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Abstract

We consider the motion of a Brownian particle trapped in an arbitrary bounded
two or three-dimensional domain, whose boundary is reflecting except for a small
absorbing window through which the particle can escape. We use the method of
matched asymptotic expansions to calculate the mean first passage time, defined
as the time taken for the Brownian particle to escape from the domain through
the absorbing window. This is known as the narrow escape problem. Since the
mean escape time diverges as the window shrinks, the calculation is a singular
perturbation problem. We extend our results to include N absorbing windows
of varying length in two dimensions and varying radius in three dimensions. We
present findings in two dimensions for the unit disk, unit square and ellipse and
in three dimensions for the unit sphere. The narrow escape problem has various
applications in many fields including finance, biology, and statistical mechanics.
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Chapter 1

Introduction

Brownian motion describes the perpetual irregular motion of small particles,
such as the random motion of smoke particles. This phenomenon was first
studied by the British botanist Robert Brown, who noticed the chaotic mo-
tions of small grains of pollen, immersed in water under a microscope in 1827.
Though Brown was never able to explain what he observed, he was able to dis-
pel the notion that the random movements were exclusive to pollen particles by
observing the similar behaviour of dust particles. A mathematical description
of Brownian motion was first formulated by Thorvald N. Thiele in 1880 in his
paper on the method of least squares. This mathematical formalism was con-
tinued independently by Albert Einstein in 1905 and Marian Smoluchowski in
1906.

Initially, the term Brownian motion was reserved for the description of the
random movement of particles immersed in a liquid or gas. However, since
Brown’s discovery, the study of Brownian motion has been extensive, finding
applications in various fields such as finance, biology, and statistical mechanics.

This thesis is devoted to a specific aspect of Brownian motion, the mean first
passage time, abbreviated as MFPT. We employ both analytic and numerical
techniques to solve this problem for the mean first passage time and compare
our findings to relevant empirical results found in the literature.

1.1 Brownian Motion

We will give a brief mathematical description of Brownian particles immersed
in a fluid in order to introduce certain key aspects of the motion. This is the
simplest physical model of Brownian motion and is adapted from [20].

We assume that the size of the colloidal particles are much larger than the
molecules of the surrounding fluid. With this assumption it is clear that each
collision has a negligible effect, however, the collective effect of multiple collisions
with the surrounding fluid alters the path of the colloidal particle. We expect
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Chapter 1. Introduction

that these collisions happen in rapid succession and in very high numbers. For
example there are 1021 collisions per second for gold particles of radius 50µm

immersed in a fluid under standard conditions [20]. Since it is the collective
effect of many collisions that cause an observable effect, we must describe the
path of a Brownian particle statistically.

In the case under consideration, there are two main forces that act on the
Brownian particle. Firstly, by Stokes law, which assumes low Reynolds number,
there is a drag force exerted on a spherical colloidal particle by the fluid. The
drag force per unit force per unit mass acting on a spherical colloidal particle
is −βv, where β = 6πaη/m. Here, v is the particle’s velocity, a is the radius of
the particle, η is the coefficient of dynamic viscosity of the fluid and m is the
mass of the particle.

The second force acting on the Brownian particle is due to the individual
collisions with the molecules of the surrounding fluid. These individual collisions
produce instantaneous changes to the Brownian particle’s acceleration. These
changes are random both in magnitude and direction. We denote this fluctuating
force by f(t) which satisfies the following properties [20]:

• f(t) is statistically independent of v(t),

• the variations in f(t) are more frequent than the variations in v(t),

• the average of f(t) is zero.

Newton’s equations of motion lead us to

dv(t)
dt

= −βv(t) + f(t). (1.1)

This equation is also known as Langevin’s equation. This is a stochastic differ-
ential equation, which motivates the fact that Brownian motion is among the
simplest continuous-time stochastic processes. Typically, a stochastic differen-
tial equation describing a stochastic or Brownian process will be driven by two
terms, a locally deterministic velocity or drift term and a volatility or Gaus-
sian disturbance term. The Gaussian disturbance term or white noise term in
equation (1.1) is the fluctuating force f(t).

The solution of a stochastic differential equation determines the transition
probability density of the random process it describes. In our case, the solution
to equation (1.1) will determine the transition probability density p(v(t), t | v0)
of the random process v(t), where v(0) = v0. We denote the probability density

2



Chapter 1. Introduction

function from an initial position v0 to v at time t as p(v(t), t | v0). We will show
later that a diffusion equation describes the time evolution of the probability
density function. The transition probability density function, or pdf as it usually
called, can be used to determine the probability. For example we can find the
probability that v(t) ∈ A given that the v(t) at t = 0 is v0 by integrating over
the pdf. That is,

P (v(t) ∈ A | v0(0) = v0) =
∫

A

p(v(t), t, v0)dV. (1.2)

We assume that v0 is given, and thus

p(v(t), t | v0) → δ(v − v0) as t → 0. (1.3)

The situation under consideration can also be described by using statistical
mechanics. In fact, we can deduce the statistical properties of f(t) by comparing
the solution to equation (1.1) to known physical laws. From statistical physics
we know that p(v(t), t | v0) must tend towards the Maxwellian density for the
temperature T of the surrounding fluid independently of v0 as t →∞. Hence,

p(v(t), t | v0) →
( m

2πkT

)3/2

exp

(
−m |v|2

2kT

)
as t →∞. (1.4)

The conditions on p(v(t), t | v0) impose conditions on f(t). The solution to
(1.1), derived upon using an integrating factor, is

v(t) = v0e
−βt +

∫ t

0

e−β(t−s)f(s)ds. (1.5)

Since, for large t, v(t) ≈ ∫ t

0
e−β(t−s)f(s)ds, we can conclude that the integral

in this equation must have the same properties as v(t) and satisfy the Gaussian
properties prescribed by the pdf (1.4). It it worth noting that the integral in
(1.5) is not a standard Riemann integral. The integral is a stochastic integral.
The white noise term f(t) is of locally unbounded variation, it is everywhere
continuous but no-where differentiable and thus the integral cannot be defined
in straightforward manner. In fact, a new framework has to be used to deal
with this integral, namely the Itô calculus.

3



Chapter 1. Introduction

We can describe the displacement of the Brownian particle, x(t), by

x(t) = x0 +
∫ t

0

v(s)ds. (1.6)

This is also a stochastic process driven by a locally deterministic velocity along
with a Gaussian disturbance term. We state the probability density of x(t) for
large t,

p(x(t), t | x(0) = x0) ≈ (4πDt)−3/2 exp

(
− |x− x0|2

4Dt

)
, D =

kT

mβ
=

kT

6πaη
.

(1.7)
The interested reader is directed to [20] for further details. It can be shown that
p satisfies the diffusion equation

∂p(x(t), t | x(0) = x0)
∂t

= D∆xp(x(t), t | x(0) = x0), (1.8)

where D is the diffusion coefficient. We have found the pdf for the process x.
In addition, we can state the following properties of the process x [20]:

• The increments x(t+s)−x(t) and x(t)−x(t−u) are independent of each
other and are independent of t for s ≥ 0 and u ≥ 0.

• The paths of x(t) are continuous.

• For s < t, x(t) − x(s) has a Gaussian distribution with mean zero and
variance t− s.

These are properties of a standard stochastic process known as a Wiener process.
It is equation (1.8), which describes the time evolution of the probability density
function for the process x that is of particular importance to this thesis.

1.2 The Narrow Escape Problem

We have described certain key aspects of Brownian motion. We now state the
specific research problem considered in this thesis.

1.2.1 Statement of the Problem

We consider the motion of a Brownian particle trapped in an arbitrary bounded
domain, Ω ∈ Rd d = 2, 3, whose boundary is reflecting, ∂Ωr, except for a small
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Chapter 1. Introduction

absorbing window, ∂Ωa. We assume that ∂Ω = ∂Ωa+∂Ωr is a d−1 dimensional
analytic surface and that ∂Ω is sufficiently smooth. Furthermore, we assume
that the size of the absorbing window, centred at x0, is small in comparison to
the reflecting portion of the boundary. We define the small parameter ε as

ε =
|∂Ωa|
|∂Ωr| ¿ 1. (1.9)

Alternatively, we may define ε = |∂Ωa|. However, it must be understood that
the absorbing part of the boundary is asymptotically small in comparison to
the reflecting part.

The trajectory of the Brownian particle is denoted by x(t). The mean first
passage time or exit time is defined as the time taken for the Brownian particle
to escape from the domain, Ω, through the absorbing arc, ∂Ωa, centred at x0,
from some initial position x(0) ∈ Ω. The mean first passage time, from a fixed
starting position x(0) = x is defined in [20] as

v(x) = E [τ | x(0) = x] . (1.10)

The focus of this thesis is to find the mean first passage time for a variety of two
and three dimensional domains, Ω, with N absorbing windows on the bound-
ary. This is known as the narrow escape problem. Since the mean escape time
diverges as the window shrinks, or as ε → 0, the calculation is a singular per-
turbation problem. A plethora of work has already been done on this problem.
In this thesis we use an alternative method based on matched asymptotic ex-
pansions, a singular perturbation technique, to calculate the mean first passage
time.

1.2.2 Derivation of the Model Equation

The narrow escape problem is equivalent to solving an inhomogeneous mixed
Neumann-Dirichlet boundary value problem for the Poisson equation. We will
derive this equation. Our starting point is equation (1.8), which is a diffusion
equation describing the time evolution of the probability density function asso-
ciated with the process y. From [5], the probability density function satisfies

5



Chapter 1. Introduction

the Fokker-Planck equation

∂p(y, t | x)
∂t

= D∆yp, y,x ∈ Ω,

∂p(y, t, | x)
∂n(y)

= 0, y ∈ ∂Ωr, x ∈ Ω,

p(y, t, | x) = 0, y ∈ ∂Ωa, x ∈ Ω,

p(y, 0 | x) = δ(y − x). (1.11)

where ∂n = n̂·∇ and n̂ is the unit outward normal. The boundary conditions are
easily explainable in the context of the physical problem at hand. The Neumann
boundary condition on the reflecting part of the boundary represents the no flux
boundary condition. The Dirichlet boundary condition on the absorbing part
of the boundary represents the fact that the Brownian particle is absorbed at
the boundary. The first passage time to the absorbing boundary is defined in
[5] as

τ = inf{t > 0 : y(t) ∈ ∂Ωa}. (1.12)

We are interested in the mean first passage time to ∂Ωa given that the
particle starts at some initial position x, that is y(0) = x. We define the
survival probability as

S(x, t) =
∫

Ω

p(y, t | x)dy, (1.13)

as in [18]. The nth moments of the first passage time are given by

τ̄n = −
∫ ∞

0

tn
∂

∂t
S(x, t)dt (1.14)

= −tnS(x, t) |∞0 +n

∫ ∞

0

tn−1S(x, t)dt, (1.15)

in [18]. The first line is obtained using integration by parts. In the second line,
it is important to note that we can set the first term to zero in both the upper
and lower limit. This is a consequence of the fact that the pdf p(y, t | x) given
by (1.11) tends to zero as t → ∞. Thus, in the limit as t → ∞, S(x, t) → 0
much faster than tn →∞ [18]. We are interested in the mean first passage time,
which is the first moment of the equation above [18]. Thus, we find that the
mean first passage time is the integral of the survival probability over t. Thus,

6
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the mean first passage time satisfies the conditional expectation

τ̄x = E [τ | y(0) = x] =
∫ ∞

0

∫

Ω

p(y, t | x)dydt, (1.16)

as in [20], [18] and [5].
We return to the pdf, (1.11). We integrate this equation over t from 0 to ∞

and make use of the boundary conditions to find

−δ(y − x) = D∆y

∫ ∞

0

p(y, t | x)dt. (1.17)

We let g(y | x) =
∫∞
0

p(y, t | x)dt. Using this we find that

∆yg(y | x) = −δ(y − x)
D

, y, x ∈ Ω, (1.18)

∂g(y | x)
∂n(y)

= 0, y ∈ ∂Ωr,x ∈ Ω, (1.19)

g(y | x) = 0, y ∈ ∂Ωa, x ∈ Ω. (1.20)

Thus, we can find the MFPT by solving for g from the equation above and
integrating the final solution over Ω. That is

τ̄x =
∫

Ω

g(y | x)dy =
∫ ∞

0

∫

Ω

p(y, t | x)dydt. (1.21)

There is a simpler way to find the MFPT. The pde given by (1.11) is the
Fokker-Planck equation. That means that the differentiation with respect to the
spatial variable and the boundary and the initial conditions are given in terms
of the forward variable, x, not the initial position, y. One can state a similar
equation for the pdf in terms of backward variables, known as the Kolmogorov
backward equation

∂p(y, t | x)
∂t

= −D∆xp, y, x ∈ Ω, (1.22)

∂p(y, t | x)
∂n(x)

= 0, x ∈ ∂Ωr, y ∈ Ω, (1.23)

p(y, t | x) = 0, x ∈ ∂Ωa, y ∈ Ω, (1.24)

p(y, t | x) = δ(y − x). (1.25)

There are several differences between the Kolmogorov backward equation and

7



Chapter 1. Introduction

the Fokker-Planck equation. Firstly, the spatial operator in the Fokker-Planck
equation is the adjoint of the operator in the Kolmogorov equation, which acts
on the forward variable, y. In the case under consideration the operator is the
Laplacian, which is a self-adjoint operator. However, there is a sign difference
in the coefficient of the Laplacian. In the Fokker-Planck equation, (1.11), it
is a +1 while in the Kolmogorov equation, (1.22), it is a −1. Furthermore,
if one compares the boundary conditions (1.23) and (1.24) to the boundary
conditions of (1.11), we see that the initial position x starts on the boundary
in the Kolmogorov backward equation, while the final position y is within Ω.
Lastly, there is no initial condition but a final condition in the Kolmogorov
backward equation. Thus, in the limit as t → ∞, the pdf p(y, t | x) tends to
δ(y − x) and the pdf p(y, t | x) → 0 as t → 0. This is also different to the pdf
given by (1.11)

We know the definition of the MFPT, given by (1.16). Thus, we must
integrate (1.22) over Ω with respect to y and from 0 to ∞ with respect to t.
We let v(x) =

∫∞
0

∫
Ω

p(y, t | x)dydt. We find that v(x) = τ̄x satisfies

∆v(x) = − 1
D

, x ∈ Ω, (1.26)

v(x) = 0, x ∈ ∂Ωa, (1.27)
∂v(x)
∂n(x)

= 0, x ∈ ∂Ωr. (1.28)

The reader is directed to [20] for further reading and an alternate derivation of
the MFPT, v(x) satisfying (1.26)-(1.28).

We also define the average MFPT, v̄, based on an assumed uniform distri-
bution of starting points,

v̄ =
1
|Ω|

∫

Ω

v(x)dx. (1.29)

1.3 Literature Review

The mean first passage time is a first-passage probability, which is the proba-
bility that a diffusing particle or random walker first hits a specified site. The
first instances of such a study came with Lord Rayleigh, who considered the flux
through a small hole in the context of acoustics [17]. Today, there are many
applications of first-passage probabilities, for example fluorescence quenching,
integrate-and-fire neurons and the execution of buy/sell orders when a stock

8
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price reaches a certain threshold [18]. Moreover, the narrow escape problem
often appears in the context of electrostatics and biology.

As a result of the far reaching applications of the MFPT, the approach
to solving the problem has been varied. Statistical, numerical and analytical
techniques have all been employed to solve the narrow escape problem. We
present a brief overview of a few subject areas where the narrow escape problem
arises.

As we have shown, the narrow escape problem reduces to a mixed boundary
value problem for the Poisson equation. This scenario comes up in a variety
of contexts. In particular these problems arise in classical electrostatics, for
example, the electrified disk problem [6]. Furthermore, the problem arises in
elasticity theory, diffusion and conductance theory and acoustics [17]. These
problems are generally solved using a separation of variables technique, with a
subsequent summing of the resulting series. This approach to obtain analyti-
cal results has proved to be challenging, especially when considering complex
domains, and ultimately, numerical techniques are employed.

The first passage probability and mean first passage time play fundamental
roles in electrostatics as a result of their physical interpretation. In fact, the
probability of a particle, initially at a position x(0), escaping at the point x0 on
the boundary is equal to the electric field at the point x0, when a point charge is
located at x(0) and the boundaries are grounded conductors [18]. This analogy
is powerful, and can be applied to calculations in many areas. For example, one
can determine the ‘break-even’ probabilities in the stock market more easily by
considering this analogy [18].

One can obtain digitized representations of composite materials via Brow-
nian motion. The first passage equations are adapted to digitized media and
are solved numerically. The first passage time plays a role in determining the
conductivity, dielectric constant, and diffusion coefficient of digitized composite
media [32].

In biology, the motion of ions, molecules or receptors are modelled as free
Brownian particles. In this context, the mean first passage time represents the
mean time for a receptor to hit a target binding site [25], [23], [21], [24], [5],
[2], [1]. The applications are far reaching including, receptor trafficking in a
synaptic membrane, calcium diffusion in dendritic spines and vesicle trafficking
in cells to name a few.

Bressloff et. al. in [2] calculated the MFPT in a rectangular planar domain
with absorbing portions within the domain. The statement of the problem is

9



Chapter 1. Introduction

slightly different to equation (1.11) in that the pdf has periodic boundary condi-
tions in addition to the mixed boundary conditions. The method of solution is
a combination of statistical properties and an asymptotic approach. This model
describes protein receptor trafficking within the membrane of a cylindrical den-
drite.

If one transforms the problem for the MFPT into an eigenvalue problem we
find that the MFPT is inversely proportional to the principal eigenvalue, in the
limit of small windows. We shall explore this connection in detail in following
sections. In fact, it is the key idea used in this thesis to estimate the MFPT.
The problem for the principal eigenvalue and eigenfunction has been extensively
studied, for example in [8], and the references therein. The Neumann Green’s
function for the domain under consideration is required to solve this problem.
As a result, the form of the mean first passage time is different in two and three
dimensions because of the difference in the singular behaviour in the Neumann
Green’s function. In two dimensions it is a logarithmic singularity and in three
dimensions it is a simple pole. We will devote a portion of this thesis to finding
the Neumann Green’s function in various domains.

There are other closely related problems to the narrow escape problem, such
as Kolomogorov’s exit problem and the problem for the Dwell time, which will
be discussed later. However, an extensive listing of all instances where the
narrow escape problem arises is not relevant to this thesis. Instead, we review
the relevant work of a few authors in the area who have produced results for
escape from two and three-dimensional domains. In this thesis we intend to
expand upon these results, and compare our findings with the work of these
authors.

1.4 Literature Review - Biological Context

We review the work of certain authors who have determined results for the
MFPT in the context of biology. We intend to compare our findings to the
results of these authors.

The calculation of the mean first passage time is a typical problem in cellular
biochemistry. In particular, the function of neurobiological microstructures,
such as dendrites, is largely unknown since experimental methods have failed
to produce a complete understanding of the neuron. An understanding of the
mechanism by which newly synthesized proteins from the soma reach distant

10



Chapter 1. Introduction

locations on axons or dendrites is still elusive. Hence, a mathematical framework
has been developed to shed light where experimental methods have failed.

1.4.1 Two Dimensions

We consider an example to emphasize the importance of the two-dimensional
narrow escape problem in a neurobiological context as outlined in [5].

The axon contains presynaptic active zones for neurotransmitter release.
Dendrites, on the other hand, contain postsynaptic densities where receptors
that bind neurotransmitters cluster. At most excitatory synapses in the brain, it
is the dendritic spines that contain the postsynaptic densities (PSD). Dendritic
spines are tiny membranous protrusions, on the order of micrometers, on the
surface of a dendrite. Generally, the spine head is bulbous in shape and is
connected to the stalk of the dendrite via a thin neck. Holcman and Schuss
in [5] consider the motion of a receptor inserted into a dendritic spine. The
physical question they address is, how long does it take the receptor to reach its
final destination on the postsynaptic density (PSD) from its point of insertion?
The motion of the diffusing receptor is considered to be free Brownian motion
in the plane.

Firstly, we describe the geometry of the surface of the dendritic spine as
in [5]. We consider the surface of the domain to be planar, thus neglecting
the curvature. The surface contains many confinement domains known as cor-
rals. These corrals are smooth two-dimensional domains, Ω, whose boundary
is reflecting, ∂Ωr, except for a small absorbing portion, ∂Ωa. The reflecting
boundary may represent a physical barrier or a potential barrier. We expect
that the random walker, the receptor in this case, gets trapped in these con-
finement domains during its journey towards its final anchoring position on the
PSD. Holcman and Schuss aim to find the mean confinement time, the time a
receptor spends in a corral. Figure 1.1 depicts the geometry of the dendritic
spine.
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Figure 1.1: Structure of a dendritic spine and the trajectory of a receptor

The placement of the corrals, or confinement domains, are also illustrated
in Figure 1.1. The confinement domain may be an arbitrary two-dimensional
shape. Figure 1.2 depicts a circular confinement domain along with the trajec-
tory of a random walker trapped within it.
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Figure 1.2: A circular confinement domain

Typically, the trajectory of the Brownian particle occupies a much larger
area within the domain than what is depicted in Figure 1.2. Figures 1.1 and
1.2 are based respectively on Figures 1 and 2 in [5].

Physically, the confinement domain represents sites where the diffusing re-
ceptor can bind to scaffolding proteins. Thus, the mean time a protein spends
in a confinement domain provides information on the type of bonds a receptor
can make with scaffolding proteins. Binding increases the mean first passage
time. In fact, a diffusing receptor may bind to a scaffolding protein and never
leave the confinement domain. This is in alignment with the fact that a receptor
inserted into a dendritic spine far from the PSD may remain in the spine with-
out reaching the PSD. Holcman and Schuss, in [5], are concerned with the mean
time it takes a receptor to leave a confinement domain. In other words, they did
not consider the possibility that receptors may be anchored in the confinement
domain.

13
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Holcman and Schuss considered a circular confinement domain, depicted in
Figure 1.2. The narrow escape problem for a circular domain with an absorbing
arc on the boundary was studied in both [23] and [5].

In [23] and [5], the mean first passage time from the centre of a disk of radius
R with a small absorbing arc of length 2ε on the boundary was shown to be

E [τ | x(0) = 0] =
R2

D

[
log

1
ε

+ log 2 +
1
4

+ O(ε)
]

. (1.30)

The mean first passage time averaged with respect to an initial uniform distri-
bution of starting points in the disk, from [23], is

Eτ =
R2

D

[
log

1
ε

+ log 2 +
1
8

+ O(ε)
]

. (1.31)

The maximum mean first passage time is attained when the initial position is
antipodal to the centre of the absorbing arc. Singer et al., in [25], placed the
initial position at x = (r = 1, θ = 0) and the centre of the absorbing arc at
x0 = (r = 1, θ = π). For this situation Singer et al. calculated that

E [τ | x = (r = 1, θ = 0)] =
R2

D

[
log

1
ε

+ 2 log 2 + O(ε)
]

. (1.32)

Holcman and Schuss in [5] were able to calculate the mean time to anchoring in
the PSD using the confinement time. This process underlies synaptic plasticity,
the change in the number of receptors at a synapse. Synaptic plasticity is
conjectured to underlie processes as complex as learning and memory.

