semi-circular interface of radius r = jx�x0j = rb centered at x = x0.Such a solution is referred to as the canonical bubble solution [18] and is derived in AppendixA.1. We summarize the essential asymptotic properties of this equilibrium solution as �! 0:Ub(r; �) � 8>>>>><>>>>>: S+(�)� a+(rb=r)1=2e���+��1(r�rb) ; r > rb ;u0(�) + O(�) ; � = ��1(r� rb) = O(1) ;S�(�) + a�(rb=r)1=2e������1(rb�r) ; r < rb ; (6.5)�b(�) = � �(s+ � s�)rb + O(�2) : (6.6)Here u0(�) satis�es (A.4) and � is de�ned as� � Z 1�1 �u00(�)�2 d� : (6.7)The values of the constants S�(�), a�, and ��� can be determined from (A.5), (A.9), and (A.11).6.2 Spectral Estimates for the Linearized ProblemThe eigenvalue problem associated with linearizing (6.1) about the canonical bubble solutionUb(r; �) is given by L�� � �2��+ Q0[Ub(r; �)]� = �� ; x 2 D ; (6.8a)



Chapter 6. Metastable Motion Along @D In The Constrained Allen-Cahn Equation 55@n� = 0 ; x 2 @D ; (6.8b)(�; �) = ZD �2 dx : (6.8c)Here (u; v) � RD uv dx . The eigenvalues and eigenfunction of (6.8) are labeled by �j and �jrespectively for j = 0; 1; : : :, with �j ! �1 as j !1.The principal eigenfunction and eigenvalue for (6.8) are estimated in Appendix A.1 [18] andsummarized below. The principal eigenvalue is given asymptotically by�0(�) = �2rb + O(�3) : (6.9)The principal eigenfunction is estimated by�0 � 8>>>>><>>>>>: R0a+��+(rb=r)1=2e���+��1(r�rb) ; r > rb ; n = O(1) ;R0 �u00(�) + �u01(�) + �2u02(�) + (�3)� ; � = ��1(r � rb) = O(1) ;R0a����(rb=r)1=2e������1(rb�r) ; r < rb : (6.10)In (6.10), �n is the distance from x 2 D to @Dc. The normalization constant, R0, satis�esR0 � (��rb�)�1=2 : (6.11)To evaluate the boundary integrals below in x6.3, we use following estimate for �0 on @D near(xL; 0) and (xR; 0) for r > rb:�0 � R0a+��+(rb=r)1=2e���+��1(r�rb) : (6.12)This result is derived in Appendix A.2.For this problem, the second eigenfunction corresponds to an exponentially small eigenvalue.This eigenfunction can be approximated by �1 � R1@xUb(r; �) where R1 is a normalizationconstant. This function satis�es (6.8a) and fails to satisfy (6.8b) by only exponentially smallterms. A boundary layer function can be added as in x5.2 to satisfy the boundary condition,but as in x5.2, this function has a negligible e�ect on the boundary integrals that are neededto be evaluated to determine the slow motion.



Chapter 6. Metastable Motion Along @D In The Constrained Allen-Cahn Equation 56We use Green's identity on (6.8a) and @xUb to estimate the second eigenvalue:�1(@xUb; �1) = ��2 Z@D �1@n[@xUb] ds : (6.13)To estimate �1 we di�erentiate (6.5) to obtain that on @D for r > rb,�1 � R1@xUb ; where @xUb � a+��+��1(rb=r)1=2r�1(x� x0)e���+��1(r�rb) ; (6.14)and @n[@xUb] � �a+(��+)2��2(rb=r)1=2r�1(x� x0)e���+��1(r�rb)r̂ � n̂ : (6.15)Here n̂ is the outward unit normal vector to @D and r̂ = (x� x0; y)=r is a unit vector pointingfrom (x0; 0) to (x; y). To evaluate the left hand side of (6.13) Laplace's method is used as thedominant contribution to this integral arises in the region near r = rb. Then using (6.5) we�nd (@xUb; �1) � �rb�R12� : (6.16)Since �1 � R1@xUb, the normalization constant satis�esR1 � [2�=(�rb�)]1=2 : (6.17)Substituting the results of (6.15), (6.16), and �1 � R1@xUb into (6.13) we obtain an asymptoticestimate for �1: �1 � 2a2+(��+)3�� Z@D r�1�x� x0r �2 e�2��+��1(r�rb)r̂ � n̂ ds : (6.18)To evaluate the integral in (6.18) we notice that r̂ � n̂ = 0 along @Ds. Because the integrandis exponentially decreasing for r > rb the dominant contribution to this integral comes fromO(�) regions near (xL; 0) and (xR; 0) where the boundary of the domain, @D, �rst starts tocurve. We then use Laplace's method used to evaluate this integral. The following estimatesare used near (xL; 0) as x! x�L :r � rL � (x� xL) ; where rL � x0 � xL (6.19a)r̂ � (�1; 0) ; (6.19b)