The results above conform to a general result derived by Singer et al. in
[25], in which they showed that the leading order term and error estimate for a
two-dimensional Riemannian manifold with metric g is

Eτ =
|Ω|g
πD

[
log

1
ε

+ O(1)
]

, (1.33)

where |Ω|g is the Riemannian area of the domain with the assumption that

ε =
|∂Ωa|g
|Ω|g ¿ 1. We see that the leading order term here is the same as that

obtained for the circle of radius R. Notice here, that to this order in ε, that the
mean escape time Eτ is not a function of the initial position, x(0). Hence, it is
denoted Eτ , not E[τ | x(0) = x].

In [24], Singer et al. consider two-dimensional domains with cusps and cor-
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ners. In the other words, they modify their domains to include non-smooth
boundaries. If the absorbing window is located at a corner of angle α, the mean
lifetime is

Eτ =
|Ω|g
αD

[
log

1
ε

+ O(1)
]

. (1.34)

Singer et al., in [24], find that the MFPT in a rectangle with sides a and b with
the absorbing hole of size ε at the corner is

Eτ =
2 |Ω|
Dπ

[
log

a

ε
+ log

2
π

+
π

6
b

a
+ 2β2 + O

( ε

a
, β4

)]
, (1.35)

where β = e−πb/a.
They also consider an annulus and the domain bounded between two tangent

circles in [24]. The annulus has applications to a closely related problem for the
Dwell time, described in [30]. The Dwell time is the time a Brownian particle
spends within a microdomain, a confinement domain, including binding time,
before it escapes through ∂Ωa. The confinement domain is a circular annulus
of outer radius R and inner radius δ. The boundary of the outer disk, D(R) is
reflecting except for a small absorbing portion, ∂Ωa. The boundary of the inner
disk, D(δ) is absorbing. A Brownian particle is free to diffuse in D(R)−D(δ).
If it is absorbed at D(δ), it is eventually released within the annulus. If it is
absorbed at ∂Ωa, it does not return to the annulus. The inner disk represents
an immobile trap, a domain of chemical reactions, where it reacts with binding
molecules.

The results for a two-dimensional domain, given by (1.30)-(1.35), were de-
rived using a separation of variables technique and the solution of certain dual
integral equations. We intend to reproduce the results obtained for the circu-
lar disk with radius one. Furthermore, we intend to determine an asymptotic
expression for the MFPT in an arbitrary two-dimensional domain.

1.4.2 The Narrow Escape Problem in Three Dimensions

The narrow escape problem has been studied for an arbitrary three-dimensional
domain with an arbitrary exit window in [25]. The leading order term for the
MFPT is expressed in terms of an integral equation, which can be solved for
specific geometries. Singer et al. were able to explicitly determine the leading
order term for an absorbing ellipse on the boundary. The additional assumption
was that the semi-major axis of the elliptic window, a, was to be much smaller
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than the cube root of the volume, |Ω|1/3. The MFPT was found to be

Eτ ∼ |Ω|
2πDa

K(e), (1.36)

where e is the eccentricity of the elliptic hole, and K(.) is the complete elliptic
integral of the first kind. For a circular hole, the result above reduces to

Eτ ∼ |Ω|
4aD

. (1.37)

These results were obtained by solving for the MFPT using the properties of the
Neumann Green’s function in three-dimensions. It is clear from these results
that the MFPT depends on the geometry of the exit window, as well as on the
domain Ω. These results do not contain any error estimates, and since these are
only leading order approximations, the dependence of the MFPT on the initial
position and location of the absorbing window is lost. These results were known
to Lord Rayleigh in the context of acoustics [17]. For a spherical domain of
radius R with a circular hole of radius a on the boundary Singer et al., in [25],
derived the second term and error estimate of the MFPT,

Eτ =
|Ω|
4aD

[
1 + ε log

1
ε

+ O (ε)
]

. (1.38)

This result was derived using Collins’ method for solving dual series of integral
equations and a subsequent expansion of these results in orders of ε = a

R ¿ 1.
We intend to expand on the results for the spherical domain with a circular exit
window by deriving the next term in the asymptotic expansion for the MFPT,
and to extend the results to include N small windows on the boundary of the
sphere.

1.5 Outline

In Chapter 2 we consider the narrow escape problem in two dimensions. We
derive an asymptotic expression for the MFPT in an arbitrary two-dimensional
domain with one absorbing arc on the boundary. We extend this framework
to include N absorbing arcs on the boundary. We use a matched asymptotic
expansions approach, a singular perturbation technique, to find the MFPT.
In Chapter 3, we use the findings from Chapter 2 to obtain specific results
for the unit disk and unit square. We also consider methods to solve for the
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Neumann Green’s function in arbitrary two-dimensional domains. We consider
both an analytical approach and a numerical approach. In Chapter 4 we solve
the narrow escape problem for a three-dimensional sphere. This involves finding
the Neumann Green’s function for a sphere with a singularity on the boundary
of the sphere. Wherever possible, we compare our results to relevant findings
in the literature.
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Chapter 2

The Narrow Escape

Problem in Two

Dimensions

In this chapter, we consider the motion of a Brownian particle trapped in an
arbitrary bounded two-dimensional domain, Ω, whose boundary is reflecting,
∂Ωr, except for a small absorbing window, ∂Ωa, through which the particle
can escape. We use the method of matched asymptotic expansions to calculate
the mean escape time. The concepts and method of solution introduced in
this chapter are important as we use similar techniques in Chapter 4, where
we consider three-dimensional domains. Initially, we begin our analysis with
an arbitrary two-dimensional domain with one absorbing arc or hole on the
boundary. We then extend our results to include N absorbing arcs of varying
length. In addition, we derive results for N identical holes.

To recap, the length of the absorbing arc is asymptotically small in compar-
ison to the length of the reflecting boundary. In two-dimensions we define ε as

lε = |∂Ωa| ¿ 1, (2.1)

where l is O(1).
The MFPT v(x), from a fixed starting position x is given by the probabilistic

formula [20], [5], [23] and [25]

v(x) = E[τ | x(0) = x]. (2.2)

As the absorbing window shrinks, the mean free path time diverges. We expect
the behaviour v(x) →∞ as ε → 0 and v(x) → 0 as x → x0. Note that x(0) = x

is the initial position of the Brownian particle and x0 denotes the centre of the
absorbing arc. These are not to be confused. The MFPT v(x) satisfies the
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mixed boundary value problem [20], [5], [23] and [25]

∆v(x) = − 1
D

, x ∈ Ω, (2.3)

v(x) = 0, x ∈ ∂Ωa, (2.4)
∂v(x)
∂n(x)

= 0, x ∈ ∂Ωr, (2.5)

where D is the diffusion coefficient. Our task is to calculate an asymptotic
solution for v(x) in the limit ε → 0 that satisfies (2.3)-(2.5).

2.1 Formulation of the Problem

We know from the literature, [23] and [8], and we will show that the mean first
passage time is asymptotically inversely proportional to the principal eigenvalue.
Motivated by this fact, we transform our problem into an eigenvalue problem
for the principal eigenvalue.

We solve equations (2.3) to (2.5) by writing v(x) in terms of a complete set
of eigenfunctions φj(x), that is

v(x) =
∞∑

j=0

cjφj(x), (2.6)

where φj(x) satisfies the eigenvalue problem

∆φj + λjφj = 0, x ∈ Ω, (2.7)

φj(x) = 0, x ∈ ∂Ωa, (2.8)
∂φj(x)
∂n(x)

= 0, x ∈ ∂Ωr. (2.9)

Recall that the eigenfunctions φj satisfy the following properties

(φj(x), φi(x)) =
{

0 if i 6= j,

1 if i = j,
(2.10)

where (u, v) denotes
∫
Ω

uvdx.
To find cj in (2.6) we use the orthogonality properties of the eigenfunctions

φj . We substitute the expression for v(x) from (2.6) into (2.3) and use (2.7) to
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obtain
1
D

=
∞∑

j=0

cjλjφj(x). (2.11)

By multiplying both sides of (2.11) by φi and integrating over the domain, and
using (2.10), we find

cj =
(1, φj(x))

Dλj(φj(x), φj(x))
. (2.12)

Substituting the result (2.12) for cj into (2.6) we find

v(x) =
∞∑

j=0

(1, φj(x))
Dλj(φj(x), φj(x))

φj(x). (2.13)

where (φj(x), φj(x)) = 1.
Note that we have an expression for the mean escape time, v(x), in terms of

an infinite series, which is not simple to work with. Luckily, we can make some
approximations that simplify the expression for the escape time. Notice that
as ε → 0, or in other words as ∂Ωa → x0, where x0 denotes the centre of the
absorbing arc, the eigenvalue problem given by equations (2.7) to (2.9) reduces
to the unperturbed problem

∆φj + λjφj = 0, x ∈ Ω, (2.14)
∂φj(x)
∂n(x)

= 0, x ∈ ∂Ω. (2.15)

We know that the first eigenvalue and eigenfunction for this problem are λ0 = 0
and φ0 = |Ω|− 1

2 . Thus, in the limit as ε → 0, we know λ0 → 0, while the other
λj for j ≥ 1 remain bounded. We can expect λ0 ∼ O

(
1

log ε

)
as ε → 0, as will

become more apparent in the calculations that follow. This implies that 1
λ0
→∞

and that 1
λj

<< 1
λ0

for j ≥ 1 as ε → 0. Furthermore, by integrating (2.7)
over the domain and using the Divergence Theorem along with the boundary
conditions (2.8) and (2.9) we find

∫

Ω

∆φjdx = −λj

∫

Ω

φjdx,

=
∫

∂Ωr

∂nφjdS +
∫

∂Ωa

∂nφjdS,

=
∫

∂Ωa

∂nφjdS. (2.16)
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We know λj ∼ O (1) as ε → 0 for j ≥ 1 and we can assume that |∂Ωa| ∼ O (ε).
By considering the first and third line of (2.16), we can deduce that

∫
Ω

φj ∼ O (ε)
for j ≥ 1. Thus, we can see that the most significant contribution to (2.13) comes
from the first term, j = 0.

Thus to leading order

v(x) ∼ (1, φ0(x))
Dλ0

φ0(x), (2.17)

with (φ0(x), φ0(x)) = 1. Therefore, the expected lifetime or exit time of a
Brownian particle is proportional to 1

λ0(ε)
in accordance with theory, [8] and[23].

Our task now is to find φ0 and λ0 using strong localized perturbation theory.
The absorbing arc ∂Ωa provides a perturbation that is large in magnitude

but small in extent, hence it is known as a strong localized perturbation. Gen-
erally strong localized perturbations produce large changes to the solution in a
localized region. We use the method of matched asymptotic expansions to con-
struct the solution in a similar way as outlined in [8], [33] and [34]. In particular
there will be expansions for the region in the vicinity of the absorbing arc, known
as the inner region, and expansions in the outer region, the region away from
the hole. By matching these expansions we can accurately describe the large
local changes that occur and the relatively small changes to the solution that
occur away from the absorbing arc. This is how we will proceed.

2.2 Two-Dimensional Domain with One Hole

on the Boundary

We start our analysis with one hole or absorbing arc on the boundary. In the
next section we will extend this framework to include N holes on the boundary
of varying length. We must first calculate the principal eigenvalue λ0 and the
principal eigenfunction φ0 before we can calculate the mean escape time v(x)
given by equation (2.17).

2.2.1 Calculation of φ0 and λ0

We need to solve the system of (2.7)-(2.9) for the principal eigenvalue λ0(ε) and
the corresponding eigenfunction φ0. We start by expanding the eigenvalue

λ0(ε) = λ00 + ν(ε)λ01 + (ν(ε))2λ02 + · · · , (2.18)
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with the condition that ν(ε) → 0 as ε → 0, where ν(ε) = − 1
log(εd) . Here d is

the logarithmic capacitance, a constant, which is dependent on the length of
the perturbing arc. This expansion was used for a similar problem, where the
holes were located within the domain instead of on the boundary. It was shown
by [34], that λ01 is independent of the position of the hole, x0. Though, the
problem studied in [34] is a slight variation of the problem at hand, the result
is analogous to our problem. Thus, we must go to higher orders to find terms
that do depend on the location of the hole. This is important so that we obtain
a formula for the MFPT that depends on the location of the hole as well as
on the initial position. We can write λ0(ε) in terms of an infinite logarithmic
expansion

λ0(ε) = λ∗(ν) + O

(
ε

log ε

)
where ν(ε) = − 1

log(εd)
. (2.19)

In [33] it was shown how to formulate this expansion. We expand

λ0(ε) = λ∗(ν) + µλ1 + · · · , (2.20)

where µ ¿ νm for m > 0.
In the outer region, away from the absorbing arc, we expand the global

solution as
φ0(x, ε) = u∗(x, ν) + µu1(x, ν) + · · · . (2.21)

Substituting (2.20) and (2.21) into (2.7) and (2.9) we obtain for O(µ0) that

∆u∗ + λ∗u∗ = 0, x ∈ Ω \ {x0},
∂nu∗ = 0, x ∈ ∂Ωr,∫

Ω

(u∗)2 dx = 1, (2.22)

with some singularity condition as x → x0 to be found from matching inner
and outer solutions. For order O(µ1) we obtain

∆u1 + λ∗u1 = −λ1u
∗, x ∈ Ω \ {x0},

∂nu1 = 0, x ∈ ∂Ωr,∫

Ω

u∗u1dx = 0. (2.23)

The integral conditions on u∗ and u1 in the last line of the system of (2.22) and
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(2.23) are an implementation of the normalization condition on the eigenfunc-
tions.

Now in the inner region near the absorbing portion of the boundary ∂Ωa we
let

y =
(x− x0)

ε
, (2.24)

so that the arc is rescaled as ∂Ω0 = ∂Ωa

ε ∼ O(1). In the inner region we let

v(y, ε) = φ0(x0 + εy, ε).

Then we expand
v(y, ε) = ν(ε)v0(y) + · · · . (2.25)

Substituting (2.25) into (2.7) and (2.8), we find to order O(ν(ε)0) that

∆yv0 = 0, y /∈ ∂Ω0,

v0 = 0, y ∈ ∂Ω0. (2.26)

We write
v0(y) = A(ν)vc(y), (2.27)

with A(ν) ∼ O(1) as ε → 0 and vc defined later.
We will need to match v(y, ε) to φ0(x, ε) in the limit as x → x0. The limit

x → x0 is equivalent to ε → 0, which implies that |y| → ∞. We will need an
O(1) term at leading order. Notice that v0 is multiplied by a factor of ν(ε) in
the expansion (2.25). To ensure that we obtain an O(1) term in the expansion
for v(y, ε) in the limit as |y| → ∞ we would need v0(y) ∼ log |y| as |y| → ∞.
We find that vc(y) satisfies

∆yvc = 0, y /∈ ∂Ω0,

vc = 0, y ∈ ∂Ω0,

vc → log |y| as |y| → ∞. (2.28)

This ensures that the inner (local) solution has logarithmic behaviour at infinity.
The problem for vc(y), (2.28), has a unique solution and the behaviour at ∞ is
[8]

vc(y) ∼ log |y| − log d +
p.y

|y|2 . (2.29)
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where d, the logarithmic capacitance and p = (p1, p2), the dipole vector, are
determined from the length of the hole, ∂Ωa. In our case, where the length of
the hole is |∂Ωa| = 2ε, d = 1

2 . In general, for an arc of length l, d = l
4 . This

is obtained by a special solution in terms of elliptic cylindrical coordinates. We
present a derivation in Appendix A.

The inner and outer solutions must match to obtain a consistent solution.
Thus, from matching in the vicinity of the arc, in the limit as x → x0 or |y| → ∞
we must have

u∗(x, ν) + µu1(x, ν) + · · · = ν(ε)A(ν)

[
log |y| − log d +

p.y

|y|2
]

+ · · · .

Writing the inner variables in terms of outer variables using (2.24)

u∗(x, ν) + µu1(x, ν) + · · · = ν(ε)A(ν) log |x− x0| − ν(ε)A(ν) log(εd) + · · · .

We recall that ν(ε) = − 1
log(εd) . Thus, from matching we find that

u∗ → A + Aν(ε) log |x− x0| as x → x0. (2.30)

This gives us the missing singularity condition as x → x0. Thus u∗ must satisfy
the system (2.22)-(2.30). From the matching, we see that the next order in the
inner expansion is O(εν). To ensure matching of the inner and outer solutions
µ = O(εν).

To find u∗ and λ∗ we introduce the Helmholtz Green’s function G(x, x0, λ
∗)

and its regular part R(x, x0, λ
∗). This Green’s function satisfies

∆G + λ∗G = 0, x ∈ Ω,

∂nG = 0, x ∈ ∂Ω \ {x0}, (2.31)

G(x,x0, λ
∗) = − 1

π
log |x− x0|+ R(x,x0, λ

∗). (2.32)

Notice that if we did not have an absorbing arc, but instead a hole in the
interior of the domain, so that the singular point x0 is in the interior of Ω, the
behaviour of the Green’s function would be

G(x, x0, λ
∗) = − 1

2π
log |x− x0|+ R(x, x0, λ

∗).

However the singularity of the Green’s function at the boundary is twice as large
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as it is in the interior of the domain, thus we have a factor of − 1
π in front of

log |x− x0|.
The solution to (2.22) with the correct factor for the logarithmic singularity

is
u∗ = −πAνG(x, x0, λ

∗). (2.33)

The normalization condition in (2.12) determines A as

π2A2ν2

∫

Ω

G2(x,x0, λ
∗)dx = 1. (2.34)

By using (2.32) and (2.33) we calculate u∗ in the limit as x → x0 as

u∗(x, ε) = Aν log |x− x0| − πAνR(x0,x0, λ
∗). (2.35)

Comparing this with (2.30), we find that u∗ has the desired behaviour as x → x0

provided that

R(x0, x0, λ
∗) = − 1

πν
. (2.36)

Equation (2.36) is a transcendental equation for λ∗. To proceed we expand G

in powers of λ∗ for λ∗ << 1 as

G(x, x0, λ
∗) =

1
λ∗

G0(x,x0) + G1(x,x0) + λ∗G2(x,x0) + · · · . (2.37)

We substitute (2.37) into (2.31) to obtain for O
(

1
λ∗

)
that

∆G0 = 0, x ∈ Ω,

∂nG0 = 0, x ∈ ∂Ω \ {x0}. (2.38)

For O
(
(λ∗)0

)
we have

∆G1 = −G0, x ∈ Ω,

∂nG1 = 0, x ∈ ∂Ω \ {x0},∫

Ω

G1dx = 0. (2.39)
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For O
(
(λ∗)j−1

)
with j = 1, 2, 3, · · ·

∆Gj = −Gj−1, x ∈ Ω,

∂nGj = 0, x ∈ ∂Ω \ {x0},∫

Ω

Gjdx = 0. (2.40)

We see that G0 is a constant from (2.38). The condition that the integral of Gj

over the domain must be zero for j ≥ 1 is a consequence of the normalization
condition. It also ensures that we obtain a unique solution, as the Green’s
function is only unique up to a constant as a result of the Neumann boundary
condition.

We can solve for the G′js recursively. We can solve for G0 from (2.38) and
(2.39). We make a semi-circular cut out of radius σ, σ << 1, near x0. We
integrate (2.39) over Ω and using the Divergence Theorem and the boundary
condition for G1 we find that

lim
ε→0

∫

Ω\Ωσ

∆G1dx = lim
ε→0

∫ π

0

(
−∂G1

∂ρ
|ρ=ε

)
εdϕ,

= − lim
ε→0

∫

Ω\Ωσ

G0dx, (2.41)

where ρ = |x− x0|. We know that G1 ∼ − 1
π log ρ as x → x0, thus ∂G1

∂ρ = − 1
πρ .

Substituting this into (2.41) we find that

G0 = − 1
|Ω| . (2.42)

Thus G1 satisfies

∆G1 =
1
|Ω| , x ∈ Ω,

∂nG1 = 0, x ∈ ∂Ω \ {x0},∫

Ω

G1dx = 0. (2.43)

We call the Green’s function satisfying (2.43) the Neumann Green’s function
or modified Green’s function Gm(x, x0) with regular part Rm(x, x0). We will
refer to G1 as Gm. We know that as x → x0

Gm(x, x0) = − 1
π

log |x− x0|+ Rm(x0,x0). (2.44)
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Using our expressions for G0 and G1 given by (2.42) and (2.44) respectively,
we can rewrite expansion (2.37) as

G(x,x0, λ
∗) = − 1

λ∗ |Ω| + Gm(x, x0) + O(λ∗). (2.45)

Comparing the behaviour of G(x, x0.λ
∗) from (2.35) and the behaviour of

G(x, x0) from (2.44) we see that

R(x,x0, λ
∗) = − 1

λ∗ |Ω| + Rm(x,x0) + O(λ∗). (2.46)

Substituting the expression for R(x,x0, λ
∗), given by (2.46), in the limit as

x → x0 into (2.36), we find that

λ∗ =
πν

|Ω| (1 + πνRm(x0,x0))
+ O(ν3). (2.47)

We have found λ0 and φ0 to first order in the outer region, from (2.20) and
(2.21) we see that

λ0(ν) =
πν

|Ω| −
π2ν2

|Ω| Rm(x0, x0) + O(ν3), (2.48)

φ0(x, ν) = πAν

(
1

λ0 |Ω| −Gm(x, x0)
)

+ O(λ∗), (2.49)

where Gm(x,x0) satisfies (2.43).
It remains to find the constant A = A(ν). To find the constant we must

impose the normalization condition, (φ0, φ0) = 1, which gives

A(ν) =
1

|Ω| 12
(1− πνRm(x0, x0)) + O(ν2), (2.50)

where we have used the fact that
∫
Ω

Gmdx = 0 and the expression for λ0 given
by (2.48). Substituting this into the expression for φ0(x, ν), (2.49), and using
(2.48) we have the following main result:

Proposition 2.1: (One Hole) For ε → 0, the first eigenvalue, λ0, and the
first eigenfunction, φ0, of the system (2.7)-(2.9), have the two-term asymptotic
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behaviour

λ0(ν) =
πν

|Ω| −
π2ν2

|Ω| Rm(x0, x0) + O(ν3),

φ0(x, ν) = |Ω|− 1
2 − πν |Ω|− 1

2 Gm(x,x0) + O(ν2). (2.51)

2.2.2 Calculation of the Mean First Passage Time

Using (2.17) we can find an expression for v(x) that holds in a general two-
dimensional domain with one hole on the boundary. Substituting the leading
order expressions for λ0 and φ0, given by (2.48) and (2.51) respectively, into
(2.17) gives

v(x) =
|Ω|
πD

(
ν−1 + π (Rm(x0,x0)−Gm(x, x0))

)
+ O(ν), (2.52)

where ν = − log(εd), with d the logarithmic capacitance. Hence we have the
following result:

Proposition 2.2: (One Hole) For ε → 0, the mean first passage time,
v(x), given by (2.17), has the two-term asymptotic behaviour

v(x) =
|Ω|
πD

(− log(εd) + π (Rm(x0, x0)−Gm(x,x0))) + O(ν). (2.53)

The average MFPT, v̄, is

v̄ =
|Ω|
πD

(− log(εd) + πRm(x0,x0)) + O(ν). (2.54)

Recall that v̄ = 1
|Ω|

∫
Ω

v(x)dx.
This expression for the mean first passage time v(x) holds in a general two-

dimensional domain. The modified Green’s function remains to be found for the
geometry under consideration. As ε → 0, we see that v(x) →∞, in accordance
with the behaviour that we had anticipated. Also note that we have used the
outer expansion for the eigenfunction to construct the mean first passage time.
In other words (2.53) holds in the outer region. To find the behaviour in the
local region, we must use the local expansion for the eigenfunction v(y). In this
region, we do obtain the behaviour v(x) → 0 as ε → 0 for |x− x0| = O(ε).
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We compare our result to that of Singer et al., [25], in which they obtained
the one-term expansion for the behaviour of v(x) in a two-dimensional domain
with one hole given by

Eτ =
|Ω|
πD

[
log

1
ε

+ O(1)
]

.

Our result, (2.53), significantly improves upon theirs. We have a two-term
expansion for the mean first passage time. Consequently, our result depends on
the location of the hole, x0, the initial position, x, as well as on the length of
the hole, through d, and the shape of the domain, through the Green’s function.
Note that if |∂Ωa| = εl, then d = l

4 .

2.3 Two-Dimensional Domain with N Holes on

the Boundary

We can extend the expression for v(x) to include N absorbing arcs. The bulk
of the analysis in the previous section remains the same, except that we replace
the single arc with N arcs, ∂Ωi for i = 1, 2, .., N , of length O(ε), where xi can
be interpreted as the centre of the arc. Here the length of each arc is

|∂Ωi| = εli, (2.55)

for some li = O(1). We assume that the arcs are non-overlapping. We restate
the problem for the mean first passage time v(x) with N absorbing arcs on the
boundary as

∆v(x) = − 1
D

, x ∈ Ω, (2.56)

v(x) = 0, x ∈ ∂Ωi, i = 1, 2, ..., N, (2.57)
∂v(x)
∂n(x)

= 0, x ∈ ∂Ωr, (2.58)

where ∂Ωi denotes the ith absorbing arc on the boundary.
We proceed as before, by writing v(x) in terms of a complete set of eigen-
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functions φj(x) which satisfy

∆φj + λjφj = 0, x ∈ Ω, (2.59)

φj(x) = 0, x ∈ ∂Ωi, i = 1, 2, ..., N, (2.60)
∂φj(x)
∂n(x)

= 0, x ∈ ∂Ωr. (2.61)

After imposing the orthogonality and orthonormal properties, we arrive at the
same expression for the MFPT v(x) as in equation (2.17). The difference is
that our eigenfunctions satisfy a slightly different problem to that for one hole.
We must solve solve the system (2.59)-(2.61) for the leading order eigenfunction
and eigenvalue.

2.3.1 Calculation of φ0 and λ0

For ε → 0 we expand the eigenvalue λ0 and the eigenfunction φ0(x) as given
by (2.20) and (2.21). The subtlety to notice here, is that we no longer have one
parameter ν, instead, we have N parameters νi for i = 1, 2, ...N where

νi = − 1
log(εdi)

, (2.62)

where we incorporate the logarithmic capacitance, di of each arc. In this manner
we capture the length of each arc. In particular, if |∂Ωi| = εli, then d = li

4 .
Now we proceed as in the case for one hole. The problem in the outer region

away from the hole at order O(µ0) reads as

∆u∗ + λ∗u∗ = 0, x ∈ Ω \ {x1, x2, ..., xN},
∂nu∗ = 0, x ∈ ∂Ωr. (2.63)

Now in the inner region near the absorbing portions of the boundary ∂Ωi

for i = 1, ...N we let

yi =
(x− xi)

ε
,

so that the arc is rescaled as |∂Ω0i| = |∂Ωi|
ε = O(1). In the inner region we let

v(yi, ε) = φ0(xi + εy, ε).

30



Chapter 2. The Narrow Escape Problem in Two Dimensions

and we expand
v(yi, ε) = ν(ε)v0(yi) + · · · . (2.64)

Proceeding as before we arrive at the order O(ν(ε)0) equation for each hole

∆yv0 = 0, yi /∈ ∂Ω0i,

v0 = 0, yi ∈ ∂Ω0i. (2.65)

According to the same reasoning outlined for one hole, we want v0(yi) ∼
log |yi| as |yi| → ∞. This ensures that we can eventually match the inner and
outer solutions. We write

v0(y) = Ai(νi)vc(yi), (2.66)

with Ai(νi) ∼ O(1) as ε → 0. So we find that vc(yi) satisfies

4yvc = 0, yi /∈ ∂Ω0i,

vc = 0, y ∈ ∂Ω0i,

vc → log |yi| as |yi| → ∞. (2.67)

Recall that if |∂Ωi| = εli, then di = li
4 . Matching the inner and outer

solutions as before we find that u∗ must satisfy

∆u∗ + λ∗u∗ = 0, x ∈ Ω \ {x1, x2, ..., xN},
∂nu∗ = 0, x ∈ ∂Ωr,

∫

Ω

(u∗)2dΩ = 1, (2.68)

u∗ → Ai + Aiνi(ε) log |x− xi| as x → xi. (2.69)

This is similar to (2.22) and (2.30) for u∗ for one hole. However, notice that
we have N unknowns Ai for i = 1, ..., N , with only one normalization condi-
tion. Thus, we will have a single relation between each of the Ai’s set by the
normalization condition.

We write the solution for u∗ in terms of the Helmholtz Green’s function

u∗ = −πΣN
k=1AkνkG(x, xk, λ∗) (2.70)

where k is the index of the N absorbing arcs. The Green’s function G(x,xk, λ∗)
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must satisfy a system similar to (2.31). The Green’s function satisfies

∆G + λ∗G = 0, x ∈ Ω,

∂nG = 0, x ∈ ∂Ω \ {x1, x2, ..., xN}, (2.71)

G(x, xk, λ∗) ∼ − 1
π

log |x− xk|+ R(xk, xk, λ∗) as x → xk.

(2.72)

Substituting (2.72) into (2.70) will give an expression for u∗ in the limit as
x → xi. This expression must match to (2.69). After some simplification, in
the limit as x → xi, we require that

Ai(1 + πνiR(xi, xi, λ
∗)) + π

N∑

k=1,k 6=i

AkνkG(xi,xk, λ∗) = 0, i = 1, 2, ..., N,

(2.73)
to satisfy the matching condition to the inner solution. This is different from
the result for one hole, and is a consequence of the fact that there are N holes.

System (2.73) is an NXN homogeneous linear system for the N unknowns
Ai, i = 1, ..., N , which we write in matrix form as

MA = 0,

where A = (A1, A2, ..., AN )T is a vector and M is the matrix shown below,
whose determinant must be zero in order for nontrivial solution to exist. This
allows us to solve for the Ai numerically. Here we have denoted R(xi, xi, λ

∗)
by Rii(λ∗) and G(xi,xj , λ

∗) by Gij(λ∗) for i 6= j. The matrix M is




1 + πν1R11(λ∗) πν2G12(λ∗) πν3G13(λ∗) · · · πνNG1N (λ∗)
πν1G21(λ∗) 1 + πν2R22(λ∗) πν3G23(λ∗) · · · πνNG2N (λ∗)
πν1G31(λ∗) πν2G32(λ∗) 1 + πν3R33(λ∗) · · · πνNG3N (λ∗)

...
...

...
. . .

...
πν1GN1(λ∗) πν1GN1(λ∗) · · · · · · 1 + πνNRNN (λ∗)




We expand each of the Gij in orders of λ∗ as

G(xi, xj , λ
∗) =

1
λ∗

G0(xi,xj) + G1(xi, xj) + λ∗G2(xi,xj) + · · · . (2.74)

Consequently, each of the Gij must satisfy equivalent forms of (2.38), (2.39)
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and (2.40). Applying the Divergence Theorem as we previously did in the case
of one hole, we find that for each Gij we have

G0(xi, xj) = − 1
|Ω| , (2.75)

and thus G1 satisfies

∆G1(xi,xj) =
1
|Ω| , x ∈ Ω,

∂nG1(xi,xj) = 0, x ∈ ∂Ω \ {x1,x2, ..., xN}, (2.76)∫

Ω

G1(xi,xj)dx = 0,

G1 ∼ − 1
π

log |x− xj |+ R1(xj ,xj) as x → xj .

(2.77)

This is the problem for the modified Green’s function or Neumann’s Green
function. We shall henceforth refer to G1 as Gm. Now we can rewrite (2.74) for
λ∗ << 1 using Gm as

G(xi,xj , λ
∗) = − 1

λ∗ |Ω| + Gm(xi, xj) + O(λ∗). (2.78)

Comparing the behaviour of this expression as xi → xj with (2.72), where
we set x = xi, we find that

R(xi, xi, λ
∗) = − 1

λ∗ |Ω| + Rm(xi, xi). (2.79)

We substitute (2.78) and (2.79) into (2.73) to obtain

Ai

(
1 + πνiRm(xi, xi)− πνi

|Ω|λ∗
)

+ π

N∑

k=1,k 6=i

Akνk

(
Gm(xi,xk)− 1

λ∗ |Ω|
)

= 0,

(2.80)
for i = 1, ..., N .

It is convenient to rewrite this in matrix form as an eigenvalue problem.
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Firstly we do some rearranging

Ai(1 + πνiRm(xi,xi)) + π

N∑

k=1,k 6=i

AkνkGm(xi,xk)

=
π

|Ω|λ∗


Aiνi +

N∑

k=1,k 6=i

Akνk


 , (2.81)

for i = 1, ..., N .
We can write this equation in matrix form as

CA =
π

|Ω|λ∗BV A, (2.82)

where
C = I + πΓV, (2.83)

and

V =




ν1 0 · · · · · · 0
0 ν2 0 · · · 0
0 0 ν3 · · · 0
...

...
...

. . .
...

0 · · · · · · 0 νN




, B =




1 1 · · · · · · 1
1 1 · · · · · · 1
1 1 · · · · · · 1
...

...
...

. . .
...

1 1 · · · · · · 1




,

A =
(

A1 A2 · · · · · · AN

)T

,

Γ =




Rm(1, 1) Gm(1, 2) Gm(1, 3) · · · Gm(1, N)
Gm(2, 1) Rm(2, 2) Gm(2, 3) · · · Gm(2, N)
Gm(3, 1) Gm(3, 2) Rm(3, 3) · · · Gm(3, N)

...
...

...
. . .

...
Gm(N, 1) Gm(N, 2) · · · · · · Rm(N,N)




.

The Green’s function is symmetric since Gm(i, j) = Gm(j, i) where Gm(i, j) de-
notes Gm(xi, xj) and Rm(i, i) denotes Rm(xi, xi). As a result, Γ is a symmetric
matrix. Let νm = max νk for k = 1, ..., N . For νm sufficiently small, we can
invert C so that we obtain a matrix eigenvalue problem for the eigenvalue λ∗

π

|Ω|C
−1BV A = λ∗A. (2.84)
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We let Υ = π
|Ω|C

−1BV , this gives us

ΥA = λ∗A, Υ =
π

|Ω|C
−1BV. (2.85)

We can find λ∗ by finding the eigenvalue of the system above. We follow
the procedure as outlined in [8]. Notice that each row of BV is the same
[ν1, ν2, ..., νn], thus there is only one linearly independent row. Hence, BV has
rank one. As a result, we can conclude that Υ has rank one. Thus, we can
conclude that λ∗ is the only unique non-zero eigenvalue of Υ. Hence, λ∗ =
Trace(Υ). By using the structure of Υ as defined in (2.85), we find that

λ∗ = Trace(Υ) =
π

|Ω|
N∑

j=1

νj

(
N∑

k=1

cjk

)
, cjk =

(
C−1

)
jk

. (2.86)

We are left to find C−1. We have assumed that νm << 1, thus the asymp-
totic inverse of C is

C−1 = I − πΓV + · · · .

Substituting this into equation (2.86) we find that

λ∗ =
π

|Ω|
N∑

j=1

νj

(
N∑

k=1

Ijk − π(ΓV )jk

)
, (2.87)

where ΓV =
∑N

j=1

∑N
k=1 νkΓjk and

∑N
k=1 Ijk = 1 for each j. Thus

λ∗ =
π

|Ω|




N∑

j=1

νj − π

N∑

j=1

νj

N∑

k=1

νkΓjk


 + O(ν3

m). (2.88)

To find u∗ we use (2.70) and (2.74). We have found a two-term expansion
for λ0 and φ0. We summarize our result as follows:

Proposition 2.3: (N Holes) For ε → 0, the first eigenvalue, λ0, and first
eigenfunction, φ0, of the system (2.59)-(2.61), have the two-term asymptotic
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expansions

λ0(ε) =
π

|Ω|




N∑

j=1

νj − π

N∑

j=1

N∑

k=1

νjνkΓjk


 + O(ν3

m), (2.89)

φ0(x, ε) ∼ π

λ∗ |Ω|
N∑

k=1

Akνk − π

N∑

k=1

AkνkGm(x,xk). (2.90)

This gives us a general expression for a two-dimensional domain with N holes
of differing length on the boundary. It must be noted that we have not explicitly
imposed the normalization condition here to find the relationship between the
Ai. The Ai can be found by finding the eigenvector of the matrix system (2.85).

Notice that in the case of N identical holes, there is simplification in the
expression for the eigenvalue λ0 and the eigenvalue φ0. Suppose that we have
N identical holes. Thus, each of the νi are identical. The expression for φ0

given by (2.90) reduces to

φ0(x, ε) ∼ πν

λ0 |Ω|
N∑

k=1

Ak − πν

N∑

k=1

AkGm(x,xk). (2.91)

Note that
∑N

j=1

∑N
k=1 Γjk =

∑N
k=1

(
Rm(xk,xk) +

∑N
j=1,j 6=k Gm(xj ,xk)

)
.

To simplify the notation, we define p(x1,x2, ..., xN ) by

p(x1, x2, ..., xN ) =
N∑

k=1


Rm(xk, xk) +

N∑

j=1,j 6=k

Gm(xj , xk)


 (2.92)

In the case of N identical holes we can impose the normalization condition
explicitly to find the relationship between the Ai. We calculate (φ0, φ0) using
(2.91) and (2.89) to find that

N∑

k=1

Ak =
N

|Ω| 12
(
1− πν

N
p(x1,x2, ..., xN )

)
+ O(ν2), (2.93)

where p is given by (2.92).
As a Corollary to Proposition 2.3, we obtain the following result for N iden-

tical holes:

Corollary 2.4 (N Identical Holes) Suppose that the N holes are identical,
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that is νj = ν. The expressions for λ0 and φ0, given by (2.89) and (2.90),
simplify to

λ0(x, ε) =
πν

|Ω| (N − πνp(x1, x2, ..., xN )) + O(ν3), (2.94)

φ0(x, ε) = |Ω|− 1
2 − πνΣN

k=1AkGm(x, xk) + O(ν2). (2.95)

For ν ¿ 1, we observe that the eigenvalue, λ0, given by (2.94) is largest when
the hole locations x1, x2, ..., xN are chosen so as to minimize p(x1,x2, ..., xN ).
The mean escape time, which is inversely proportional to the principal eigen-
value, will be a minimum in this case.

There is in fact one more special case that we can consider. In the case of N

identical holes, there arises the possibility of attaining a cyclic matrix. Recall
from the matrix equation (2.85) where we have ΥA = λ∗A, we can find A as
the eigenvector associated with the eigenvalue λ∗. If we have an even number of
equally spaced identical points in certain geometries, we find that the matrix Υ
is cyclic. For example, if we have two holes placed at the corners of a rectangle or
square, we obtain a cyclic matrix. In addition, we find that this property holds
for any two points located on the circumference of the unit circle. Furthermore,
we find that the property holds for four points, located along lines of symmetry.
These will be illustrated in following sections. The cause of this special property
of the matrix Υ is that the matrices Γ and C and C−1 are cyclic. As a result, we
find that the eigenvector associated with the eigenvalue λ∗ has identical entries.
Thus, A1 = A2 = ... = AN . Using this unique property, we can find a simple
expression for v(x) analogous to the expression we found for one hole in (2.53).

Notice that, for identical A′s, φ0 becomes

φ0(x, ε) ∼ πNAν

λ∗ |Ω| − πνA

N∑

k=1

Gm(x, xk). (2.96)

We can simplify the expression for
∑N

k=1 Ak given by (2.93) to find

A =
1

|Ω| 12
(
1− πν

N
p(x1, x2, ..., xN )

)
+ O(ν2). (2.97)

We can now state the new expression for φ0 in the case of a cyclic matrix

37



Chapter 2. The Narrow Escape Problem in Two Dimensions

Corollary 2.5: (N Identical Holes, Υ Cyclic) Suppose that the N holes
are identical, that is νj = ν and the holes are placed in such a manner that the
matrix Υ in system (2.85) is cyclic. The expression for φ0, given by (2.90),
simplifies to

φ0(x, ε) = |Ω|− 1
2 − πν |Ω|− 1

2

N∑

k=1

Gm(x,xk) + O(ν2). (2.98)

2.3.2 Calculation of the Mean First Passage Time

Next we use (2.17) to find the MFPT in an arbitrary two-dimensional domain
with N holes on the boundary. We will have three different expressions for the
MFPT for the following cases, N holes of differing length on the boundary, N

identical holes on the boundary, and N identical holes where we have a cyclic
matrix.

For N holes of differing length we substitute the expressions for φ0 and λ0

from (2.89) and (2.90) into (2.17). In terms of λ0, we find a two-term expression
for v(x):

Proposition 2.6: (N Holes) For ε → 0, the two-term asymptotic be-
haviour of the mean first passage time, v(x), is

v(x) ∼ π
∑N

k=1 Akνk

D(λ0)2

(
π

λ0 |Ω|
N∑

k=1

Akνk − π

N∑

k=1

AkνkGm(x,xk)

)
. (2.99)

The average MFPT, v̄, is

v̄ ∼ π
∑N

k=1 Akνk

D(λ0)2

(
π

λ0 |Ω|
N∑

k=1

Akνk

)
. (2.100)

Notice that the normalization condition has not been imposed in equation
(2.99) for the MFPT. Therefore, we must divide expression (2.99) by (φ0, φ0),
once we have found the Ai numerically by solving the eigenvalue problem (2.85).

For N identical holes, we use expressions (2.94) and (2.95) for the eigen-
function and eigenvalue. We have already imposed the normalization condition
in this case. We obtain that the mean first passage time for a two-dimensional
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domain with N identical holes on the boundary is given by the following:

Corollary 2.7: (N Identical Holes) For ε → 0, the two-term asymptotic
behaviour of the mean first passage time, v(x), is

v(x) =
|Ω|

πND

(
− log(εd)− |Ω| 12 π

N∑

k=1

AkGm(x,xk) +
π

N
p(x1, x2, ..., xN )

)
+O(ν),

(2.101)
where p(x1, x2, ..., xN ) is defined by (2.92). The average MFPT, v̄, is

v̄ =
|Ω|

πND

(
− log(εd) +

π

N

N∑

k=1

p(x1,x2, ..., xN )

)
+ O(ν). (2.102)

In the case of the matrix Υ being cyclic we find:

Corollary 2.8: (N Identical Holes, Υ Cyclic) For ε → 0, the two-term
asymptotic behaviour of the mean first passage time, v(x), is

v(x) =
|Ω|

πND

(
− log(εd) + π

(
1
N

p(x1, x2, ..., xN )−
N∑

k=1

Gm(x, xk)

))

+ O(ν). (2.103)

The average MFPT, v̄, is

v̄ =
|Ω|

πND

(
− log(εd) +

π

N
p(x1, x2, ..., xN )

)
+ O(ν). (2.104)

Notice that by setting N = 1 in equations (2.98) and (2.103), we recover
(2.51) and (2.53). Also notice that in (2.102) and (2.104) that the average
MFPT is minimized for a configuration of arcs that minimize p(x1,x2, ..., xN ).

Holcman and Schuss, in [5], consider the case of N absorbing arcs of differing
length. We cannot directly compare our results with those of Holcman and
Schuss, since their results are in terms of an infinite series. In the case of N

identical arcs, Holcman and Schuss find that the leading order term for the mean
first passage time is proportional to 1

N . The leading order term in our results,
(2.101) and (2.103), are also proportional to 1

N . Our results for the mean first
passage time depend on x, xk, for k = 1, ..., N , the length of the arcs through d
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and the shape of the domain, Ω. This is an improvement on the results derived
in [5].

2.4 Discussion

In this chapter we solved for the MFPT in an arbitrary two-dimensional domain.
We transformed the problem at hand to an eigenvalue problem. We used the
method of matched asymptotic expansions to solve for the principal eigenvalue,
λ0, and eigenfunction, φ0. In the case of one hole on the boundary, our expres-
sion for the MFPT, (2.53), agrees with the leading order term derived by Singer
et al. in [25]. Furthermore, our result is an improvement on the result derived
by Singer et al. since we have the next term in the asymptotic expansion for the
MFPT, which depends on the position of the hole at x0 and the initial position
at x. We were able to extend this framework to find general expressions for
the MFPT with N holes on the boundary. We found expressions for the MFPT
with N holes of differing size on the boundary, (2.99) and N identical holes on
the boundary, (2.101). Furthermore, we found the MFPT, equation (2.103), in
the special case of a cyclic matrix in the system (2.85).

In the next chapter we will apply these results to calculate the MFPT in a
few domains.
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Chapter 3

Numerical Realizations:

The Neumann Green’s

Function

In this chapter, we apply the results derived in Chapter 2 to a few special
domains. It is clear from our expressions for the MFPT in Chapter 2, that the
Neumann Green’s function plays an important role. In fact, to find the MFPT in
a given domain, one must find the Neumann Green’s function. For the unit disk
and unit square we can calculate the Neumann Green’s function, Gm(x, x0),
and its regular part, Rm(x,x0), analytically. For more general domains, we
present and implement a boundary element method to numerically calculate
Gm(x, x0) and Rm(x,x0). We use these results to find the mean first passage
time.

3.1 The Unit Disk

We have found an expression for the mean first passage time, (2.53), for a general
two-dimensional domain with one hole on the boundary. In addition, we have
found three differnt formulas for the mean first passage time with N holes on the
boundary, namely (2.99), (2.101) and (2.103). We would now like to investigate
the behaviour of the MFPT in specific geometries. We begin with the unit disk.
In the next section we will consider the unit square.