Chapter 6. Metastable Motion Along @D In The Constrained Allen-Cahn Equation 57n̂ � (�KL(xL � x)�L;�1)�K2L(xL � x)2�L + 1�1=2 ; (6.19c)ds � hK2L(xL � x)2�L + 1i1=2 dx : (6.19d)Similarly, near (xR; 0) as x! x+R we user � rR + (x� xR) ; where rR � xR � x0 (6.20a)r̂ � (1; 0) ; (6.20b)n̂ � (KR(x� xR)�R;�1)�K2R(x� xR)2�R + 1�1=2 ; (6.20c)ds � hK2R(x� xR)2�R + 1i1=2 dx : (6.20d)Here (6.4) was used to evaluate the outward unit normals into (6.19c) and (6.20c). We substitute(6.19) and (6.20) in (6.18) and apply Laplace's method to obtain�1 � 2a2+(��+)3�� � KLx0 � xL e�2��+��1(x0�xL�rb)IL + KRxR � x0e�2��+��1(xR�x0�rb)IR� ; (6.21)where IL = Z xL�1(xL � x)�Le�2��+��1(xL�x) dx ; (6.22a)IR = Z 1xR (x� xR)�Re�2��+��1(x�xR) dx : (6.22b)The integrals IL and IR can be evaluated with a change of variables � = 2��+��1(xL � x) in(6.22a) and � = 2��+��1(x� xR) in (6.22b). Using this, we obtainIL =  �2��+!�L+1 �(�L + 1) ; (6.23a)IR =  �2��+!�R+1 �(�R + 1) : (6.23b)Thus, from the substitution (6.23) in (6.21), the exponentially small second eigenvalue is givenby �1 � 2a2+(��+)3�� 8<: KLx0 � xL e�2��+��1(x0�xL�rb) �2��+!�L+1 �(�L + 1)+ KRxR � x0 e�2��+��1(xR�x0�rb) �2��+!�R+1 �(�R + 1)9=; : (6.24)



Chapter 6. Metastable Motion Along @D In The Constrained Allen-Cahn Equation 586.3 The Projection MethodWe apply the projection method to determine the motion of the semi-circular interface alongthe at part of @D. The center of the semi-circle slowly slides along @Ds without change ofshape until either a steady state is attained or the edge of the semi-circle �rst hits @Dc. Thetrajectory x0 = x0(t), with x0(0) = x00, of the center of the circle is to be determined. Itis assumed that the initial data is a canonical bubble solution u(x; 0) = Ub[jx � x00j; �] with� = �b(�), and x00 = (x00; 0). We set u(x; t) = Ub[jx � x0j; �] + w(x; t) and �(t) = �b + �(t).Linearizing (6.1) about Ub, and assuming that w � Ub and � � �b uniformly in time, weproduce L�w � �2�w +Q0(Ub)w = @tUb + � ; x 2 D ; (6.25a)@nw = �@nUb; x 2 @D : (6.25b)ZD wdx = 0 : (6.25c)Next, we expand w =P1j=0 cj�j=�j in terms of the eigenfunctions of (6.8). Integrating by partsproduces (�j ; L�w)� (w;L��j) = (�j ; @tUb) + (�j ; �)� �j(w; �j) : (6.26)Applying Green's identity to (6.26) and using �j(w; �j) = cj we determine that the coe�cientscj for j = 0; 1; : : : ; satisfycj = (�j ; @tUb) + �(�j ; 1) + �2 Z@D �j@nUb ds : (6.27)In order to satisfy (6.25c), we also need that1Xj=0 cj�j (�j ; 1) = 0 : (6.28)To guarantee that w � Ub on an O(��2) time scale we need c0 = 0 since �0 = O(�2). Similarly,we also require that c1 = 0 to prevent growth on exponentially long time intervals since �1, asin (6.24), is exponentially small. Thus we have the following two coupled solvability conditions