3.1.1 The Neumann Green’s Function in a Unit Disk

To investigate the mean free path time in the unit disk, we must find the Neu-
mann Green’s function Gm for the unit disk. For x0 ∈ Ω, so that x0 is in the
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interior of Ω, the modified Green’s function satisfies

∆Gm =
1
|Ω| − δ(x− x0), x ∈ Ω, (3.1)

∂nGm = 0, x ∈ ∂Ω, (3.2)∫

Ω

Gm(x,x0)dx = 0, (3.3)

where the integral condition ensures that we obtain a unique solution to the
problem.

The solution to the problem above for the unit disk is well known, and takes
the form [8]

Gm(x, x0) = − 1
2π

log |x− x0|− 1
2π

log
∣∣∣∣x |x0| − x0

|x0|

∣∣∣∣+
1
4π

(|x|2 + |x0|2)+C(x)

(3.4)
where the singularity, x0, is located in the interior of the disk and C(x) is to
be determined from the integral condition. Writing the expression above in the
form

Gm(x, x0) = − 1
2π

log |x− x0|+ Rm(x, x0),

we see that the regular part Rm is given by

Rm(x, x0) = − 1
2π

log
∣∣∣∣x0 |x0| − x0

|x0|

∣∣∣∣ +
1
4π

(|x|2 + |x0|2) + C(x). (3.5)

For the theory in Chapter 2, the singularity is located on the boundary of the
circle, so that |x0| = 1. However, we first find the constant C before we take
the limit as x0 → ∂Ω.

To determine C, we multiply (3.4) for Gm(x, x′0) by (3.1) and integrate over
Ω. We make use of the integral property (3.3) to obtain

Gm(x0, x
′
0) = −

∫

Ω

Gm(x, x′0)∆Gm(x, x0)dx. (3.6)

We now use integration by parts and the Neumann boundary condition (3.2) to
find

Gm(x0,x
′
0) =

∫

Ω

∇Gm(x, x′0) · ∇Gm(x,x0)dx. (3.7)

We can see from this equation that Gm(x0, x
′
0) = Gm(x′0, x0). This is just a

proof of the symmetry property of the Green’s function, which follows from the
fact that the Laplacian is a self-adjoint operator. It does allow us to deduce that
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C(x0) = C(x′0) = C. Before we find C, we show another property. Following
the same argument as outlined above, along with the symmetry property of the
Green’s function, we find that

1
|Ω|

∫

Ω

G(x, x′0)dx = Gm(x0, x
′
0)−

∫

Ω

∇Gm(x, x′0) · ∇Gm(x,x0)dx. (3.8)

Imposing the symmetry property, we see that the
∫
Ω

Gm(x,x0)dx is indepen-
dent of x0. We will need this result later on when we consider a numerical
approach to finding the Neumann Green’s function.

To determine C, we integrate (3.4) over Ω. Since we know that the integral
over G is independent of x0, we pick x0 = 0. We know that

∫
Ω

log |x| dx =
−π/2,

∫
Ω
|x|2 dx = π/2 and

∫
Ω

Gm(x,0)dx = 0. Using this, we find that
C = − 3

8π .
Using this, the expression for the Neumann Green’s function in a unit disk

with a singularity on the boundary is obtained by letting |x0| → 1. We obtain

Gm(x,x0) = − 1
π

log |x− x0|+ 1
4π
|x|2 − 1

8π
. (3.9)

Note that this expression is consistent with the remark regarding (2.31) for a
surface Green’s function, in that a singularity on the boundary is twice as large
as one in the interior.

Now we are ready to use expression (2.53) to find the mean free path time
for a Brownian particle trapped in a unit circle with one hole on the boundary.

3.1.2 The Mean First Passage Time in a Unit Disk with

One Hole on the Boundary

We set our initial position to be the origin, x = (0, 0) and we place the singu-
larity at x0 = (1, 0). Note that Rm(x0, x0) = 1

8π . We substitute for Rm(x0,x0)
and Gm(x, x0) with the starting point x at the centre of the disk and the sin-
gularity x0 at (1, 0) into (2.53) to obtain

v(x) =
|Ω|
πD

(
− log(εd) +

1
4

)
+ O(ν). (3.10)

where d is the logarithmic capacitance. For a length |∂Ω| = 2ε, d = 1
2 and

|Ω| = π we find that:
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Proposition 3.1: (One Hole in the Unit Disk) In the limit that ε → 0,
we find the two-term asymptotic behaviour of the MFPT from the centre of the
disk to be

E[τ | x(0) = (0, 0)] = v(x) =
1
D

(
log

1
ε

+ log 2 +
1
4

)
+ O(ν). (3.11)

Notice that with our initial position, x, at the origin, and an x0 located
anywhere on the boundary, we will always arrive at the same result, (3.11).
This is a consequence of the symmetry of the circle, and that all points on
the boundary are located an equal distance r = 1 from the origin. This is
comparable to the result derived by Singer et al., equation (1.2) of [23]

Next we find the MFPT with the initial position at the antipodal point to
the absorbing arc, x = (−1, 0):

Proposition 3.2: (One Hole in the Unit Disk) In the limit that ε → 0,
we find the two-term asymptotic behaviour of the MFPT from the antipodal point
to the absorbing arc to be

E[τ | x(0) = (−1, 0)] = v(x) =
1
D

(
log

1
ε

+ 2 log 2
)

+ O(ν). (3.12)

This result is also comparable to that derived by Singer et al. in equation
(1.4) of [23]. Lastly, we investigate the behaviour of moving the initial position
x from the antipodal point at x = (−1, 0) towards the singular point, at (1,0),
in fixed increments of 1

40 in the x direction. We set D = 1, d = 1
2 and ε = 10−5.

We expect that the mean free path time decreases as the initial position moves
towards the hole. The configuration and results are shown in Figure 3.1 below.
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(b) Plot of the MFPT, v(x), as a function of the x coordinate of the initial
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Figure 3.1: MFPT for the unit disk as the initial position moves from (−1, 0)
towards the absorbing arc at (1, 0) with D = 1, d = 1

2 and ε = 10−5. 45
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It is important to note that the initial position does not actually reach the
absorbing arc, at (1, 0), since our expression for the MFPT is not valid in the
inner region. The MFPT does indeed decrease as the initial position moves
towards the hole.

3.1.3 The Mean First Passage Time in a Unit Disk with

Two Holes on the Boundary

We will now make use of formula (2.103) to find the MFPT in a unit circle with
two holes on the boundary. As mentioned, in this case the placement of the
holes results in the matrix Υ in the system (2.85) being cyclic.

To illustrate the behaviour of the MFPT, we hold one absorbing arc fixed
at x0 = (1, 0) while we move another hole in fixed angular increments of θ = π

32

from a position an increment away from (1, 0), at position 1, to the antipodal
point at (−1, 0), at position 32. We keep the initial position fixed at the origin.
We set D = 1, d = 1

2 and ε = 10−5. The simplified expression for the MFPT
from the origin is

E[τ | x(0) = (0, 0)] =
1

2D

(
log

1
ε

+
3
8

+
1
2

log 2− 1
2

log(1− cos θ)
)

+ O(ν).

(3.13)
The configuration and the behaviour of the MFPT as a function of positions 1
to 32 are shown in Figure 3.2.
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Figure 3.2: MFPT from the centre of the unit disk with two holes on the
boundary with D = 1, d = 1

2 and ε = 10−5.
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We see that the MFPT decreases as the two holes on the boundary move
further apart. The MFPT reaches a minimum when the two holes are antipodal
to each other, which is what we would expect.

3.1.4 Equally spaced Points on a Unit Disk

We investigate one more case in the unit disk. By placing N absorbing arcs of
equal length at equally spaced points along the circumference of a unit circle,
we can find a closed form expression for the eigenvalue λ0 and the mean free
path time v(x). For a pattern of N identical holes located symmetrically on the
circumference of the unit disk, we have

xj = e2πij/N j = 1, ..., N, (3.14)

with N > 1 and i =
√−1. We start by simplifying

p(x1,x2, ..., xN ) =
N∑

k=1


Rm(xk,xk) +

N∑

j=1,j 6=k

Gm(xj , xk)


 . (3.15)

Recall that Gm(xj , xk) = − 1
π log |xj − xk|+ 1

8π as stated in (3.9). We first
state the following lemma [8]:

Lemma 3.3: Let N > 0 and n be integers, and i =
√−1. Then, for y > 0,

we have
N∏

j=1

(
x− ye2πi(j−n)/N

)
= xN − yN . (3.16)

Proof: The interested reader is directed to the proof in [8].
Now, we consider each term of Gm separately and along with the previous

Lemma we formulate the following Lemma:

Lemma 3.4: Let N > 1 be an integer and let xj for j = 1, 2, ..., N satisfy
(3.14). Then we have

N∑

j=1

(
|xj |2 + |xk|2

)
= 2N, (3.17)

N∑

j=1,j 6=k

log |xj − xk| = log N. (3.18)
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Proof: The first result, (3.17), is immediate. To prove the second result (3.18),
we start with

N∑

j=1,j 6=k

log |xj − xk| =
N∑

j=1,j 6=k

log
∣∣∣e2πij/N − e2πik/N

∣∣∣ ,

= log

∣∣∣∣∣∣

N∏

j=1,j 6=k

(
1− e2πi(j−k)/N

)
∣∣∣∣∣∣
. (3.19)

Now using Lemma 3.3 we find

log

∣∣∣∣∣∣

N∏

j=1,j 6=k

(
x− ye2πi(j−k)/N

)
∣∣∣∣∣∣
= log

∣∣∣∣
xN − yN

x− y

∣∣∣∣

= log
∣∣∣∣xN−1

[
1 +

(y

x

)
+ · · ·+

(y

x

)N−1
]∣∣∣∣ (3.20)

By using (3.20) with x = y = 1, and substituting this into (3.19), we obtain
(3.18).¥

Using the Lemma above along with the Green’s function (3.9) we can rewrite
p as

p =
N∑

k=1




N∑

j=1

(
1
4π

(
|xj |2 + |xk|2

)
− 3

8π

)
− 1

π

N∑

j=1,j 6=k

log |xj − xk|

 ,

=
N∑

k=1

[
2N

4π
− 3N

8π
− 1

π
log N

]
. (3.21)

Proposition 3.5: (Unit Disk) Let N > 1 be an integer, and let xj satisfy
(3.14). Then p = p(N), given by (2.93) reduces to

p(N) =
1
π

[
N2

8
−N log N

]
. (3.22)

We can use the simplification above in (2.94) for λ0 to give us:

Proposition 3.6: (Unit Disk) For ε → 0, the two-term asymptotic be-
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haviour of the principal eigenvalue, λ0, in a unit disk with N symmetrically
located holes on the boundary is

λ0(ε) =
πν

|Ω|
(

N − ν

(
N2

8
−N log N

))
+ O(ν3). (3.23)

From (2.101) we determine the mean first passage time by using (3.22) for
p. This leads to the following result:

Proposition 3.7: (Unit Disk) For ε → 0, the two-term asymptotic be-
haviour of the mean first passage time, v(x), in a unit disk with N symmetrically
located holes on the boundary is

v(x) =
|Ω|

πND

(
ν−1 +

N

8
− log N − π

N∑

k=1

Gm(x,xk)

)
+ O(ν). (3.24)

We now find an explicit expression for the mean escape time from the centre
of the disk with N absorbing arcs each with length 2ε, for which d = 1

2 :

Proposition 3.8: (Unit Disk) For ε → 0, the two-term asymptotic be-
haviour of the mean first passage time, v(x), in a unit disk with N symmetrically
located holes on the boundary, from the centre of the disk is

E[τ | x(0) = (0, 0)] = v(x) =
1

ND

(
log

1
ε

+ log 2 +
N

4
− log N

)
. (3.25)

Notice that for N = 1 we recover the result obtained for one hole in the unit
disk given in Proposition 2.3.

Lastly, we expect that as N gets larger, the MFPT tends to get smaller and
smaller. In fact as N → ∞, the MFPT given by (3.25), tends to 1

4D when
log 1

ε >> N . This is depicted in Figure 3.3 below for D = 1, d = 1
2 , ε = 10−5

and N = 100.
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Figure 3.3: MFPT, v(x), from the centre of the unit disk with N symmetrically
located holes on the boundary with D = 1, d = 1

2 and ε = 10−5.

3.2 The Unit Square

We have found an expression for the mean first passage time, given by (2.53), for
a general two-dimensional domain with one hole on the boundary. In addition,
we have found three formulas for the mean first passage time with N holes
on the boundary, namely (2.99), (2.101) and (2.103). We would now like to
investigate the behaviour of the MFPT in the unit square.

3.2.1 The Neumann Green’s Function in a Unit Square

To investigate the mean first passage time in the unit square we must first derive
the Neumann Green’s function for the unit square. We start with a derivation
of the Neumann Green’s function for a rectangle.

We will calculate the Neumann Green’s function in a rectangle, where Ω =
[0, L] × [0, d] with |Ω| = Ld. For the moment we place the singular point x0

within the domain Ω. We will eventually take the limit as x0 → ∂Ω so that we
can use the result to find the mean escape time. We understand x = (x, y) so
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that Gm(x, x0) = Gm(x, y, x0, y0), where x and y are the Cartesian coordinates
of x, and x0 and y0 are the Cartesian coordinates of x0. We need to solve
(3.1)-(3.3) for the Neumann Green’s function. That is, we need to solve

∆Gm(x,x0) =
1
|Ω| − δ(x− x0), x ∈ Ω,

∂xGm(0, y, x0) = ∂xGm(L, y, x0) = 0, (3.26)

∂yGm(x, 0,x0) = ∂yGm(x, d, x0) = 0.

We impose the following integral condition to ensure uniqueness of the Neu-
mann Green’s function, ∫

Ω

Gm(x, x0)dx = 0. (3.27)

3.2.2 Solution Method

We expand Gm in terms of a complete set of eigenfunctions, and we use a
separation of variables technique to solve the resulting eigenvalue problem. In
other words, we use a Fourier series representation.

We find that

Gm(x, x0) =
∞∑

n=0

∞∑
m=0

cm,n cos
(nπx

L

)
cos

(mπy

d

)
. (3.28)

To enforce the integral condition, we must set c0,0 = 0. That is, we set the
coefficient of the n = 0, m = 0 mode to zero. This ensures that the integral
condition is satisfied.

We then define

φ0,n = cos
(nπx

L

)
,

φm,0 = cos
(mπy

d

)
,

φm,n = cos
(nπx

L

)
cos

(mπx

d

)
. (3.29)

We decompose the n = 0, m = 0 modes as follows

Gm(x,x0) =
∞∑

n=1

c0,nφ0,n +
∞∑

m=1

cm,0φm,0 +
∞∑

n=1

∞∑
m=1

cm,nφm,n. (3.30)
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We find that

c0,n =
2L2

|Ω|
cos

(
nπx0

L

)

n2π2
,

cm,0 =
2d2

|Ω|
cos

(
mπy0

L

)

m2π2
,

cm,n =
4
|Ω|

cos
(

nπx0
L

)
n2π2

L2 + m2π2

d2

. (3.31)

We will make use of the following identities

∞∑

k=1

cos (kπx)
k2 + α2

=
π

2α

cosh (απ(1− x))
sinh(απ)

− 1
2α2

, 0 ≤ x ≤ 2, (3.32)

∞∑

k=1

cos (kπx)
k2

= π2

(
1
6
− x

2
+

x2

4

)
, 0 ≤ x ≤ 2. (3.33)

To simplify the first term in (3.30) we make use of the identity (3.33). We
find that the first term reduces to

H(x, x0)

=
L2

12 |Ω|

(
4− 6

(
x + x0

L

)
+ 3

(
x + x0

L

)2

− 6
( |x− x0|

L

)
+ 3

(
x− x0

L

)2
)

(3.34)

To simplify the third term in (3.31) we make use of identity (3.32). The
second term in (3.31) cancels with a term in this simplified expression. Making
all the necessary simplifications we find that (3.31) reduces to

Gm(x, x0) = H(x, x0) +

1
2π

∞∑
m=1


cosh

(
mLπ

d

(
1−

(
|x+x0|

L

)))
+ cosh

(
mLπ

d

(
1−

(
|x−x0|

L

)))

m sinh
(

mLπ
d

)

×

(
cos

(
mπ (y + y0)

d

)
+ cos

(
mπ (y − y0)

d

))
. (3.35)

We now make use of the following identity

cosh(a− b) + cosh(a− c)
sinh a

=
1

1− e−2a

(
e−b + e−c + eb−2a + ec−2a

)
, (3.36)
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with a = mLπ
d , b = mLπ

d
|x+x0|

L , c = mLπ
d

|x−x0|
L and q = e−

2Lπ
d .

We expand the second term in (3.35) into exponentials. We define the fol-
lowing complex constants:

r+,+ = − |x + x0|+ i(y + y0),

r+,− = − |x + x0|+ i(y − y0),

r−,+ = − |x− x0|+ i(y + y0),

r−,− = − |x− x0|+ i(y − y0),

ρ+,+ = |x + x0|+ i(y + y0)− 2L,

ρ+,− = |x + x0|+ i(y − y0)− 2L,

ρ−,+ = |x− x0|+ i(y + y0)− 2L,

ρ−,− = |x− x0|+ i(y − y0)− 2L. (3.37)

Then we introduce the new variables

z+,+ = er+,+π/d, z+,− = er+,−π/d,

z−,+ = er−,+π/d, z−,− = er−,−π/d,

ξ+,+ = eρ+,+π/d, ξ+,− = eρ+,−π/d,

ξ−,+ = eρ−,+π/d, ξ−,− = eρ−,−π/d. (3.38)

Using (3.37) and (3.38) in (3.35) and recalling that 1
1−qm =

∑∞
n=0 (qn)m, we

find that

Gm(x, x0) = H(x, x0) +
1
4π

∞∑
m=1

∞∑
n=0

(qn)m (
zm
+,+ + z̄m

+,+

)

+
1
4π

∞∑
m=1

∞∑
n=0

(qn)m (
zm
+,− + z̄m

+,− + zm
−,+ + z̄m

−,+ + zm
−,− + z̄m

−,−
)

+
1
4π

∞∑
m=1

∞∑
n=0

(qn)m (
ξm
+,+ + ξ̄m

+,+ + ξm
+,− + ξ̄m

+,−
)

+
1
4π

∞∑
m=1

∞∑
n=0

(qn)m (
ξm
−,+ + ξ̄m

−,+ + ξm
−,− + ξ̄m

−,−
)
. (3.39)

Furthermore, we recall that Re
[∑∞

m=1
wm

m

]
= − log |1− w|. Provided that

each of the z’s and ξ’s do not equal one, the double sum is absolutely convergent,
and we can change the order of summation in (3.39). We perform the summation
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over m to obtain

Gm(x, x0) = H(x, x0)

− 1
2π

∞∑
n=0

log |1− qnz+,+| |1− qnz+,−| |1− qnz−,+| |1− qnz−,−|

− 1
2π

∞∑
n=0

log |1− qnξ+,+| |1− qnξ+,−| |1− qnξ−,+| |1− qnξ−,−| .

(3.40)

At this point we must extract the regular and singular part of the Green’s
function as x → x0. We observe that r−,− = 0 as x → x0 causing the
log |1− z−,−| term to diverge when n = 0. We simplify as follows

log |1− z−,−| = log |r−,−|+ log
∣∣∣∣
1− z−,−

r−,−

∣∣∣∣ . (3.41)

Then we write the Green’s function as

Gm(x, x0) = − 1
2π

log |x− x0|+ Rm(x, x0), (3.42)

with

Rm(x, x0) = H(x, x0)− 1
2π

log
∣∣∣∣
1− z−,−

r−,−

∣∣∣∣−
1
2π

∞∑
n=1

log |1− qnz−,−|

− − 1
2π

∞∑
n=0

log |1− qnz+,+| |1− qnz+,−| |1− qnz−,+|

− 1
2π

∞∑
n=0

log |1− qnξ+,+| |1− qnξ+,−| |1− qnξ−,+| |1− qnξ−,−| . (3.43)

We have derived the Neumann Green’s function for a rectangle. We now
consider the specific case with L = d = 1, the unit square. Now we determine
expressions for a singular point on the boundary, x0 ∈ ∂Ω. Using the symmetry
of the square, we see that we need only find the Green’s function on one side
and on one corner. The method of extracting the regular and singular parts
is identical to that used above. We state the results here. For a unit square,
L = d = 1, with a singular point along the bottom side, that is y0 = 0 and
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x0 ∈ (0, 1) we find

Gm(x,x0) = − 1
2π

log |x− x0| − 1
2π

log
√
|x− x0|2 + |y + y0|2 + Rm(x,x0),

(3.44)
with

Rm(x, x0) = H(x, x0)− 1
2π

log
∣∣∣∣
1− z−,−

r−,−

∣∣∣∣−
1
2π

log
∣∣∣∣
1− z−,+

r−,+

∣∣∣∣

− 1
2π

∞∑
n=1

log |1− qnz−,−| |1− qnz−,+| − 1
2π

∞∑
n=0

log |1− qnz+,−| |1− qnz+,+|

− 1
2π

∞∑
n=0

log |1− qnξ+,+| |1− qnξ+,−| |1− qnξ−,+| |1− qnξ−,−| . (3.45)

As x → x0 we find

Gm = − 1
π

log |x− x0|+ Rm(x0, x0), (3.46)

with

Rm(x0,x0) = H(x0, x0)− 1
π

log π − 1
π

∞∑
n=1

log |1− qn|

− 1
2π

∞∑
n=0

log
∣∣1− qnz0

+,+

∣∣ ∣∣1− qnz0
+,−

∣∣

− 1
2π

∞∑
n=0

log
∣∣1− qnξ0

+,+

∣∣ ∣∣1− qnξ0
+,−

∣∣ ∣∣1− qnξ0
−,+

∣∣ ∣∣1− qnξ0
−,−

∣∣ ,

(3.47)

where z and ξ are defined as in (3.38) with

r0
+,+ = −2x0, r0

+,− = −2x0,

r0
−,+ = 0, r0

−,− = 0,

ρ0
+,+ = 2x0 − 2, ρ0

+,− = 2x0 − 2,

ρ0
−,+ = −2, ρ0

−,− = −2. (3.48)

Notice that the singularity is now twice what it was with the singular point
within the unit square.

For a unit square, L = d = 1, with a singular point at the left end corner,

56



Chapter 3. Numerical Realizations: The Neumann Green’s Function

that is x0 = 0 and y0 = 0 we find

Gm(x,0) = − 1
2π

log |x− x0| − 1
2π

log
√
|x + x0|2 + |y + y0|2

− 1
2π

log
√
|x + x0|2 + |y − y0|2 − 1

2π
log

√
|x− x0|2 + |y + y0|2 + R(x, x0),

= − 2
π

log |x|+ Rm(x,0), (3.49)

with

Rm(x,0) = H(x, 0)− 1
2π

log
∣∣∣∣
1− z+,+

r+,+

∣∣∣∣
∣∣∣∣
1− z+,−

r+,−

∣∣∣∣
∣∣∣∣
1− z−,+

r−,+

∣∣∣∣
∣∣∣∣
1− z−,−

r−,−

∣∣∣∣

− 1
2π

∞∑
n=1

log |1− qnz+,+| |1− qnz+,−| |1− qnz−,+| |1− qnz−,−|

− 1
2π

∞∑
n=0

log |1− qnξ+,+| |1− qnξ+,−| |1− qnξ−,+| |1− qnξ−,−| . (3.50)

As x → 0 we find

Gm(0,0) → − 2
π

log |x|+ Rm(0,0), (3.51)

with

Rm(0,0) = H(0, 0)− 2
π

log π − 4
π

∞∑
n=1

log |1− qn| , (3.52)

with H(0, 0) = 1
3 . Notice that the log |x− x0| term in (3.51) is multiplied by

2
π . This means that singularity at a corner is four times larger than a singular
point in the interior.

Now that we have expressions for the Neumann Green’s function in a unit
square, we can proceed to the calculation of the MFPT using (2.17).

3.2.3 The Mean First Passage Time in a Unit Square

with One Hole on the Boundary

We can use (2.53) for the MFPT for one hole along with the expressions for the
Green’s function for a unit square given above. Since all of the expressions for
the Green’s function involve an infinite series, it is more instructive to plot the
results until a certain tolerance is reached. That is, until the terms in the series
are negligible in comparison to some specified tolerance. We use a tolerance
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10−12. D = 1 and d = 1
2 in all cases investigated.

Firstly, we consider one hole in the unit square located at the position (1, 0.5).
The initial position starts at (0, 0.5) and moves closer to the hole in fixed incre-
ments of 1

80 . The initial position does not reach the hole. We investigate the
behaviour of the MFPT in this case with D = 1, d = 1

2 and ε = 10−5. The
configuration and the MFPT are shown in Figure 3.4.
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(a) Plot of the initial position (blue), as it moves from the antipodal point at
(0,0.5) towards the singular point (red) at (1,0.5)
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(b) Plot of the MFPT, v(x), versus the x-coordinate of the initial position

Figure 3.4: MFPT for the unit square as the initial position moves from (0, 0.5)
towards the exit window at (1, 0.5) with D = 1, d = 1

2 and ε = 10−5.
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We see that the MFPT decreases as the initial position moves towards the
exit window.

Now we consider the case where we hold the initial position fixed at the
centre of the unit square, at x = (0.5, 0.5). We place the exit window a small
increment, 1

80 , away from the corner at (1, 0). We then move the exit window
in increments of 1

80 from (1, 0.0125) to (1, 0.9875) and calculate the MFPT with
D = 1, d = 1

2 and ε = 10−5. The configuration is shown below in Figure
3.5 along with the MFPT plotted against the y-coordinate of the moving exit
window.
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(b) Plot of the MFPT, v(x), versus the y-coordinate of the exit window

Figure 3.5: MFPT from the centre of the unit square as the exit window moves
from (1, 0.0125) to (1, 0.9875) with D = 1, d = 1

2 and ε = 10−5.
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We observe symmetric behaviour in the MFPT, with a minimum where the
distance from the exit window to the initial position is shortest. Our results are
consistent with what we would expect.

3.2.4 The Mean First Passage Time in a Unit Square

with Two Holes on the Boundary

Now we consider two holes in a unit square. We fix the initial position at the
centre of the unit square at x = (0.5, 0.5). One exit window is fixed at (0, 0.5)
while the other moves from (0, 0.48) towards the corner at (0, 0). Then it moves
from (0, 0) to (1, 0) and finally from (1, 0) to (1, 0.5). We plot the behaviour of
the MFPT as a function of the moving coordinate of the moving exit window on
each side, excluding the corner point. We then plot the total behaviour, as the
exit window moves from (0, 0.48) to (1, 0.5), including the corner points, with
the points numbered from 1 to 100. We set D = 1, d = 1

2 and ε = 10−5. The
results are plotted shown in Figures 3.6 and 3.7 below.
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(a) Plot of the MFPT as a function of the y-coordinate of the moving exit
window along side 1, from (0,0.48) to (0,0.02)
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(b) Plot of the MFPT as a function of the x-coordinate of the moving exit
window along side 2, from (0.02,0) to (0.98,0)

Figure 3.6: MFPT from the centre of a unit square with two exit windows, one
fixed at (0,0.5) and the other moving from (0,0.48) to (1,0.5), sides 1 and 2 with
D = 1, d = 1

2 and ε = 10−5.
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(a) Plot of the MFPT as a function of the y-coordinate of the moving exit
window along side 3, from (1,0.02) to (1,0.5)
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(b) Plot of the MFPT as a function of the moving exit window from (0,048) to
(1,0.5), including the corner points. The position of the moving exit window
is labelled from 1-100

Figure 3.7: MFPT from the centre of a unit square with two exit windows, one
fixed at (0,0.5) and the other moving from (0,0.48) to (1,0.5), side 3 and all
sides with D = 1, d = 1

2 and ε = 10−5.
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Notice that the local minima in Figures 3.6 (a) and (b) are not where the
distance of the moving exit window from the initial position is a minimum. This
is consequence of the fact that there are two holes, and there is an interaction
between the two holes, as well as with the initial position. We see that the
minimum is shifted to the right slightly. In Figure 3.7 (a), we do find a minimum
for the MFPT in the expected position. This is a result of the symmetry of the
placement of the two holes. In fact, if we continue to move the second exit
window from (1, 0.02) to (1, 0.98), the plot of the MFPT is symmetric in this
case.

Also notice the discontinuities in Figure 3.7 (b) at the corner points. This
is expected, since the boundary is non-smooth at these points. We remark that
our formula for the MFPT is not valid when the arc is at the corner of the
square. The local geometry at the corner of a square is different. Therefore, we
need a different form for the outer solution.

If we look at the expression for the Neumann Green’s function at the corner,
given by (3.49), (3.50), (3.51), (3.52), we see that the singularity is twice as large
at the corner than a singularity on the smooth portion of the boundary. This
agrees with the result for a rectangle obtained by Singer et al. in [24]. Here,
Singer et al. state that the leading order term for the MFPT is twice as large as
the case with the singular on the smooth portion of the boundary. We proceed
to derive an expression for the MFPT from the centre of the unit square with a
single arc at the corner, x0 = (0, 0).

We alter the method outlined in Chapter 2, Section 2.2. The outer solution
for the principal eigenfunction, u∗, is written in terms of the Helmholtz Green’s
function given by (2.31) and (2.32). We alter (2.32) so that

G(x, x0, λ
∗) = − 2

π
log |x− x0|+ R(x, x0, λ

∗). (3.53)

Thus, u∗ = −πAν
2 G(x, x0, λ

∗). Matching to the inner solution, we find that
R(x0,x0, λ

∗) = − 2
πν . We expand G(x,x0, λ

∗) as in (2.37). We find that Gm

satisfies (2.43) with Gm(x, x0) = − 2
π log |x− x0| + Rm(x,x0). We find the

principal eigenvalue and eigenfunction to be

λ0(ν) =
πν

2 |Ω| −
π2ν2

4 |Ω|Rm(x0, x0) + O(ν3)

φ0(x, ν) = |Ω|− 1
2 − πν |Ω|− 1

2

2
Gm(x, x0) + O(ν3). (3.54)
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We calculate the MFPT to be

v(x) =
2 |Ω|
πD

(
− log(εd) +

π

2
(Rm(x0,x0)−Gm(x, x0))

)
+ O(ν), (3.55)

with the average MFPT given by

v̄ =
2 |Ω|
πD

(
− log(εd) +

π

2
Rm(x0,x0)

)
+ O(ν). (3.56)

Now, for the corner point x0 = (0, 0), Rm(0,0) is given by (3.52) with
H(0, 0) = 1

3 and Gm(x,0) is given by (3.49) and (3.50). Finally, the constant
d in (3.55) is determined from the far-field behaviour of the inner problem. In
particular, d depends on the manner in which the absorbing arc of length 2ε
is placed at the corner. If the arc is placed along one side so that v = 0 on
0 < x < 2ε with y = 0, then d = 1. If the arc is placed along two sides such
that v = 0 on y = 0 with 0 < x < ε and on x = 0 with 0 < y < ε, then d = 1

4 .
Taking an arc of length ε placed along one side such that v = 0 on y = 0

with 0 < x < ε, we find that d = 1
2 . Approximating Rm(0,0) by the first term

in (3.56) we find that

v̄ ∼ 2 |Ω|
Dπ

(
log

1
ε

+ log
2
π

+
π

6
+ 2e−2π

)
. (3.57)

This agrees with equation (2.8) of [24], which was found by solving certain
integral equations asymptotically.

3.3 Arbitrary Domains - A Numerical

Approach

As we have seen, to investigate the MFPT in a particular domain we must find
the Neumann Green’s function and its regular part. We have succeeded in doing
this for a unit circle and square. However, other geometries are more challenging
as an analytical solution for the Green’s function is unattainable in most cases.
In this section we introduce a numerical procedure to calculate the Neumann
Green’s function and its regular part in an arbitrary domain.
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3.3.1 The Boundary Element Method

We introduce the boundary element method, the method we will use to cal-
culate the Neumann Green’s function in an arbitrary domain. We alter the
statement of the problem for the Neumann Green’s function slightly, by putting
the singularity directly on the boundary as

∆Gm(x, x0) =
1
|Ω| , x ∈ Ω, (3.58)

∂nGm(x, x0) = δ(s− s0), x ∈ ∂Ω, (3.59)∫

Ω

Gm(x, x0)dx = 0. (3.60)

where s is an arclength parameter and the normal derivative is taken with
respect to the unit outward normal. As mentioned, the condition that the
integral of the Green’s function over the domain is zero ensures that the solution
to the problem is unique.

We decompose Gm(x, x0) as

Gm(x, x0) = − 1
π

log |x− x0|+R(x,x0) +
1

4 |Ω|
(
|x|2 + |x0|2

)
(3.61)

We will define w as

w(x,x0) =
1

4 |Ω|
(
|x|2 + |x0|2

)
. (3.62)

The Neumann Green’s function is given by Gm(x, x0) = − 1
π log |x− x0| +

Rm(x,x0). Notice that the regular part of the Neumann Green’s function in
(3.61) is given by

Rm(x, x0) = R(x,x0) +
1

4 |Ω|
(
|x|2 + |x0|2

)
. (3.63)

We solve for R(x, x0) numerically.
Substituting (3.61) into (3.58)-(3.60) we find that R(x,x0) must satisfy

∆R(x,x0) = 0, x ∈ Ω,

∂nR = −∂nw, x ∈ ∂Ω,∫

Ω

Rdx = −
∫

Ω

(
1
π

log |x− x0| − w

)
dx. (3.64)
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Note that ∆w = 1
|Ω| .

We now apply Green’s identity given by

(u1, ∆u2)− (u2,∆u1) =
∫

∂Ω

u1∂nu2dS −
∫

∂Ω

u2∂nu1dS. (3.65)

We let u1 = R(x,x0) and u2 = g(x0, ξ), where g(x, ξ) is the free-space
Green’s function satisfying

∆g(x, ξ) = −δ(x− ξ), x ∈ Ω,

which is given by

g(x, ξ) = − 1
2π

log |x− ξ| . (3.66)

Substituting u1 and u2 into (3.65) we find that the integral equation for R at
x ∈ Ω is

R(x, ξ) = −
∫

∂Ω

R(x,η)∂ng(η, ξ)dS(η)−
∫

∂Ω

g(x,η)∂nw(η, ξ)dS(η). (3.67)

Now we discretize the boundary ∂Ω into n arcs ∂Ω1, ∂Ω2, ..., ∂Ωn. We can
then use the midpoint rule to approximate the integrals in (3.67). For example,
we can approximate R(x,η) by R(x, ξi) where ξi is the midpoint of each arc
∂Ωi. We let Rj = R(x, ξj), using this we find

Rj = −Σn
i=1 (aijRi + bij) , (3.68)

where aij =
∫

∂Ωi
∂ng(η, ξj)dS(η), bij =

∫
∂Ωi

g(x, η)∂nw(η, ξj)dS(η) and Ri =
R(x, ξi).

Now we compute aij and bij by the midpoint rule to find

aij = li∂ng(ξi, ξj), bij = g(x, ξi)li∂nw(ξi, ξj), (3.69)

where li is the length of the arc ∂Ωi. Using this we find that we can represent
R by

R(x, ξj) +
n∑

i=1

liR(x, ξi)∂ng(ξi, ξj) = −
n∑

i=1

lig(x, ξi)∂nw(ξi, ξj). (3.70)

Firstly, we calculate ∂nw(ξi, ξj) in (3.70). We denote the x and y component
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of ξi as ξix and ξiy respectively. We obtain that

∇w(ξi, ξj) =
1

2 |Ω| (ξix, ξiy),

∂nw(ξi, ξj) =
1

2 |Ω| (ξix, ξiy).n̂. (3.71)

Hence ∂nw is independent of its second argument ξj . Now we calculate ∂ng(ξi, ξj),

∇g(ξi, ξj) · n̂ = − 1
2π

ξi − ξj∣∣ξi − ξj

∣∣2 · n̂. (3.72)

When calculating ∂ng(ξi, ξj), the case i = j requires special care because
of the singularity of the Green’s function. We must calculate the first integral
in (3.67) differently. We introduce a local coordinate system. We let 1

κi
be

the radius of curvature of ∂Ωi at ξi where κi is the curvature. Since we have
assumed each arc ∂Ωi to be very small, we may assume that ∂Ωi is parametrized
for t << 1 as

η(t) =
1
κi

(cos t, sin t), − li
2κi

≤ t ≤ li
2κi

, (3.73)

with ξi =
(

1
κi

, 0
)
. We compute ∂ng(η, ξ) = ∇g.n̂ where n̂ = (cos t, sin t) is the

unit outward normal in the local coordinate system. We find

∇g = − 1
2π

η − ξi

|η − ξi|2
,

η − ξi =
(

1
κi

cos t− 1
κi

,
1
κi

sin t

)
,

n̂.(η − ξi) =
1
κi

(1− cos t),

|η − ξi|2 =
2
κ2

i

(1− cos t). (3.74)

Therefore

∂ng(η, ξi) = − 1
2π

1
κi

(1− cos t)

2 1
κ2

i
(1− cos t)

= − κi

4π
. (3.75)

Thus
aii = − liκi

4π
. (3.76)

We do not encounter any problems when i = j for bij .
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We can represent (3.70) as a matrix system AR = −B as follows:

R =
(
R(x, ξ1) R(x, ξ2) · · · · · · R(x, ξn)

)T

, (3.77)

A =




(
1− l1

4πr1

)
l2∂ng(ξ2, ξ1) l3∂ng(ξ3, ξ1) · · · ln∂ng(ξn, ξ1)

l1∂ng(ξ1, ξ2)
(
1− l2

4πr2

)
l3∂ng(ξ3, ξ2) · · · ln∂ng(ξn, ξ2)

l1∂ng(ξ1, ξ3) l2∂ng(ξ2, ξ3)
(
1− l3

4πr3

)
· · · ln∂ng(ξn, ξ3)

...
...

...
. . .

...

l1∂ng(ξ1, ξn) l2∂ng(ξ2, ξn)) · · · · · ·
(
1− ln

4πrn

)




,

B =


l1g(x, ξ1)∂nw(ξ1, ξ1) + l2g(x, ξ2)∂nw(ξ2, ξ1) + · · ·+ lng(x, ξn)∂nw(ξn, ξ1)
l1g(x, ξ1)∂nw(ξ1, ξ2) + l2g(x, ξ2)∂nw(ξ2, ξ2) + · · ·+ lng(x, ξn)∂nw(ξn, ξ2)
l1g(x, ξ1)∂nw(ξ1, ξ3) + l2g(x, ξ2)∂nw(ξ2, ξ3) + · · ·+ lng(x, ξn)∂nw(ξn, ξ3)

...
l1g(x, ξ1)∂nw(ξ1, ξn) + l2g(x, ξ2)∂nw(ξ2, ξn) + · · ·+ lng(x, ξn)∂nw(ξn, ξn)




,

We solve for R using Gaussian elimination.
Our goal is to calculate the MFPT. To this end, we must determineR(x0, x0).

Using this formulation, this means that we must find R(ξj , ξj). Thus, we pick
x = ξj for some j = 1, 2, ..., N in (3.70). This introduces another case where
the possibility of i = j arises. We have to recalculate

∫
∂Ω

g(ξ,η)∂nw(η, ξ)dS(η)
in (3.67). We use the same local coordinate system as outlined above. Thus,
we have g(ξ, η) = − 1

2π log |x− ξ| = − 1
4π log

(
2
κ2

i
(1− cos t)

)
and ∂nw(η, ξ) =

1
2|Ω|κi

. Once again, 1
κi

is the radius of curvature in the local coordinate system
in segment i. The integral becomes

− 1
8π |Ω|κ2

i

∫ liκi/2

−liκi/2

log
(

2
κ2

i

(1− cos t)
)

dt. (3.78)

Notice that when t = 0 we have a singularity, so we can use gaussian quadrature
to get around this by using an even number of sample points. However, for
certain domains we remove the singularity by rewriting the integral, as will be
discussed in later sections.
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Notice that we have not imposed the integral condition. We must still deter-
mine the constant C so that (3.64) is satisfied. To do this, we must integrate our
numerical result for R over the domain Ω, which proves to be a computationally
intensive process. We now illustrate the use of the method for a circle and an
ellipse.

3.3.2 The Unit Disk

We make use of the boundary element method described in the previous section
to determine the Neumann Green’s function for a unit disk. This allows us to
compare our numerical method to the analytical result given by (3.9).

According to the formulation above, we let

Gm(x, x0) = − 1
π

log |x− x0|+ 1
4 |Ω|

(
|x|2 + |x0|2 |

)
+R(x, x0) + C (3.79)

Thus, the unknown is R(x,x0) and C is to be determined from the integral
condition once R has been found. If we compare the expression above (3.79)
with (3.9), we see that we already have the expression for the unit circle. Our
solution forR in this case should be zero for all x. In this section we confirm that
the boundary element formulation does in fact give us this result. We illustrate
the results in terms of N , the number of segments used for the calculation. We
aim to attain zero to six decimal places. Note that since we are essentially
looking for a constant, each entry of the vector R, (3.77), will be the same.

We begin with the calculation of R(x,x0) for x ∈ Ω. We notice, by consid-
ering Table 3.1 below, that as x moves towards the boundary of the unit disk,
we require more segments to attain the desired accuracy.

N 40 80 100
x = (0, 0) −0.3534× 10−17 −0.6184× 10−17 −0.5624× 10−17

x = (0.5, 0) 0.7237× 10−14 0.1084× 10−16 0.2602× 10−16

x = (0.75, 0) 0.8003× 10−7 0.4024× 10−12 0.1016× 10−14

x = (0.99, 0) 0.0041 0.0015 0.9928× 10−3

Table 3.1: R(x,x0) for the unit disk with N mesh points on the boundary

Table 3.1 shows the value of R(x, x0) for each x shown above, and for all N
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x0’s on the boundary. The x0’s on the boundary are the ξi’s in the boundary
element formulation. There is only one value shown for the vector R since each
entry of the vector is the same, since we are looking for a constant.

It is clear that as x moves towards the boundary more mesh points are re-
quired to attain the desired result of zero to six decimal places, whereas with x at
the centre of the disk we attain convergence immediately. This is a consequence
of the fact that as x tends towards the boundary, the self effect starts to play an
important role. For N = 800, with x = (0.99, 0) we obtain R = 0.1282× 10−6.

To calculate R(x0,x0) we need to recalculate the second integral in equation
(3.67) as outlined in the previous section. We use integral (3.78) instead. We
calculate the integral (3.78) using a four point Gaussian quadrature rule. We
do not rewrite the integral to remove the singularity in this case. As long as
we do not use an odd number of sample points in the Gaussian quadrature
procedure, we are able to avoid singular contributions to the integral. We also
anticipate that we will require many mesh points to attain the desired accuracy.
Additionally, as a result of the formulation of the boundary element method, we
are able to check the symmetry of R in this case. In other words, for x = ξ1 we
require R(ξ1, ξj) = R(ξj , ξ1) for each j. The symmetry of the problem ensures
that R(xj , xj) are identical for each j. We tabulate the results in Table 3.2
below

N 50 100 200 400 800
R(x0, x0) 0.0025 0.0012 0.6193× 10−3 0.3097× 10−3 0.1548× 10−3

Table 3.2: R(x0, x0) for the unit disk with N mesh points on the boundary

We see that as we double N , the value of R divides by 2. Thus, we can
conclude that R(x0, x0) is tending to zero. We are left to calculate the integral
over Gm, equation (3.79). It is simple to calculate the integral over the domain
of each term in equation (3.79) with the exception of the integral over R. We
use the composite trapezoidal rule to numerically compute the integral over
R and log |x− x0|. As shown in (3.8), the integral of Gm over the domain
is independent of x0. We calculate the desired integrals for several x0’s. We
expect each integral to return the same value. This is another way to check that
the numerical method is working correctly. We describe the integration method
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over R. We need to calculate

∫ 2π

0

∫ 1

0

R(x, x0)rdrdθ (3.80)

We first split the integral over θ using the composite trapezoidal rule with n

intervals. There will be n remaining integrals over r. We evaluate the remaining
n integrals using the midpoint rule. We run our boundary element method for
the values of x that are required to compute the integral. The integration over
log |x− x0| is similar. Notice that we compute the integrals over r using the
midpoint rule to avoid any singularities.

We find that the integral over log |x− x0| is zero for all x0 and we find the
integral over R to be zero for all x0.

We are now ready to calculate the constant C. Since the integral over
R and log |x− x0| are zero, we are left to calculate the integral over w =

1
4|Ω|

(
|x|2 + |x0|2

)
. For any x0 on the boundary, |x0| = 1. We find C = − 3

8π ,
which agrees with what we find analytically.

We have confirmed that the boundary element method does in fact give us
the desired results for a unit circle.

3.3.3 The Ellipse

We are now ready to use the boundary element method to determine the regular
part of the Neumann Green’s function for an ellipse. We state the properties
that will be required for the boundary element method. For a curve defined in
polar coordinates, we have r = r(θ), x = r cos(θ), y = r sin(θ). For an ellipse

r =
ab√

a2 sin2(θ) + b2 cos2(θ)
, (3.81)

r′ = − ab sin(θ) cos(θ)(a2 − b2)
a2 sin2(θ) + b2 cos2(θ)(3/2)

, (3.82)

r′′ = −ab(a2 − b2)×(
cos2(θ)− sin2(θ)

(a2 sin2(θ) + b2 cos2(θ))3/2
− 3(a2 − b2) sin2(θ) cos2(θ)

(a2 sin2(θ) + b2 cos2(θ))5/2

)
,

(3.83)

where a is the semi-major axis and b is the semi-minor axis.
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The outward normal vector, the arclength and curvature are given by

n̂ =
1√

r′2 + r2
(r cos(θ) + r′ sin(θ), r sin(θ)− r′ cos(θ)) , (3.84)

s =
∫ θ2

θ1

√
r′2 + r2dθ, (3.85)

κ =
r2 + 2r′2 − rr′′

(r′2 + r2)3/2
. (3.86)

To determine the length of a segment li we will need to calculate the integral
(3.85) for the arclength. We compute this numerically using the trapezoidal
rule.