Chapter 6. Metastable Motion Along @D In The Constrained Allen-Cahn Equation 59which will determine x0(t) and �(t):(�0; @tUb) + �(�0; 1) + �2 Z@D �0@nUb ds = 0 ; (6.29a)(�1; @tUb) + �(�1; 1) + �2 Z@D �1@nUb ds = 0 : (6.29b)These two equations can be decoupled as follows. First, from (6.10), (6.11), (6.14), (6.17),and (6.34) it can be seen that the two boundary integral terms in (6.29) have the same asymp-totic order as � ! 0. Next, since �0 is even while �1 is odd in x � x0, it follows from theexponential decay of both eigenfunctions for r > rb that (�0; 1) is exponentially larger than(�1; 1). Finally, a similar symmetry argument can be used to show that (�0; @tUb) is exponen-tially smaller than (�1; @tUb). Therefore, we can neglect (�0; @tUb) in (6.29a) and �(�1; 1) in(6.29b). This yields the following two uncoupled problems for � and x0(t) respectively:�(�0; 1) � ��2 Z@D �0@nUb ds ; (6.30a)(�1; @tUb) � ��2 Z@D �1@nUb ds : (6.30b)The terms in (6.30) are evaluated next. Recalling that �0 is localized near r = rb and using(6.10), we calculate that (�0; 1) � ��R0rb(s+ � s�) : (6.31)To evaluate (�1; @tUb) we use @tUb = �U 0b �x�x0r � x00(t), �1 � R1@xUb, and note that the domi-nant contribution to this integral also arises from the region near r = rb. Then(�1; @tUb) � �x00(t)R1 ZD[U 0b]2�x� x0r �2 dx � �x00(t)R1rb� Z �0 Z 1�1[u00(�)]2 cos2(�) d� d� :(6.32)Thus, (�1; @tUb) � �x00(t)R1rb��2� ; (6.33)where � is de�ned in (6.7). To evaluate the right sides of (6.30) we use (6.5) to obtain that, forr > rb on @D, @nUb � a+��+��1(rb=r)1=2e���+��1(r�rb)r̂ � n̂ : (6.34)



Chapter 6. Metastable Motion Along @D In The Constrained Allen-Cahn Equation 60Then by substituting (6.31), (6.33), (6.34), (6.10), and (6.14) into (6.30) we obtain the slowmotion equations: �(t) � � a2+(��+)2�(s+ � s�) Z@D r�1e�2��+��1(r�rb)r̂ � n̂ds ; (6.35a)x00(t) � 2�a2+(��+)2�� Z@D r�1x� x0r e�2��+��1(r�rb)r̂ � n̂ds : (6.35b)Since the dominant contribution to the integrals in (6.35) arises from the regions near (xL; 0)and (xR; 0), we can estimate them using a Laplace type argument similar to that used tocalculate (6.21). Substituting the estimates written in (6.19) and (6.20) into (6.35) we get�(t) � � a2+(��+)2�(s+ � s�) � KLx0 � xL e�2��+��1(x0�xL�rb)IL + KRxR � x0 e�2��+��1(xR�x0�rb)IR� ;(6.36a)x00(t) � 2�a2+(��+)2�� � KRxR � x0 e�2��+��1(xR�x0�rb)IR � KLx0 � xL e�2��+��1(x0�xL�rb)IL� :(6.36b)Here IL and IR are de�ned in (6.22). Finally, the result of (6.23) is used in (6.36) to obtain theslow motion result:�(t) � � a2+(��+)2�(s+ � s�) 8<: KLx0 � xL e�2��+��1(x0�xL�rb)  �2��+!�L+1 �(�L + 1)+ KRxR � x0e�2��+��1(xR�x0�rb)  �2��+!�R+1 �(�R + 1)9=; ; (6.37a)x00(t) � 2�a2+(��+)2�� 8<: KRxR � x0 e�2��+��1(xR�x0�rb) �2��+!�R+1 �(�R + 1)� KLx0 � xL e�2��+��1(x0�xL�rb) �2��+!�L+1 �(�L + 1)9=; : (6.37b)Referring to the ODE (6.37b), for x0(t), we see that the motion of the center of the semi-circular interface along the straight-line boundary segment between (xL; 0) and (xR; 0) is deter-mined by the shape of the boundary at (xL; 0) and (xR; 0) and the distance from the interfaceto these points. The interface will move. according to (6.37b), without change of shape until astable steady state is reached or until the interface touches (xL; 0) or (xR; 0). If the interfacereaches the curved part of the boundary, it will subsequently continue to evolve according to(6.3).