The algorithm outlined for the boundary element method holds for a general
domain. We consider an ellipse with a = 2 and b = 1. Once again, we begin
with the calculation for R(x,x0) for x ∈ Ω. We use more mesh points as x

moves towards the boundary of the ellipse. The results are tabulated below in
Table 3.3.

N 80 160 320 640
x = (0, 0) 0.1290 0.1291 0.1291 0.1291
x = (1, 0) 0.1291 0.1291 0.1291 0.1291

x = (1.75, 0) 0.1291 0.1291 0.1291 0.1291
x = (1.99, 0) 0.1331 0.1305 0.1294 0.1291
x = (0, 0.5) 0.1290 0.1291 0.1291 0.1291
x = (0, 0.99) 0.1298 0.1292 0.1291 0.1291
x = (1, 0.5) 0.1291 0.1291 0.1291 0.1291

Table 3.3: R(x,x0) for the ellipse with N mesh points on the boundary

Table 3.3 shows the value of R(x,x0) for each x within the ellipse, and for
all x0 on the boundary. We find that each entry of the vector R is identical,
regardless of where we place x or x0. This implies that R is a constant, R =
0.1291. The behaviour of the Green’s function for the ellipse is thus contained
within log |x− x0| and w(x,x0). We have found that

Gm(x,x0) = − 1
π

log |x− x0|+ 1
4 |Ω|

(
|x|2 + |x0|2

)
+ 0.1291 (3.87)

Notice that we have not imposed
∫
Ω

G(x, x0)dx = 0, and thus the expression for
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the Neumann Green’s function, (3.87), for the ellipse is unique up to a constant,
C. Below, in Figure 3.8 we show the behaviour of the Neumann Green’s function
for the ellipse, Gm − C.
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Figure 3.8: Plot of the Neumann Green’s function for the ellipse, Gm−C, versus
θ0

In Figure 3.8 we have x at the origin and x0 at points along the boundary in
increments of π

100 . We observe the symmetric behaviour of the Green’s function
for the ellipse, which is consistent with our expectations.

We proceed to the calculation of R(x0,x0). We compute the integral (3.78)
as follows

∫ liκi/2

−liκi/2

log
(

2
κ2

i

(1− cos t)
)

dt = liκi log
(

2
κ2

i

)
+

∫ liκi/2

−liκi/2

log(1− cos t)dt.

(3.88)
We rewrite the last integral in (3.88) as

=
∫ liκi/2

−liκi/2

log(1− cos t)− log(t2/2)dt +
∫ liκi/2

−liκi/2

log(t2/2)dt, (3.89)

=
∫ liκi/2

−liκi/2

log(2(1− cos t)/t2)dt + 2liκi log liκi − 2liκi − 3liκi log 2.
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We compute the remaining integral using Gaussian quadrature, with an even
number of sample points. Initially we use weight one with sample points ± 1√

3
,

two point Gaussian quadrature. Notice that since we have observed that R is
a constant, R(x0,x0) should be the same for each x0. We encounter extremely
slow convergence of the numerical method in this case. We require many mesh
points in order for the method to converge to an answer that we expect, that
is, all the entries of the vector R(x0, x0) should be identical and each vector
R should be the same regardless of x0. In Table 3.4 below, we tabulate the
maximum difference between the entries in any vector R(x0,x0).

N 150 300 600 1200 2400
min 0.1136 0.1202 0.1240 0.1263 0.1275
max 0.1429 0.1371 0.1336 0.1316 0.1305

|max−min| 0.0293 0.0169 0.0096 0.0054 0.0030
R(x0, x0) 0.1209 0.1244 0.1264 0.1276 0.1282

Table 3.4: R(x0, x0) for the ellipse with N mesh points on the boundary

The last row in Table 3.4 shows the average value of R(x0,x0). We find
that the vector R satisfies the expected properties when the mesh points are
clustered very closely together, at θ = π/2, 3π/2. At θ = 0, π the points are
far apart along the boundary due to the curvature of the ellipse. It is here that
we obtain the largest discrepancy between values of R. We have been unable
to get the method to converge for N = 2400. We propose altering the manner
in which we have computed the integrals for the boundary element method by
using Gaussian quadrature instead of the midpoint rule to compute the integrals
in (3.67). In addition, we did attempt to use four point Gaussian quadrature
to compute the last integral in (3.90). However, there was no improvement in
the convergence. In fact, we obtained exactly the same results as we did with
two point Gaussian quadrature. The reason for this is that the integrand is not
sufficiently differentiable in order for four point Gaussian quadrature to make
a difference. We expect that R(x0, x0) = 0.1291. We see, by considering the
average values of R, that R is tending towards this value.

We are left to calculate the integral over Gm, (3.87), to determine the
constant C. We use the same procedure as we used for the unit circle. We
find the same value for the integral over R regardless of the x0 we choose.
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This agrees with the fact that integral over Gm should be independent of x0.
We find that

∫
Ω
R(x,x0)rdrdθ = 0.8108. We know that since R is a con-

stant, that
∫
Ω
R(x,x0)dx = 2π × 0.1291 = 0.8112. Our numerical answer

is correct up to three decimal places. It is simple to calculate the integral∫
Ω

1
4|Ω|

(
|x|2 + |x0|2

)
dx = 1

4|Ω|
(
7.85398 + 2π |x0|2

)
. However, the integral

over − 1
π log |x− x0| is not simple to calculate as a consequence of the singular-

ity when x = x0. We are only able to estimate this integral up to one decimal
place accurately. As a result, we find that C = − 1

2π (0.8108 + 0.1) = −0.1450
We can now find the MFPT for the ellipse. We know the Neumann Green’s

function for the ellipse, (3.87). In addition, we can assume that R(x0,x0) =
0.1291. To calculate the MFPT for the ellipse with one hole on the boundary we
use (2.53). It is worth noting that the constant, C, does not play a role directly
in this equation since the constant term from Rm(x0, x0) and Gm(x,x0) cancel
each other. However, it is assumed that we are able to find the constant C such
that

∫
Ω

Gm(x,x0)dx = 0 since it is an implementation of the normalization
condition. It is only in the case of normalized eigenfunctions that (2.53) holds.

We place the initial position at the origin. We place one hole on the bound-
ary, initially at an angle π

100 , which moves from this position at equal angular
increments of π

50 until it reaches − π
100 . We set D = 1, d = 1

2 and ε = 10−5. The
MFPT from the centre of an ellipse with semi-major axis 2 and semi-minor axis
1 is depicted in Figure 3.9.
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Figure 3.9: Plot of the MFPT, v(x), from the centre of the ellipse versus θ0

with D = 1, d = 1
2 and ε = 10−5

We observe the expected symmetric behaviour in the MFPT. The MFPT is
a minimum at θ = π/2, where the distance from the centre is a minimum. We
see a maximum in the MFPT at θ = 0, π, where the distance from the centre is
a maximum.

Now, we move the initial position from the origin to x = (1, 0). The MFPT
in this case is depicted in Figure 3.10.
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Figure 3.10: Plot of the MFPT, v(x), from x = (1, 0) for the ellipse versus θ0

with D = 1, d = 1
2 and ε = 10−5

Since the initial position is shifted in this case, we find that the MFPT has
a minimum at θ = ±19π/100 and a maximum at θ = π, where the hole is the
furthest from the initial position.

3.4 Perturbed Circular Domains - Analytical

Approach

We now derive expressions for the regular part for the Neumann Green’s function
in a perturbed circular domain. This work was completed by T. Kolokolnikov,
[7]. We present an overview of his work.

3.4.1 Derivation

We want to solve system (2.43) for the Neumann Green’s function, with the
exception of the integral condition. That is, we solve for the Green’s function
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up to an arbitrary constant. We have the general expression

Gm(x, x0) = − 1
π

log |x− x0|+ R(x, x0), x0 ∈ ∂Ω. (3.90)

We want to determine Rm(x, x0) and Rm(x, x0) in the limit as x → x0 for do-
mains that are near the unit disk. We parametrize the boundary of the domain,
Ω, in polar coordinates. We propose the following theorem:

Theorem 3.9: Suppose that the domain Ω is defined in polar coordinates
by

r = r(θ) = 1 + εσ(θ), ε ¿ 1. (3.91)

Suppose that σ(θ) is given by

σ(θ) =
∞∑

n=1

(an cosnθ + bn sin nθ) . (3.92)

Let x0 = (r0 cos θ0, r0 sin θ0) be a point on the boundary where r0 = 1 + εσ(θ0).
We define

ρ(θ) = Rm(x, x0) and ρ(θ0) = Rm(x0, x0). (3.93)

We have the following expression for ρ′(θ0)

ρ′(θ0) =
ε

π

∑

n≥1

(
n2 + n− 2

)
(bn cos nθ0 − an sin nθ0) (3.94)

Proof: We find that Rm(x,x0) satisfies

∆Rm(x,x0) =
1
|Ω| , x ∈ Ω, (3.95)

∇Rm(x, x0) · n̂ =
1
π

(x− x0) · n̂(x)
|x− x0|2

, x ∈ ∂Ω, (3.96)

where the unit outward normal n̂ is defined by (3.84). We compute the expres-
sion on the right-hand side of (3.96) for ε << 1 as

1
π

(x− x0) · n̂(x)
|x− x0|2

=
1
2π

(
1 + ε

[
σ cos(θ − θ0)− σ0 − σ′ sin(θ − θ0)

1− cos(θ − θ0)

])
+ O(ε2).

(3.97)
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The expression in square brackets is bounded for θ → θ0. Thus the expression
is uniformly valid for all θ ∈ [0, 2π). We define f(θ) as

f(θ) =
σ cos(θ − θ0)− σ0 − σ′ sin(θ − θ0)

1− cos(θ − θ0)
. (3.98)

Then we express f(θ) in terms of a Fourier series as

f(θ) =
∞∑

n=1

(An cosn(θ − θ0) + Bn sin n(θ − θ0)) , (3.99)

where An and Bn are given by

An =
1
π

∫ 2π

0

f(θ) cos m(θ − θ0)dθ, Bn =
1
π

∫ 2π

0

f(θ) sin m(θ − θ0)dθ.

(3.100)
We denote I1 and I2 by I1 = πAn and I2 = πBn.

Firstly, we consider the case where σ = cos nθ = Re
(
einθ

)
. We need to

calculate

I1 = Re

∫ 2π

0

cos(θ − θ0)einθ − einθ0 − ineinθ sin(θ − θ0)
1− cos(θ − θ0)

cos m(θ − θ0)dθ.

(3.101)
Let z = eiθ and z0 = eiθ0 . The equation above becomes

I =
∫ zn

(
z

z0
+ z

z0
−1

2

)
− zn

0 − nzn
z

z0
− z

z0
−1

2

2− z
z0

+ z
z0

−1

((
z

z0

)m

+
(

z

z0

)−m
)

dz

iz
.

(3.102)
Let w = z

z0
. The integral becomes

I =
∫ 1−n

2 wn+1 + 1+n
2 wn−1 − 1

w2 − 2w + 1
(
wm + w−m

)
dw. (3.103)

The integration is performed over the boundary of the unit disk.
Note that we can write 1

w2−2w+1 as

1
(1− w)2

=
d

dw

1
1− w

=
d

dw

∞∑
n=0

wn. (3.104)

Notice that |w| < 1 since w is within the unit circle. After some simplification
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we find

1−n
2 wn+1 + 1+n

2 wn−1 − 1
w2 − 2w + 1

= −
(

1 + 2w + 3w2 + · · ·+ (n− 1)wn−2 +
(n− 1)

2
wn−1

)
. (3.105)

We use the residue theorem to calculate the integral. We find that

I = zn
0

{ 2πm, 1 ≤ m < n,

π(n− 1), m = n,

0, m > n.

(3.106)

We can now state the following results for I1 and I2. For σ0 = cos nθ0:

I1 = cos nθ0

{ 2πm, 1 ≤ m < n,

π(n− 1), m = n,

0, m > n,

(3.107)

and

I2 = − sin nθ0

{ 2πm, 1 ≤ m < n,

π(n− 1), m = n,

0, m > n.

(3.108)

For σ0 = sin(nθ0):

I1 = sin nθ0

{ 2πm, 1 ≤ m < n,

π(n− 1), m = n,

0, m > n,

(3.109)

and

I2 = cos nθ0

{ 2πm, 1 ≤ m < n,

π(n− 1), m = n,

0, m > n.

(3.110)

We have now found An = 1
π I1 and Bn = 1

π I2. We have the following Fourier
expansions for f(θ). For σ0 = cos nθ0:

f(θ) =
n−1∑
m=1

2m [cos nθ0 cosm(θ − θ0)− sin nθ0 sin m(θ − θ0)]

+ (n− 1) (cos nθ0 cosn(θ − θ0)− sin nθ0 sin n(θ − θ0)) . (3.111)
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For σ0 = sin nθ0:

f(θ) =
n−1∑
m=1

2m [cos nθ0 sin m(θ − θ0) + sin nθ0 cos m(θ − θ0)]

+ (n− 1) (cos nθ0 sin n(θ − θ0) + sin nθ0 cosn(θ − θ0)) . (3.112)

Recall that σ =
∑∞

n=1 (an cos nθ + bn sinnθ) from (3.92). We can find f(θ)
for σ given by (3.92) by superposition. In this way we find

f(θ) =
∞∑

n=1

(
an(n− 1)γcn +

n−1∑
m=1

an2mγcm

)

+
∞∑

n=1

(
bn(n− 1)γsn +

n−1∑
m=1

bn2mγsm

)
, (3.113)

where

γcm = cos nθ0 cos m(θ − θ0)− sin nθ0 sin m(θ − θ0), (3.114)

γsm = cos nθ0 sin m(θ − θ0) + sin nθ0 cosm(θ − θ0). (3.115)

We can rearrange f(θ) and rewrite it as

f(θ) =
∞∑

n=1

[(n− 1) (an cosnθ0 + bn sin nθ0) cos n(θ − θ0)]

+
∞∑

n=1

n−1∑
m=1

[2m (an cosnθ0 + bn sin nθ0) cos m(θ − θ0)]

+
∞∑

n=1

[(n− 1) (bn cosnθ0 − an sin nθ0) sin n(θ − θ0)]

+
∞∑

n=1

n−1∑
m=1

[2m (bn cos nθ0 − an sin nθ0) sin m(θ − θ0)] .

(3.116)

Then we interchange the order of summation as follows:

∞∑
n=1

n−1∑
m=1

χmn =
∞∑

m=1

∞∑
n>m

χmn =
∞∑

n=1

∞∑
m>n

χnm. (3.117)
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Using this we find that

f(θ) =
∞∑

n=1

An cos n(θ − θ0) + Bn sin n(θ − θ0), (3.118)

An = (n− 1) (an cos nθ0 + bn sin nθ0) + 2n

∞∑
m>n

(am cos mθ0 + bm sin mθ0) ,

Bn = (n− 1) (bn cos nθ0 − an sin nθ0) + 2n

∞∑
m>n

(bm cos mθ0 − am sin mθ0) .

(3.119)

To proceed we define S(x, x0) by

Rm(x, x0) = S(x, x0) +
|x|2
4 |Ω| . (3.120)

Substituting this into the system for R, (3.95) and (3.96), we find that

∆S(x,x0) = 0, x ∈ Ω, (3.121)

∂nS(x,x0) = ∂nRm(x, x0)− 1
4 |Ω|∂n |x|2 , x ∈ ∂Ω. (3.122)

We calculate ∂n |x|2 = 2r√
1+r′2/r2

. Using this along with (3.96), (3.97) and

(3.98) we find that

∂nS(x,x0) =
ε

2π
(f(θ)− σ(θ)) + O(ε)2, x ∈ ∂Ω. (3.123)

Note that |Ω| ≈ π. Now we introduce S0(x, x0) by

S(x, x0) =
ε

2π
S0(x, x0). (3.124)

To leading order we can write ∂nS0 = ∂rS0 |r=1 +O(ε). We obtain the following
leading order problem:

∆S0(x, x0) = 0, 0 < r < 1, (3.125)

∂rS0(x,x0) |r=1 = f(θ)− σ(θ), r = 1. (3.126)
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We can solve this system using separation of variables. We find that

S0 = D0 +
∞∑

n=1

rn (Dn cos n(θ − θ0) + En sin n(θ − θ0)) . (3.127)

To solve for the coefficients Dn and En we must use the boundary condition
(3.126). To this end, we must rewrite σ, given by (3.92), in terms of cos n(θ−θ0)
and sin n(θ− θ0). Notice that f(θ) is already in this form, (3.99). We calculate
for σ that

σ =
∞∑

n=1

(
ãn cosn(θ − θ0) + b̃n sin n(θ − θ0)

)
, (3.128)

ãn = an cos nθ0 + bn sin nθ0, (3.129)

b̃n = bn cos nθ0 − an sin nθ0. (3.130)

By imposing the boundary condition (3.126) we find that

∂rS0 |r=1=
∞∑

n=1

n (Dn cos n(θ − θ0) + En sin n(θ − θ0)) . (3.131)

Equating coefficients with the right-hand side of (3.126) we obtain

nDn = An − ãn, nEn = Bn − b̃n. (3.132)

To summarize, we have, for x ∈ ∂Ω, that

Rm(x, x0) = S(x, x0) +
|x|2
4π

=
ε

2π
S0(x, x0) +

1
4π

+
εσ

2π
+ O(ε2). (3.133)

Using definition (3.93), we calculate the derivative of ρ′(θ0) as follows

ρ′(θ0) =
d

dθ0
Rm(x0(θ0), x0(θ0)) = 2

d

dθ
Rm(x(θ), x0(θ0)) |θ=θ0 . (3.134)

Substituting (3.133) into (3.134) we find

ρ′(θ0) =
ε

π

[
d

dθ
S0(x(θ), x0(θ0)) |θ=θ0 +σ′(θ0)

]
. (3.135)

We differentiate S0(x, x0) given by (3.127) and σ given by (3.92) with respect
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to θ. We substitute these into the equation above to find that

ρ′(θ0) =
ε

π

∞∑
n=1

(
nEn + nb̃n

)
. (3.136)

Then, using equations (3.130) and (3.132) we find

ρ′(θ0) =
ε

π

∞∑
n=1

[Bn + (n− 1)bn cos nθ0 − (n− 1)an sinnθ0] . (3.137)

Next, we use the expression for Bn

Bn = (n− 1) (bn cosnθ0 − an sin nθ0) + 2n
∑
m>n

(bm cosmθ0 − am sinmθ0) ,

(3.138)
so that

ρ′(θ) =
ε

π

∞∑
n=1

(
2(n− 1)γn + 2n

∞∑
m>n

γm

)
, (3.139)

γm = bm cosmθ0 − am sin mθ0. (3.140)

We calculate χ =
∑∞

n=1

∑∞
m>n nγm. We can change the order of summation

such that χ =
∑∞

m=2 γm

∑m−1
n=1 n. We find that χ =

∑∞
n=1 n(n − 1)γn. Thus

our final result for ρ′(θ0) is

ρ′(θ0) =
ε

π

∞∑
n=1

(n + 2)(n− 1) (bn cosnθ0 − an sin nθ0) . (3.141)

¥
We have found R′m(x0, x0).

3.4.2 Example

We present an example here that makes use of (3.141). We determine whether
there is a relationship between the curvature of ∂Ω and where the regular part
of the Green’s function, Rm, has its extrema. In addition, we compare these
predictions with Rm from our boundary element method.

Consider the shape with σ defined by

σ(θ) = cos 2θ + a cos 3θ (3.142)
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This implies that a1 = 0, a2 = 1, a3 = a, bn = 0. Recall r(θ) = 1 + εσ(θ). The
curvature in polar coordinates is given by (3.86). Substituting the expression
for r into the expression for the curvature we find

κ(θ) = 1 + ε (3 cos 2θ + 8a cos 3θ) + O(ε)2 (3.143)

κ′(θ) = −6ε sin 2θ − 24εa sin 3θ (3.144)

Using equation (3.141) we find that

ρ′(θ) = −4ε

π

[
sin 2θ +

5a

2
sin 3θ

]
(3.145)

Using (3.143) and (3.144), we can find conditions on the parameter a that
involves the minima and maxima of κ and ρ. Note that at θ = nπ , the first
derivative of κ and ρ are zero. Thus, we have extrema at θ = nπ. We calculate
the second derivatives when θ = π

κ′′(π) = −6ε (2− 12a) (3.146)

ρ′′(π) =
4ε

π

(
2− 15a

2

)
(3.147)

We see that at θ = π , there is a maximum for κ when a < 1
6 and there is a

maximum for ρ when a < 4
15 . Thus for a ∈ ( 1

6 , 4
15 ), ρ has a maximum where κ

has a minimum. We have the reverse result if σ is negative. Thus, the principle
eigenvalue, λ0, given by (2.51), (2.89), (2.94) for one hole, N absorbing arcs and
N identical absorbing arcs are not in general minimized at the maximum of the
domain curvature.

Now at θ = 0, the second derivatives are

κ′′(0) = −12ε (1 + 36a) (3.148)

ρ′′(0) = −4ε

π

(
2 +

18a
2

)
(3.149)

We see that κ′′(0) and ρ′′(0) are both negative for a > 0. Thus, both κ and ρ

have maximums at θ = 0. In fact, it is where both attain their global maximums.
We can relate these findings to our boundary element method by plotting

Rm(x0, x0) versus x0(θ0). The shape of the domain is shown in Figure 3.11 (a),
while the curvature, κ− 1, and ρ−C, where C is a constant of integration, are
plotted in Figure 3.11 (b) for a = 0.2 and ε = 0.1.
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(a) Plot of the perturbed unit disk with boundary r = 1+ε (cos 2θ + a cos 3θ).
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(b) Plot of k(θ)− 1 (red) from (3.143) and ρ(θ)− C (blue) from (3.145).

Figure 3.11: Plot of the perturbed unit disk, the curvature and ρ with ε = 0.1
and a = 0.2.

We see from Figure 3.11 (a) that at θ = π the curvature has a local minimum
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and ρ has a local maximum. At θ = 0 and θ = 2π, we see that ρ and κ have
global maxima here. Now we plot ρ = Rm(x0, x0) from the numerical method
for N = 600 and N = 2400 mesh points in Figure 3.12 with a = 0.2 and ε = 0.1.
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R
m

(x
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Figure 3.12: Plot of Rm(x0, x0) for N = 600 (red) and N = 2400 (blue) with
ε = 0.1 and a = 0.2.

We see that ρ attains a local maximum at θ = π, while at θ0 = 0, ρ attains
a global maximum. Thus, our numerical results using the boundary element
method agree with the analytical predictions qualitatively. However, the scaling
of our numerical results does not match the analytical results. We see from
considering the curve for N = 600 and N = 2400 that the numerical method
is converging extremely slowly since the curves are almost identical. To attain
accurate results that are quantitatively comparable to the analytical result we
require many more mesh points. We are not able to run the method for more
mesh points due to computational limitations.