Chapter 6. Metastable Motion Along @D In The Constrained Allen-Cahn Equation 616.4 Steady StatesWe can �nd steady state locations for the center of the semi-circular interface between (xL; 0)and (xR; 0). These steady state locations are the values of x0 for which x00(t) = 0. From (6.37b),a steady state xe0 must satisfyxe0 � xLxR � xe0 e4��+��1xe0 = KL�(�L + 1)KR�(�R + 1)  �2��+!�L��R e2��+��1(xR+xL) : (6.38)Since the left side of (6.38) increases from 0 to1 as xe0 goes from xL to xR, a unique steady stateexists whenever KL and KR are of the same sign. This steady state is stable when KL, KR < 0,and unstable when KL, KR > 0. In particular, this implies that if D is convex near (xL; 0)and (xR; 0), then there is no stable equilibrium location on @Ds. Expanding xe0 = P1j=0 �jxe0jin (6.38) and solving up to second order, we obtain thatxe0 � xL + xR2 + �4��+ log24KL�(�L + 1)KR�(�R + 1)  �2��+!�L��R35+ O(�2) : (6.39)Thus, the equilibrium location, xe0 is located at an O(�) distance from the midpoint of thestraight-line boundary segment.6.5 Examples of Slow DynamicsAs an example, the following form was examined for Q(u):Q(u) = 2(u� u3) : (6.40)Using (A.4a), (A.5), (A.9b) and (A.11), the constants ���, a�, s�, and � satisfy��� = 2[1� �(4rb)�1 + � � �] ; a� = 2 ; s� = �1 ; � = 4=3 : (6.41)We consider the case when �L = �R = �. In this situation, the ODE for the center of thesemi-circular interface, (6.37b), is given byx00 � 6��+2�(�+ 1)4�� � KRxR � x0e�2��+��1(xR�x0�rb) � KLx0 � xL e�2��+��1(x0�xL�rb)� : (6.42)



Chapter 6. Metastable Motion Along @D In The Constrained Allen-Cahn Equation 62
xe0 D @DFigure 6.2: Plot of part of a domain boundary, @D, upon which the center of the semi-circularinterface is at an unstable steady state. KL, KR > 0 for this domain.xe0 D @DFigure 6.3: Plot of part of a domain boundary, @D, upon which the center of the semi-circularinterface is at a stable steady state. KL, KR < 0 for this domain.The steady state location for x0, assuming that KL and KR have the same sign, isxe0 � xL + xR2 + �8 log�KLKR� : (6.43)Assume that the initial location of the center of the semi-circular interface is x0(0) = x00.Then the following motion can be deduced from (6.42) and (6.43). When KL > 0 and KR > 0,x0(t) will move monotonically towards xL if x00 < xe0, or monotonically towards xR if x00 > xe0.(See Figure 6.2.) When KL < 0 and KR < 0, x0(t) will approach the stable steady state atxe0. (See Figure 6.3.) If KL < 0 and KR > 0, then x0(t) will move towards xR. (See Figure6.4.) Similarly, x0(t) will move towards xL if KL > 0 and KR < 0. When the interface touches(xL; 0) or (xR; 0), the subsequent evolution of the interface is determined by (6.3).
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D@DFigure 6.4: Plot of part of a domain boundary, @D, upon which the center of the semi-circularinterface moves toward the right. KL < 0 and KR > 0 for this domain.