3.5 Discussion

In this chapter, we applied the results from Chapter 2 to calculate the MFPT
in a few domains. We calculated the MFPT in the unit disk. In particular, we
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considered one hole on the boundary of the unit disk with the initial position at
the centre of the disk and the initial position at the antipodal point to the hole.
Our results are comparable to that derived by Singer et al. in [23]. In addition,
we investigate the behaviour of the MFPT as the initial position moved towards
the hole at the antipodal point. These are depicted in Figure 3.1. With two
holes on the boundary, and the initial position at the centre, we found that
the MFPT reached a minimum when the holes were furthest apart. This is
depicted in Figure 3.2. We also derived results for N equally spaced points on
the boundary of the unit disk. We found that v(x) → 1

4D when N →∞, when
log 1

ε >> N

We derived the Neumann Green’s function in the unit square in order to
calculate the MFPT. We considered the behaviour of the MFPT as the ini-
tial position moves towards the hole, and the case where the initial position is
fixed, but the hole moves. These are depicted in Figures 3.4 and 3.5. We also
considered two holes on the boundary of the unit square. The behaviour in
this case was not as predictable as the other cases. We held one hole fixed at
(0, 0.5), while the other hole moved from (0, 0.48) to (1, 0.5) along the boundary.
We found that the minimum of the MFPT on the first two sides were slightly
shifted as a result of the interaction between the two holes. In other words, the
minimum was not where the distance between the initial position and moving
exit window was a minimum. However, on the third side, this was the case as a
result of the symmetry of the configuration. These results are shown in Figures
3.6 and 3.7. It is worth noting that our expression for the MFPT is not valid
at the corners of the unit square. We derived an expression for the MFPT that
is valid at the corner x0 = (0, 0) given by 3.55.

In the last two sections of this Chapter, we considered an analytical and a nu-
merical approach to solving for the Green’s function in more arbitrary domains.
The boundary element method was introduced as a numerical technique to solve
for the Green’s function. We showed that the boundary element method did
indeed give the correct results in the case of a unit disk. We then proceeded to
use the boundary element method to find the Neumann Green’s function in an
ellipse with semi-major axis, a = 2 and semi-minor axis, b = 1. More precisely,
we used our numerical technique to find R(x,x0). We found that the numerical
method converged for N = 640 mesh points. We found that R(x,x0) = 0.1291
for all x within the Ω and for all x0 on the boundary. Thus, R(x, x0) is a
constant. We expect then that R(x0, x0) = 0.1291.

To calculate R(x0, x0) we must rewrite integral (3.78) as we did in (3.88)
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and (3.90). The calculation of R(x0, x0) proved to be a challenge, and requires
many mesh points for convergence. By considering Table 3.4 we see that the
difference between entries in the vector R decreases by approximately 0.57 as
the number of mesh points doubles. The convergence is thus extremely slow.
We propose that the integral (3.78) be calculated a more accurate way in this
case. We propose using gaussian quadrature in stead of the midpoint rule to
compute this integral. This is left for further work.

We plotted the behaviour of the Neumann Green’s function for an ellipse
with x at the origin and x0 at various points along the boundary in Figure
3.8. We found that the Green’s function satisfied the symmetry properties
that we expected. We used the numerical results for the Green’s function to
find the MFPT for the ellipse with x at the origin and x0 moving along the
boundary. The results are depicted in Figure 3.9. We then moved the initial
position to x = (1, 0) with x0 moving along the boundary as before. The results
are depicted in Figure 3.10. We see that the MFPT is a minimum when the
exit window is closest to the initial position, and a maximum when the exit is
furthest from the initial position.

To find the Neumann Green’s function in a perturbed circular domain we
considered an analytical approach by T. Kolokolnikov [7]. Here, we derived an
expression for the regular part of the Green’s function, Rm(x0, x0). One must
integrate this expression and impose the integral condition to obtain a unique
solution. We considered an example of a particular domain with σ given by
(3.142), which is depicted in Figure 3.11 (a). We found that the regular part
of the Green’s function, ρ, (3.145), has a local maximum while the curvature,
κ, (3.143) has a local minimum at θ = π for a particular parameter regime,
a ∈ ( 1

6 , 4
15 ). We plotted the the curvature and ρ in Figure 3.11 (b) for a = 0.2

and ε = 0.1.
We then calculated Rm(x0,x0) using our numerical boundary element method

and plotted this against θ0 in Figure 3.12 for N = 600 and N = 2400 mesh
points. By comparing these curves we see that the numerical method is con-
verging extremely slowly since the two curves are similar. We see that our nu-
merical results qualitatively agree with the analytical result in that R(x0,x0)
has a maximum at θ = π. However, the scaling is incorrect in comparison to the
analytical result. To obtain a more accurate numerical result we must calculate
the integral (3.78) more accurately.
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Chapter 4

The Narrow Escape

Problem in Three

Dimensions - The Sphere

We now proceed to the narrow escape problem for the mean first passage time
for a Brownian particle trapped within a three-dimensional domain. The math-
ematical statement of the problem remains the same, however, the method of
approach and results are different from those in two dimensions. We will derive
results for a sphere as the confinement domain. It is an open problem to extend
this framework to arbitrary domains in three dimensions. The extension is not
as straightforward as in two dimensions, as the local geometry and curvature
of the three-dimensional domain plays a significant role in the final solution. It
is, thus, necessary to solve for the Green’s function for each three-dimensional
domain before one can proceed to find the mean first passage time.

4.1 Derivation of the Neumann Green’s

function for a Sphere

We begin by deriving the Neumann Green’s function, Gs(x, x0), for a sphere,
with a singularity on the boundary, which satisfies

∆Gs =
1
|Ω| , x ∈ Ω, (4.1)

∂rGs =
1

R2
δ(cos ϕ− cosϕ0)δ(φ− φ0), x ∈ ∂Ω, (4.2)

∫

Ω

Gsdx = 0. (4.3)
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where Ω = {x | |x| ≤ 1} and |Ω| = 4πR3

3 . The angles are defined with 0 < ϕ < π,
the latitude, and 0 ≤ φ < 2π, the longitude. We have the property that if
g(ϕ0) = 0 and g(ϕ) is a monotone function, then δ(g(ϕ)) = δ(ϕ−ϕ0)

|g′(ϕ0)| . Thus

δ(cos ϕ− cos ϕ0) =
δ(ϕ− ϕ0)

sinϕ0
. (4.4)

The singularity of the Green’s function in three dimensions is a simple pole.
Since the singular point is on the boundary, the singularity is twice as large.
Thus, we expect

Gs(x,x0) =
1

2π |x− x0| + R(x,x0), (4.5)

where R(x, x0) has a milder singularity than a simple pole as x → ∞. In the
three-dimensional case we show that R(x, x0) has a logarithmic singularity as
x → x0.

Now we define Gp

Gp =
1

6 |Ω|
(
|x|2 + |x0|2

)
. (4.6)

Note that |x|2 = r2 and |x0|2 = R2. To solve (4.1) and (4.2) we let Gs =
Gp + Ḡs. Substituting this into (4.1) and (4.2) we find

∆Ḡs = 0, x ∈ Ω, (4.7)

∂rḠs =
1

R2
δ(cos ϕ− cosϕ′)δ(φ− φ′)− 1

4πR2
, x ∈ ∂Ω.

(4.8)

We will look for a solution written in terms of Legendre Polynomials. To this
end, we must rewrite the Neumann boundary condition in terms of Legendre
polynomials. This leads to the following Lemma:

Lemma 4.1: We claim that

δ(cos ϕ− cos ϕ0)δ(φ− φ0) =
1
4π

∞∑
m=0

(2m + 1)Pm(cos γ), (4.9)
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where

cos γ = x · x0 = cos ϕ cos ϕ0 + sin ϕ sin ϕ0 cos(φ− φ0),

x = (cos φ sin ϕ, sin φ sin ϕ, cosϕ),

x0 = (cos φ0 sin ϕ0, sin φ0 sin ϕ0, cos ϕ0).

Here x and x0 are written in spherical coordinates in the unit sphere, R = 1.
Proof : We recall the completeness formula

∞∑
m=0

m∑
n=−m

Y ∗
mn(ϕ0, φ0)Ymn(ϕ, φ) = δ(φ− φ0)δ(cos ϕ− cosϕ0), (4.10)

where the Ymn are the spherical harmonics. The addition theorem for Legendre
polynomials states that

(2m + 1)
4π

Pm(cos γ) =
m∑

n=−m

Y ∗
mn(ϕ0, φ0)Ymn(ϕ, φ). (4.11)

Summing (4.11) from m = 0 to ∞, we obtain the desired result (4.9).¥
Using this Lemma, the boundary condition (4.2) becomes

∂rḠs =
1

4πR2

∞∑
m=1

(2m + 1)Pm(cos γ), onr = 1. (4.12)

We look for a solution for Ḡs in the form

Ḡs =
∞∑

m=1

am

( r

R

)m

Pm(cos γ), (4.13)

which satisfies Laplace’s equation by construction. Applying the boundary con-
dition (4.12) we find that

am =
1

4πR

(2m + 1)
m

. (4.14)
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We can write the solution for Ḡs as

Ḡs =
1

4πR

∞∑
m=1

(2m + 1)
m

( r

R

)m

Pm(cos γ) (4.15)

=
1

2πR

∞∑
m=1

( r

R

)m

Pm(cos γ) +
1

4πR

∞∑
m=1

1
m

( r

R

)m

Pm(cos γ).

(4.16)

We deal with these two terms separately.
We start with the first term. Recall the generating function for Legendre

polynomials
1√

1− 2xt + t2
=

∞∑
m=0

Pm(x)tn. (4.17)

Thus,

1
2πR

∞∑
m=1

( r

R

)m

Pm(cos γ) =
1
2π

1√
r2 + R2 − 2rR cos γ

− 1
2πR

. (4.18)

Now we consider the second term in (4.16). Let β = r
R and

I =
∑∞

m=1
1
mβmPm(cos γ). Using this we find

I ′(β) =
1
β

∞∑
m=1

βmPm(cos γ) =
1
β

[
1√

1− 2β cos γ + β2
− 1

]
(4.19)

Also note, that I(0) = 0. We integrate the equation above

I =
∫ β

0

(
1
s

1√
1− 2s cos γ + s2

− 1
s

)
ds

= log

(
2

1− β cos γ +
√

1 + β2 − 2β cos γ

)
(4.20)

Then with Gs = Gp + Ḡs, and substituting for β we find that

Gs =
1

6 |Ω|
(
|x|2 + |x0|2

)
+

1
2π

1
|x− x0| −

1
2πR

+
1

4πR
log

(
2R

R− r cos γ + |x− x0|
)

+ C. (4.21)
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We are ready to use the integral condition (4.3),
∫ 2π

0

∫ π

0

∫ R

0
Gs sin γr2dγdφdr =

0, to find the constant C.
We know that

log
(

2R

R− r cos γ + |x− x0|
)

=
∞∑

m=1

1
m

( r

R

)m

Pm(cos γ). (4.22)

We also have that

∫ π

0

Pm(cos γ) sin γdγ =
2 sin mπ

mπ(m + 1)
=

{
0 if m 6= 0,

2 if m = 0.
(4.23)

Thus, the integral over γ of (4.22) is zero.
Next we note that

1
2π |x− x0| =

1
2πR

∞∑
m=0

Pm(cos γ)
( r

R

)m

. (4.24)

We can perform the integration over γ by using property (4.23). We find that

1
2πR

∞∑
m=0

∫ 2π

0

∫ π

0

∫ R

0

Pm(cos γ)
( r

R

)m

sin γr2dγdφdr =
2R2

3
. (4.25)

Using (4.22) and (4.25) we find that C = − 1
5πR for the integral condition, (4.3)

to be satisfied. Our final expression for Gs is

Gs(x,x0) =
1

2π |x− x0| +
1

6 |Ω|
(
|x|2 + R2

)

+
1

4πR
log

(
2R

R− |x| cos γ + |x− x0|
)
− 7

10πR

(4.26)

We will need the expression for the Green’s function, (4.26) in the limit that
x → x0. We let

y =
x− x0

ε
, Λ =

R− r

ε
. (4.27)

We then calculate using the law of cosines that

R− |x| cos γ =
1

2R

(
|x− x0|2 − (|x|2 −R2)

)

∼ 1
2R

(
O(ε)2 − ((R− εΛ)2 −R2)

) ∼ εΛ + O(ε)2. (4.28)
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Therefore, by substituting (4.27) and (4.28) into (4.26), we obtain in the limit
as x → x0 that

Gs ∼ 1
2πε |y| +

1
4πR

log
(

2R

ε(|y|+ Λ)

)
− 9

20πR
. (4.29)

Now we calculate |x− x0| in the limit as x → x0 in spherical coordinates.
We use a Taylor expansion about x0. We find that

|x− x0| =
√

(r −R)2 + R2(ϕ− ϕ0)2 + R2 sin2 ϕ(φ− φ0)2 as x → x0

(4.30)
We let

Λ =
R− r

ε
, s1 =

R sin ϕ(φ− φ0)
ε

, s2 =
R(ϕ− ϕ0)

ε
. (4.31)

Using this, we find that

|x− x0| = ε
(
Λ2 + s2

1 + s2
2

)1/2
as x → x0 (4.32)

This implies that
|y| = (

Λ2 + s2
1 + s2

2

)1/2
. (4.33)

Combining (4.29) with (4.33) we obtain the far field behaviour of the Neu-
mann Green’s function.

4.2 Three-Dimensional Sphere with N

Absorbing Patches on the Boundary

We want to find the MFPT in a unit sphere, Ω = {x | |x| ≤ 1}. ∂Ωr is the
reflecting part of the boundary, ∂Ω, while ∂Ωa is the absorbing part consisting
of N non-overlapping circular patches defined by

∂Ωεj = {(ϕ, φ) | (ϕ− ϕj)2 + sin2 ϕj(φ− φj)2 ≤ ε2a2
j = r2

ε} (4.34)

Thus, the area of the circular patch centred at (1, ϕj , φj) is
∣∣∂Ωεj

∣∣ = πε2a2
j for

j = 1, 2, ..N . Without loss of generality, there is no absorbing patch centred at
a pole of the coordinate system. In Cartesian coordinates, the location of the
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centre of the jth patch is given by

xj = cos φj sin ϕj , yj = sin φj sin ϕj , zj = cos ϕj , (4.35)

where |xj | = 1.
The Laplacian in spherical coordinates is

∆u =
1
r2

(
r2ur

)
r
+

1
r2 sin2 ϕ

∂φφu +
1

r2 sin ϕ
∂ϕ (sinϕ∂ϕu) ,

= urr +
2
r
ur +

1
r2 sin2 ϕ

uφφ +
cot ϕ

r2
uϕ +

1
r2

uϕϕ. (4.36)

We write the mean escape time in terms of eigenfunctions as in (2.6), as

∆φ0 + λ0φ0 = 0, x ∈ Ω,

φ0(x) = 0, x ∈ ∂Ωa =
N⋃

j=1

∂Ωεj ,

∂rφ0 = 0, x ∈ ∂Ωr. (4.37)

4.2.1 Calculation of λ0 and φ0

We need to solve the system (4.37) to find the principal eigenvalue, λ0, and the
principal eigenfunction, φ0.

The eigenvalue is expanded as

λ0(ε) = ελ1 + ε2 log
(ε

2

)
λ2 + ε2λ3 + · · · . (4.38)

In the outer region, away from the absorbing arcs, we expand the principal
eigenfunction as

φ0(x, ε) = u0 + εu1 + ε2 log
(ε

2

)
u2 + ε2u3 + · · · . (4.39)

Here, u0 = 1

|Ω| 12
, the solution to the leading order problem.

Substituting these expansions into (4.37), we find to order O(ε) that

∆u1 = −λ1u0, x ∈ Ω,

∂ru1 = 0, x ∈ ∂Ωr,∫

Ω

u1dx = 0. (4.40)
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The integral condition enforces the normalization condition. At the next order,
O

(
ε2 log

(
ε
2

))
, we find

∆u2 = −λ2u0, x ∈ Ω,

∂ru2 = 0, x ∈ ∂Ωr,∫

Ω

u2dx = 0. (4.41)

At order O(ε2) we find

∆u3 = −λ1u1 − λ3u0, x ∈ Ω,

∂ru3 = 0, x ∈ ∂Ωr,∫

Ω

(
2u0u3 + u2

1

)
dx = 0. (4.42)

In the absorbing region we introduce the following change of variables, (4.31),
near the jth absorbing patch

Λ =
1− r

ε
, s1 =

sin ϕj(φ− φj)
ε

, s2 =
ϕ− ϕj

ε
. (4.43)

We let
v(Λ, s1, s2, ε) = u

(
1− εΛ,

εs1

sin ϕ
+ φj , εs2 + ϕj

)
. (4.44)

To proceed, we must transform the Laplacian, (4.36), into an expression
involving the inner variables using the chain rule. We find that

∆w = ε−2 (wΛΛ + ws1s1 + ws2s2) + ε−1 (−2wΛ + 2Λ (ws1s1 + ws2s2))

+ ε−1 cot ϕj (ws2 − s22ws1s1) + O(1). (4.45)

In the inner region we expand the eigenfunction as

v = v0 + ε log
(ε

2

)
v1 + εv2 + · · · . (4.46)

We project all the patches onto a circular disk of radius a2
j in the plane. At
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O(ε0) we find

Lv0 = v0ΛΛ + v0s1s1 + v0s2s2 = 0, Λ ≥ 0, −∞ < s1, s2 < ∞,

∂Λv0 = 0, Λ = 0, s2
1 + s2

2 ≥ a2
j ,

v0 = 0, Λ = 0, s2
1 + s2

2 ≤ a2
j . (4.47)

At O
(
ε log

(
ε
2

))
we find

Lv1 = 0, Λ ≥ 0, −∞ < s1, s2 < ∞,

∂Λv1 = 0, Λ = 0, s2
1 + s2

2 ≥ a2
j ,

v1 = 0, Λ = 0, s2
1 + s2

2 ≤ a2
j . (4.48)

At order O(ε) we have

Lv2 = 2 (v0Λ − Λ (v0s1s1 + v0s2s2))− cot ϕj (v0s2 − 2s2v0s1s1)

∂Λv2 = 0, Λ = 0, s2
1 + s2

2 ≥ a2
j ,

v2 = 0, Λ = 0, s2
1 + s2

2 ≤ a2
j . (4.49)

To proceed, we must match inner and outer solutions. We compare (4.39)
to (4.46) in the limit as x → xj or |y| = (

Λ2 + s2
1 + s2

2

)1/2 → ∞. We see that
v0 = u0 = |Ω|− 1

2 in this limit. We write the solution as

v0 = |Ω|− 1
2 (1− vc), (4.50)

where vc satisfies

Lvc = 0, Λ ≥ 0, −∞ < s1, s2 < ∞,

∂Λvc = 0, Λ = 0, s2
1 + s2

2 ≥ a2
j ,

vc = 1, Λ = 0, s2
1 + s2

2 ≤ a2
j . (4.51)

This is the well-known electrified disk problem in electrostatics, [6], which has
a solution given in terms of the Bessel Function J0(z) by

vc =
2
π

∫ ∞

0

sin µ

µ
e−µΛ/aj J0

(
µσ

aj

)
dµ, (4.52)
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where σ =
(
s2
1 + s2

2

)1/2. This solution has the asymptotic behaviour

vc ∼ cj

|y| + O

(
1
|y|3

)
as |y| = (

Λ2 + s2
1 + s2

2

)1/2 →∞. (4.53)

Here, cj is the capacitance of a disk of radius aj in an infinite plane given by

cj =
2aj

π
. (4.54)

The result above is obtained using Laplace’s method and is shown in Appendix
B.

Thus v0 ∼ 1

|Ω| 12

(
1− cj

|y|
)
. Writing y in inner variables, as in (4.27) and

(4.33), we find from matching in the limit as x → xj that

1

|Ω| 12
+ εu1 + ε2 log

(ε

2

)
u2 + · · · ∼ 1

|Ω| 12
− εcj

|Ω|1/2 |x− xj |
+ · · · .

This gives the missing singular condition on u1

u1 ∼ − cj

|Ω| 12 |x− xj |
as x → xj j = 1, .., N. (4.55)

We must solve for u1 from (4.40) and (4.55). Recall, from (4.1) and (4.2), that
a singularity on the boundary can be written as

∂ru1 =
δ(ϕ− ϕj)δ(φ− φj)

sin ϕj
on r = 1. (4.56)

This gives rise to a term in the solution of the form u1 ∼ 1
2π|x−xj | as x → xj .

Thus, we can write the problem for u1 as

∆u1 = −λ1u0, x ∈ Ω, (4.57)

∂ru1 = − 2π

|Ω| 12
N∑

j=1

cj
δ(ϕ− ϕj)δ(φ− φj)

sin ϕj
on r = 1, (4.58)

∫

Ω

u1dx = 0. (4.59)

Before we find the solution for u1 we impose a solvability condition that will
allow us to find the eigenvalue λ1.
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We integrate (4.57) over Ω and apply the Divergence Theorem to obtain

∫

Ω

∆u1dx =
∫

∂Ω

∂u1

∂r
|r=1 dS,

−λ1u0 |Ω| = −
N∑

j=1

2πcj

|Ω| 12
.

Thus,

λ1 =
2π

|Ω|
∞∑

j=1

cj , cj =
2aj

π
. (4.60)

We can write the solution for u1 as

u1 = − 2π

|Ω| 12
∞∑

i=1

ciGs(x, xi), (4.61)

where Gs satisfies (4.1)-(4.3) with the Neumann boundary condition written
using (4.4). That is, Gs satisfies

∆Gs =
1
|Ω| , x ∈ Ω, (4.62)

∂rGs =
δ(ϕ− ϕi)δ(φ− φi)

sin ϕi
on r = 1, (4.63)

∫

Ω

Gsdx = 0. (4.64)

We proceed by matching. In the limit as x → xj , u1 becomes

u1 ∼ − 2π

|Ω| 12
[cjGs(x, xj)]− 2π

|Ω| 12
N∑

i=1,i6=j

ciGs(xj , xi), (4.65)

where the near-field behaviour of Gs(x, xj) as x → xj is given by (4.29) with
y given by (4.33).