Chapter 7SummaryIn this thesis we have asymptotically and numerically analyzed the Allen-Cahn equation witha mass constraint in a two-dimensional domain. Using the method of matched asymptoticexpansions with multiple time scales, we have shown that solutions to the Allen-Cahn equationquickly develop internal layers, or interfaces, separating regions in which the solution is constant.These interfaces evolve satisfying the area preserving mean curvature ow, equation (1.4).Small approximately semi-circular interfaces intersecting the domain boundary were shown toasymptotically satisfy the ODE (1.6), and move along the boundary in the direction of increasingboundary curvature. A numerical method for simulating the motion of interfaces was presented.Using this method, we numerically veri�ed asymptotic results including the small drop result,(1.6). The projection method was introduced and used to solve a metastable problem for theunconstrained Allen-Cahn equation. Finally, the projection method was used to determinethe motion of a semi-circular interface intersecting a straight-line domain boundary segmentbetween (xL; 0) and (xR; 0). It was found that the center of such a semi-circular interfacesatis�ed the asymptotic ODE given by (1.7).
64
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Appendix AAsymptotic Estimates for the Constrained Allen-Cahn EquationThis appendix summarizes some of the calculations done in [18] needed in this thesis.A.1 The Canonical Bubble SolutionIn this appendix, the canonical bubble solution is derived. As � ! 0, this is an equilibriumsolution to (6.1a) in [�1;1] � [0;1] with one radially symmetric interface of radius r = rbcentered at (x0; 0). The functions Ub(r; �) and �b(�), called the canonical bubble solution, satisfy�2�Ub +Q(Ub) = �b ; 0 < r <1 ; U 0b > 0 ; (A.1a)Ub(rb; �) = 0 ; Ub(r; �)! S�(�) as ��1(r � rb)! �1 : (A.1b)Here S�(�) are de�ned as the roots ofQ[S�(�)] = �b(�) ; (A.2)for which S�(�)! s� and �b(�)! 0 as �! 0. The method of matched asymptotic expansionsis used to construct the solution.In the inner region near the interface, � � ��1(r � rb) = O(1) and we denote ub(�; �) =Ub(rb + ��; �). From (A.1) we obtainu00b + �rb + ��u0b + Q(ub) = �b ; �1 < � <1 ; u0b > 0 ; (A.3a)ub(0; �) = 0 ; ub(�; �)! S�(�) as �! �1 : (A.3b)Then to leading order as � ! 0 we have that S�(�) ! s�, �b(�) ! 0, and ub(�; �) ! u0(�),67



Appendix A. Asymptotic Estimates for the Constrained Allen-Cahn Equation 68where u0(�) satis�esu000 +Q(u0) = 0 ; �1 < � <1 ; u00 > 0 ; u0(0; �) = 0 ; (A.4a)u0(�) � s+ � a+e��+� �!1 ; u0(�) � s� + a�e��� �! �1 : (A.4b)Here the positive constants �� and a� are de�ned by�� = ��Q0(s�)�1=2 ; log a� = log(�s�) + Z s�0 � ���[2V (�)]1=2 + 1� � s�� d� ; (A.5)where V (u) � � R us� Q(�) d�.We expand the solution to (A.3) asub(�; �) � 1Xj=0 �juj(�) ; �b(�) � 1Xj=1 �j�j ; S�(�) � s� + 1Xj=1 �juj(�1) : (A.6)Substituting (A.6) into (A.3) we obtain for some functions Gj(u0; : : : ; uj�1) and gj�(�1; : : : ; �j�1),that uj for j � 1 satis�esLuj � u00j +Q0(u0)uj = �j + Gj(u0; : : : ; uj�1) ; �1 < � <1 ; (A.7a)uj(�)! ��j��2� + gj�(�1; : : : ; �j�1) ; as �! �1 ; uj(0) = 0 : (A.7b)From (A.4a) we see that Lu00 = 0 and u00(�1) = 0. Thus the right side of (A.7a) produces asolvability condition that determines �j as�j = �1s+ � s� Z 1�1 u00Gj(u0; : : : ; uj�1) d� ; for j � 1 : (A.8)Equations (A.7) and (A.8) determine the asymptotic expansions for ub(�; �), �b(�), and S�(�).These conditions giveS�(�) = s� � ��1��2� +O(�2) ; (A.9a)�1 = �(s+ � s�)rb ; where � � Z 1�1 �u00(�)�2 d� = p2 Z s+s� [V (u)]1=2du : (A.9b)In the outer region for r > rb we write Ub(r; �) = S+(�)+u+(r; �), where u+ � S+. Similarly,in the region where r < rb we use Ub(r; �) = S�(�) + u�(r; �), where u� � S�. We linearize



Appendix A. Asymptotic Estimates for the Constrained Allen-Cahn Equation 69(A.1a) about S� to obtain thatu00+ + r�1u0+ � (��1��+)2u+ = 0 ; r > rb ; (A.10a)u00� + r�1u0� � (��1���)2u� = 0 ; r < rb : (A.10b)Here ��� = (�Q0[S�(�)])1=2. Then using (A.9a) we have��� = �� "1 + ��12�4�Q00(s�) + O(�2)# : (A.11)Equations (A.10) can be solved exactly in terms of Km, the modi�ed Bessel function of thesecond kind of order m, and Im, the modi�ed Bessel function of the �rst kind, respectively.These can be estimated asymptotically using large argument expansions. Matching this to theinner solution in (A.4) producesUb(r; �) � 8>>>>><>>>>>: S+(�)� a+(rb=r)1=2e���+��1(r�rb) ; r > rb ;P1j=0 �juj(�) ; � = ��1(r � rb) = O(1) ;S�(�) + a�(rb=r)1=2e������1(rb�r) ; r < rb : (A.12)A.2 The Principal EigenpairThis appendix summarizes the calculations done in [18] to asymptotically estimate the prin-cipal eigenfunction, �0, and eigenvalue, �0, for the eigenvalue problem (6.8). The principaleigenfunction is radially symmetric except in an O(�) region near the curved part of @D.In the internal layer region we set � = ��1(r� rb) and �0(�; �) = �0(rb+ ��). The followingexpansions are used as �! 0:�0(�; �) � 1Xj=0 �j�0j ; �0(�) � 1Xj=0 �j�0j(�) ; (A.13a)Q0(Ub) = Q00 + (�u1 + �2u2)Q000 + �22 u21Q000 + � � � : (A.13b)Here Q00 � Q00(u0), Q000 � Q000(u0), etc, and from (A.12), Ub(r; �) � P1j=0 �juj(�) in this region.Substituting (A.13a) into (6.8) and collecting powers of � we produceL�00 = �00�00 ; (A.14a)



Appendix A. Asymptotic Estimates for the Constrained Allen-Cahn Equation 70L�01 = �u1�00Q000 � r�1b �000 + �01�00 + +�00�01 ; (A.14b)L�02 = �r�1b �001 + �r�2b �000 � u1�01Q000 � u2�00Q000 � 12u21�00Q000+�00�02 + �01�01 + �02�00 : (A.14c)In (A.14), Lv is de�ned in (A.7a) and we need �0j(�) ! 0 as � ! �1. Since Lu00 = 0 andu00(�1) = 0, we have the solvability condition that L�0j for j = 0; 1; 2 is orthogonal to u00.This solvability condition is used to determine �0j and �0j for j = 0; 1; 2. The results are�0(�; �) = R0 hu00(�) + �u01(�) + �2u02(�) +O(�3)i ; (A.15)�0 = �2r�1b + O(�3) ; (A.16)where R0 is a normalization constant.In the outer regions we let �0 � R0�+(r; �) and �0 � R0��(r; �) for r > rb and r < rbrespectively. The eigenvalue problem (6.8) becomes�00+ + r�1�0+ � (��1~��+)2�+ = 0 ; r > rb ; (A.17a)�00� + r�1�0� � (��1~���)2�� = 0 ; r < rb : (A.17b)Here we have de�ned ~��� � ���[1+�0=(���)2]1=2. These equations can be solved and matched to(A.15), to produce�0 � 8>>>>><>>>>>: R0a+��+(rb=r)1=2e���+��1(r�rb) ; r > rb ; n = O(1) ;R0 �u00(�) + �u01(�) + �2u02(�) + (�3)� ; � = ��1(r� rb) = O(1) ;R0a����(rb=r)1=2e������1(rb�r) ; r < rb : (A.18)In (A.18) �n is the distance from x 2 D to @Dc. The normalization constant R0 is calculatedasymptotically to be R0 � (��rb�)�1=2 : (A.19)To satisfy the boundary condition (6.8b) we need to add to (A.18) an exponentially smallboundary layer function. This calculation was done in [18] where it was shown that on @D, �0satis�es �0 � R0a+��+(rb=r)1=2e���+��1(r�rb)[1 + r̂ � n̂] : (A.20)



Appendix A. Asymptotic Estimates for the Constrained Allen-Cahn Equation 71To evaluate the boundary integrals in x6.3, we need an estimate for �0 on @D near (xL; 0) and(xR; 0). Using (6.19) and (6.20) we obtain to leading that on @D and near the corner points(xL; 0) and (xR; 0), �0 satis�es�0 � R0a+��+(rb=r)1=2e���+��1(r�rb) : (A.21)