The outer expansion in terms of inner variables for x → xj is

1

|Ω| 12
− cj

|Ω| 12 |y|

+
2π

|Ω|1/2


ε

cj

4π
log

(ε

2

)
+

εcj

4π
log (|y|+ Λ) +

ε9cj

20π
− ε

N∑

i=1,i6=j

ciGs(xj ,xi)




+ ε2 log
(ε

2

)
u2 + ε2u3 + · · · . (4.66)
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The inner expansion is

1

|Ω| 12
− cj

|Ω| 12 |y|
+ ε log

(ε

2

)
v1 + εv2 + · · · . (4.67)

Comparing these expressions we find that

v1 ∼ cj

2 |Ω| 12
as |y| → ∞. (4.68)

To proceed, we let
v1 =

cj

2 |Ω| 12
(1− vc), (4.69)

where vc satisfies (4.51). Using the behaviour of vc as |y| → ∞ given by (4.53),
we find that

v1 ∼ cj

2 |Ω| 12

(
1− cj

|y| + O

(
1
|y|3

))
as |y| → ∞. (4.70)

Substituting this into (4.67) and comparing to (4.66) we find from matching
that

u2 ∼ − c2
j

2 |Ω| 12 |x− xj |
as x → xj , j = 1, ..., N. (4.71)

Thus, we must solve for u2 from (4.41) and (4.71). Proceeding as we did
when finding u1, we rewrite the boundary condition of (4.41) as

∂ru2 = − π

|Ω| 12
N∑

j=1

c2
j

δ(ϕ− ϕj)δ(φ− φj)
sin ϕj

on r = 1. (4.72)

Before solving for u2 we use a solvability condition to find λ2.
We integrate (4.41) over Ω and use the Divergence Theorem. We find that

λ2 =
π

|Ω|
N∑

j=1

c2
j . (4.73)

At this stage, as ε → 0, we have the following two-term asymptotic behaviour

λ ∼ 2π

|Ω|ε
N∑

j=1

cj +
π

|Ω|ε
2 log

(ε

2

) N∑

j=1

c2
j + O(ε2), (4.74)

where cj = 2aj

π .
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The solution for u2 is written in terms of the Green’s function Gs as

u2 = − π

|Ω| 12
N∑

i=1

c2
i Gs(x,xi), (4.75)

where Gs satisfies (4.62)-(4.64). It is key to note that there is no need to expand
u2 as x → xj . This is a consequence of the fact that any unmatched terms in
u2 are dominated by the O(ε) terms in the expansion (4.66).

The O(ε) terms in u as x → xj written in the variable y are

− 2π

|Ω| 12
Aj +

cj

2 |Ω| 12
log(|y|+ Λ), (4.76)

where

Aj = − 9cj

20π
+

N∑

i=1,i6=j

ciGs(xj , xi). (4.77)

From (4.67) we see that

v2 ∼ − 2π

|Ω| 12
Aj +

cj

2 |Ω| 12
log(|y|+ Λ) as |y| → ∞. (4.78)

Thus v2 must satisfy (4.49) and (4.78). We can rewrite the right-hand side of
the first equation of (4.49) by using v0s1s1 + v0s2s2 + v0ΛΛ = 0 as

2 (Λv0Λ)Λ − cot ϕj (v0s2 − 2s2v0s1s1) . (4.79)

We use an asymptotic decomposition to solve for v2 to obtain

v2 = − 2π

|Ω| 12
Aj(1− vc) +

cj

2 |Ω| 12
v2p, (4.80)

where
v2p ∼ log (|y|+ Λ) as |y| → ∞. (4.81)

Here, vc is homogeneous solution, satisfying (4.51) with the behaviour as |y| →
∞, given by (4.53). That is vc ∼ cj

|y| + O
(

1
|y|3

)
as |y| → ∞. Furthermore,

v2p is the particular solution satisfying (4.49) with the far-field behaviour given
by (4.81). By using the far-field behaviour of vc, (4.53), combined with a few
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simple estimates, we find that the far-field behaviour of v2 is

v2 ∼ − 2π

|Ω| 12
Aj

(
1− cj

|y|
)

+
cj

2 |Ω| 12
log(|y|+ Λ), as |y| → ∞. (4.82)

From matching, we must then conclude that

u3 ∼ 2π

|Ω| 12
Ajcj

|x− xj | as |y| → ∞. (4.83)

This matches the unmatched term in the inner expansion v2 ∼ 2π

|Ω| 12
Ajcj

|y| .

The problem for u3 becomes

∆u3 = −λ1u1 − λ3u0, x ∈ Ω, (4.84)

∂ru3 =
4π2

|Ω| 12
N∑

j=1

Ajcj
δ(ϕ− ϕj)δ(φ− φj)

sin ϕj
on r = 1, (4.85)

∫

Ω

u3dx = 0. (4.86)

We can find λ3 using a solvability condition. We integrate (4.84) over Ω, recall-
ing that

∫
Ω

u1dx = 0. We use the Divergence Theorem to obtain

λ3 = −4π2

|Ω|
N∑

j=1

Ajcj . (4.87)

where Aj is given by (4.77).
We have the following proposition:

Proposition 4.2: (N Holes) In the limit as ε → 0, λ0 and φ0 have the
following three-term asymptotic behaviour

λ0(ε) ∼ 2πε

|Ω|
N∑

j=1

cj + ε2 log
(ε

2

) π

|Ω|
N∑

j=1

c2
j −

4π2ε2

|Ω|
N∑

j=1

Ajcj , (4.88)

φ0(x, ε) =
1

|Ω| 12
− 2π

|Ω| 12
ε

N∑

i=1

ciGs(x,xi)− ε2 log
(ε

2

) π

|Ω| 12
N∑

i=1

c2
i Gs(x,xi)

+ O(ε2). (4.89)
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We can simplify the notation by introducing the Green’s matrix, Γ, and
capacitance vector C by

Γ =




R Gs(1, 2) Gs(1, 3) · · · Gs(1, N)
Gs(2, 1) R Gs(2, 3) · · · Gs(2, N)
Gs(3, 1) Gs(3, 2) R · · · Gs(3, N)

...
...

...
. . .

...
Gs(N, 1) Gs(N, 2) · · · · · · R




,

C =
(

c1 c2 c3 · · · cN

)T

,

e =
(

1 1 1 · · · 1
)T

.

Note that the matrix Γ is symmetric since Gs(j, i) = Gs(i, j), where Gs(j, i)
denotes Gs(xj , xi). Also, we define R by

R = − 9
20π

. (4.90)

Now, we can write λ as

λ0(ε) ∼ 2πε

|Ω|
(
CT e +

ε

2
log

(ε

2

)
CT C − 2πεCT ΓC

)
. (4.91)

We can simplify this further by simplifying the expression for the Green’s func-
tion Gs given by (4.26). We know that |xi| = |xj | = 1. Furthermore, by the
law of cosines, 1− cos γij = |xi−xj |2

2 . Using this, the Green’s function reduces
to

Gs(xj , xi) = R

+
1
2π

(
1

|xj − xi| + log 2− 1
2

log |xj − xi| − 1
2

log (2 + |xj − xi|)
)

.(4.92)

We define Hij by

Hij =
(

1
|xj − xi| −

1
2

log |xj − xi| − 1
2

log (2 + |xj − xi|)
)

, (4.93)

for i 6= j. Thus, Γ can be written as

Γij = R +
log 2
2π

+
1
2π

Hij , (4.94)
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for i 6= j. For i = j we see that Γii = R.
We define p(x1, x2, ..., xN ) by

p(x1, x2, ..., xN ) = CT ΓC =
N∑

i=1

N∑

j=1

cicjΓij ,

= R

N∑

i=1

c2
i +

N∑

i=1

N∑

j=1,j 6=i

cicjΓij . (4.95)

We now write λ as

λ0(ε) ∼ 2πε

|Ω|
(
CT e +

ε

2
log

(ε

2

)
CT C − 2πεp(x1,x2, ..., xN )

)
. (4.96)

Now we consider the special case when each of the absorbing patches are
of the same radius, that is aj = a. In this case, the capacitance, cj , becomes
c = 2a

π . We have the following proposition:

Proposition 4.3: (N Identical Holes) In the limit as ε → 0, λ0 and φ0

have the three-term asymptotic behaviour

λ0(ε) ∼ 2πεNc

|Ω|
(
1 +

ε

2
log

(ε

2

)
c
)

+
2πεNc

|Ω|


εc


9N

10
− (N − 1) log 2− 1

N

N∑

i=1

N∑

j=1,j 6=i

Hij





 ,

(4.97)

φ0(x, ε) =
1

|Ω| 12
− 2πεc

|Ω| 12
N∑

i=1

Gs(x, xi)− ε2 log
(ε

2

) πc2

|Ω| 12
N∑

i=1

Gs(x, xi)

+ O(ε2), (4.98)

where Hij is given by (4.93).
For the case of equally sized absorbing patches, λ0(ε), is maximized with

respect to {x1, x2, ..., xN} when we find {x1,x2, ..., xN} with |xj | = 1, for all j

that satisfies the following discrete variational problem

HN = min
{x1,x2,...,xN}

H(x1, x2, ..., xN ) = min
{x1,x2,...,xN}

N∑

i=1

N∑

j=1,j 6=i

Hij , (4.99)

where Hij is given by (4.93). By using HN in (4.97) for λ0, we obtain a max-
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imum for λ0 up to O(ε2). The first term in H(x1, x2, ..., xN ) is the usual
Coulomb singularity in three-dimensions while the other two terms represent a
contribution from surface diffusion on the boundary of the sphere.

The discrete variational problem (4.99) is a modification of the classical
discrete variational problems for finding optimal configurations of N points on
the surface of a sphere that minimize the Coulomb energy

min
{x1,x2,...,xN}

N∑

i=1

N∑

j=1,j 6=i

1
|xi − xj | , |xi| = 1, (4.100)

or the logarithmic energy

− min
{x1,x2,...,xN}

N∑

i=1

N∑

j=1,j 6=i

log |xi − xj | . (4.101)

The problem of minimizing Hij appears to be a generalization of these two
classic discrete variational problems. An overview of these variational problems
are given in [19] and references therein.

4.2.2 Calculation of the Mean First Passage Time

We calculate the MFPT in the case where we have N holes on the boundary of
a unit sphere, of radius aj . We use expansions (4.88) and (4.89) to compute the
MFPT. Recall, that the MFPT is given by

v(x) ∼ (1, φ0)
Dλ0

φ0, (4.102)

where x is the initial position within the sphere. This assumes, that (φ0, φ0) = 1,
which is satisfied by (4.89) since the integrals of Gs over Ω are zero. Recall that
Gs is the Green’s function in a sphere of radius one.

The MFPT for N holes of differing radius in terms of λ0 is given by

v(x) =
1

Dλ0(ε)

(
1− 2πε

N∑

i=1

ciGs(x, xi)− ε2 log
(ε

2

)
π

N∑

i=1

c2
i Gs(x,xi) + O(ε2)

)
,

(4.103)
where λ0 is given by (4.88).

By substituting for λ0 we have the following proposition for the MFPT with
N holes of differing radius ai on the boundary of the unit sphere:
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Proposition 4.4: (N Holes) For ε → 0, the three-term asymptotic be-
haviour of the mean first passage time, v(x), is

v(x) =
|Ω|

2πεD
∑N

i=1 ci

(
1 +

ε

2
log

(
2
ε

) ∑N
i=1 c2

i∑N
i=1 ci

− 2πε

N∑

i=1

ciG(x, xi)

)

+
|Ω|

2πεD
∑N

i=1 ci

(
2πε∑N
i=1 ci

p(x1, x2, ..., xN ) + O(ε2 log ε)

)
, (4.104)

where ci = 2ai

π , p(x1, x2, ..., xN ) is given by (4.95), Gs is given by (4.92) and
|Ω| = 4π

3 . The average MFPT, v̄, is

v̄ =
|Ω|

2πεD
∑N

i=1 ci

(
1 +

ε

2
log

(
2
ε

) ∑N
i=1 c2

i∑N
i=1 ci

)

+
|Ω|

2πεD
∑N

i=1 ci

(
2πε∑N
i=1 ci

p(x1, x2, ..., xN ) + O(ε2 log ε)

)
. (4.105)

In the case of N identical holes of radius a, so that ci = c = 2a
π , we find:

Corollary 4.5: (N Identical Holes) For ε → 0, the three-term asymptotic
behaviour of the mean first passage time is

v(x) =
|Ω|

2πεDNc

(
1 +

ε

2
log

(
2
ε

)
c− 2πεc

N∑

i=1

Gs(x,xi)

)

+
|Ω|

2πεDNc


εc


−9N

10
+ (N − 1) log 2 +

1
N

N∑

i=1

N∑

j=1,j 6=i

Hij







+ O
(
ε2 log ε

)
, (4.106)

where Hij is given by (4.93). The average MFPT, v̄, is

v̄ =
|Ω|

2πεDNc

(
1 +

ε

2
log

(
2
ε

)
c

)

+
|Ω|

2πεDNc


εc


−9N

10
+ (N − 1) log 2 +

1
N

N∑

i=1

N∑

j=1,j 6=i

Hij







+ O
(
ε2 log ε

)
. (4.107)
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Notice that if we minimize Hij as in (4.99), we minimize the MFPT. We can
find an expression for one hole by setting N = 1 in (4.106) to obtain the follow-
ing corollary:

Corollary 4.6: (One Hole) For ε → 0, the three-term asymptotic be-
haviour of the mean first passage time, v(x), is

v(x) =
|Ω|

2πεDc

(
1 +

ε

2
log

2
ε
c− 2πεcGs(x, x0)− 9εc

10
+ O(ε2 log ε)

)
. (4.108)

The average MFPT, v̄, is

v̄ =
|Ω|

2πεDc

(
1 +

ε

2
log

2
ε
− 9εc

10
+ O(ε2 log ε)

)
. (4.109)

In the case of one hole with a = 1, the MFPT from the centre of the sphere is:

Corollary 4.7: (One Hole) For ε → 0, the three-term asymptotic be-
haviour of the mean first passage time from the centre of a unit sphere, v(x),
with one absorbing patch of radius a = 1 on the boundary is

E[τ | x = (0, 0)] =
|Ω|
4εD

(
1 +

ε

π
log

2
ε
− 3ε

2π
+ O(ε2 log ε)

)
. (4.110)

Furthermore, for the case of one absorbing circular window of radius ε, the
average MFPT is v̄ ∼ |Ω|

4εD

(
1 + ε

π log 1
ε + O(ε)

)
. This is comparable to the result

derived by Singer et al in [25] for the MFPT for one absorbing circular window
of radius ε. They found the MFPT, and the average MFPT, to be

E[τ | x = (0, 0)] =
|Ω|
4εD

[
1 +

ε

π
log

1
ε

+ O(ε)
]

(4.111)

The original result in equation (3.52) of [25] omits the π term in (4.111) due to
an omission of an extra factor of π on the left-hand side of the equation above
(3.52) in [25]. Our result, (4.110), agrees asymptotically with that of (4.111)
and determines explicitly the O(ε) term to v(x).

Our results, (4.104) and (4.106), generalizes the result in [25] to N circular
absorbing windows of different radii on the unit sphere.
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4.3 Three-Dimensional Sphere with N

Absorbing Patches on the Boundary - An

Alternate Derivation

Here, we present an alternate derivation of the MFPT. Instead of writing the
MFPT in terms of a complete set of eigenfunctions, we solve for the MFPT
directly. That is, we want to solve

∆v(x) = − 1
D

, x ∈ Ω,

v(x) = 0, x ∈ ∂Ωa =
N⋃

j=1

∂Ωεj
,

∂nv(x) = 0, x ∈ Ωr, (4.112)

where ∂Ωεj is given by (4.34). The Laplacian is given (4.36). As before, there
is no absorbing patch centred at a pole of the coordinate system. In Carte-
sian coordinates, the location of the centre of the jth is given (4.35). We will
now proceed to solve (4.112) directly using the method of matched asymptotic
expansions.

4.3.1 Calculation of the MFPT Directly

We want to solve (4.112). In the outer region, away from absorbing patches, we
expand v(x) as

v(x, ε) =
v0

ε
+ v1 + ε log

(ε

2

)
+ εv3 + · · · . (4.113)

We obtain the following problems: At O(ε−1)

∆v0 = 0, x ∈ Ω,

∂nv0 = 0, x ∈ Ωr, (4.114)

at O(ε0)

∆v1 = − 1
D

, x ∈ Ω,

∂nv1 = 0, x ∈ Ωr, (4.115)
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at O
(
ε log

(
ε
2

))

∆v2 = 0, x ∈ Ω,

∂nv2 = 0, x ∈ Ωr, (4.116)

and at O(ε)

∆v3 = 0, x ∈ Ω,

∂nv3 = 0, x ∈ Ωr. (4.117)

In the inner region we introduce the change of variables given by (4.31) and
(4.43). In the inner region we expand

w(Λ, s1, s2, ε) =
w0

ε
+ log

(ε

2

)
w1 + w2 + · · · . (4.118)

We must transform the Laplacian, given by (4.36) into an expression in terms of
local variables by using the chain rule. As before, we obtain (4.45). We obtain
to O(ε−1)

Lw0 = w0ΛΛ + w0s1s1 + w0s2s2 = 0, Λ ≥ 0,−∞ < s1, s2 < ∞,

∂Λw0 = 0, Λ = 0, s2
1 + s2

2 ≥ a2
j ,

w0 = 0, Λ = 0, s2
1 + s2

2 ≤ a2
j . (4.119)

At O
(
log

(
ε
2

))
we have

Lw1 = 0, Λ ≥ 0, −∞ < s1, s2 < ∞,

∂Λw1 = 0, Λ = 0 s2
1 + s2

2 ≥ a2
j ,

w1 = 0, Λ = 0 s2
1 + s2

2 ≤ a2
j . (4.120)

At O(ε0) we have

Lw2 = 2 (Λw0ΛΛ + w0Λ)− cot ϕj (w0s2 − 2s2w0s1s1) ,

∂Λw2 = 0, Λ = 0, s2
1 + s2

2 ≥ a2
j ,

w2 = 0, Λ = 0 s2
1 + s2

2 ≤ a2
j . (4.121)

We proceed by matching, which implies that w0 → v0 as |y| → (
Λ2 + s2

1 + s2
2

)1/2
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or as x → xj . We write the solution for w0 as

w0 = v0(1− wc), (4.122)

where wc satisfies (4.51). The solution to this is given by (4.52). The solution
has the asymptotic behaviour (4.53) where cj is the capacitance of a disk of
radius aj in an infinite plane given by (4.54). Writing y in outer variables as
y = x−xj

ε and matching w0 to the outer solution we find that

v1 ∼ − v0cj

|x− xj | as x → xj . (4.123)

Thus, we must solve for v1 from (4.115), and (4.123).
Recall from (4.1) and (4.2), that a singularity on the boundary can be written

as
∂ru =

δ(ϕ− ϕj)δ(φ− φj)
sin ϕj

on r = 1. (4.124)

This gives rise to a term in the solution of the form u ∼ 1
2π|x−xj | as x → xj .

Thus, we can write the problem for v1 as

∆v1 = − 1
D

x ∈ Ω, (4.125)

∂rv1 = −2πv0

N∑

j=1

cj
δ(ϕ− ϕj)δ(φ− φj)

sin ϕj
on r = 1. (4.126)

Before we find v1, we apply a solvability condition that will allow us to find
v0. We apply the Divergence Theorem by integrating (4.125) and using the
boundary condition (4.126). We find that

v0 =
|Ω|

2πD
∑N

j=1 cj

. (4.127)

Now, the solution to v1 is written in terms of the surface Green’s function

v1 = −2πv0

N∑

i=1

ciGs(x, xi) + χ, (4.128)

where Gs satisfies (4.62)-(4.64). Using this, notices that
∫
Ω

v1dx = χ |Ω| so that
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χ = v̄. We proceed by matching. In the limit as x → xj

v1 ∼ −2πv0cjGs(x, xj)− 2πv0

N∑

i=1,i6=j

ciGs(xj , xi) + χ, (4.129)

where the far-field behaviour of Gs is given by (4.29) along with (4.33). We let

χ = χ0 log
(ε

2

)
+ χ1. (4.130)

We write the outer expansion in terms of inner variables and match to the inner
solution. That is, in the limit as |y| → ∞ we have

v0

ε
− v0cj

ε |y| +
v0cj

2
log

(ε

2

)
+ Bj +

v0cj

2
log (Λ + |y|)

+ χ0

(ε

2

)
+ χ1 + ε

(ε

2

)
v2 + εv3

+ · · · ∼ v0

ε

(
1− cj

|y|
)

+
(ε

2

)
w1 + w2 + · · · , (4.131)

where

Bj = v0


9cj

10
− 2π

N∑

i=1,i6=j

ciG(xj ,xi)


 . (4.132)

If we consider the expression for Aj , (4.77), we see that Bj = −2πv0Aj .
By matching we see that

w1 ∼ v0cj

2
+ χ0 as |y| → ∞. (4.133)

The solution is
w1 =

(v0cj

2
+ χ0

)
(1− wc), (4.134)

where wc satisfies (4.51). Using the far-field behaviour of wc given by (4.53) we
find that

w1 ∼
(v0cj

2
+ χ0

) (
1− cj

|y|
)

as |y| → ∞. (4.135)

Substituting this into the matching condition (4.131) we find that

v2 ∼ −
(v0cj

2
+ χ0

) cj

|x− xj | as x → xj . (4.136)

Thus, we must solve for v2 from (4.116) and (4.136). Proceeding as we did when
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finding v1, we rewrite the boundary condition of (4.116) as

∂rv1 = −2π

N∑

j=1

(v0cj

2
+ χ0

)
cj

δ(ϕ− ϕj)δ(φ− φj)
sin ϕj

on r = 1. (4.137)

We use a solvability condition to find χ0. Applying the Divergence Theorem
to (4.116) and using the boundary condition (4.137) we find that

χ0 = −v0

∑N
j=1 c2

j

2
∑N

j=1 cj

. (4.138)

We can write the solution to v2 as

v2 ∼ −2π

N∑

i=1

(v0ci

2
+ χ0

)
ciGs(x,xi) + χ2. (4.139)

At this stage, we have the following outer expansion for the MFPT

v ∼ v0

ε
+ χ0 log

(ε

2

)
+ χ1 − 2πv0

N∑

i=1

ciGs(x,xi) + ε log
(ε

2

)
v2 + εv3, (4.140)

where v0 is given by (4.127), χ0 is given by (4.138) and v2 is given by (4.139).
The inner solution is

w ∼ v0

ε
(1− wc) + log

(ε

2

)(v0cj

2
+ χ0

)
(1− wc) + w2 + · · · , (4.141)

where wc satisfies (4.51).
Now, if we consider the matching condition, (4.131), with (4.140) and (4.141)

substituted, we find that v2 contributes an unmatched term of O
(
ε2 log2

(
ε
2

))
.

This term can be ignored since the O(1) unmatched terms dominate. Thus, we
must have that

w2 ∼ Bj + χ1 +
v0cj

2
log (Λ + |y|) as |y| → ∞, (4.142)

so that all the necessary terms are matched. Recall that w2 satisfies (4.121).
We solve this problem for w2 by superposition. We let

w2 ∼ (Bj + χ1) (1− wc) +
v0cj

2
w2p, . (4.143)
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Here wc is the homogeneous solution satisfying (4.51) with the behaviour as
|y| → ∞, given by (4.53). That is wc ∼ cj

|y| + O
(

1
|y|3

)
as |y| → ∞. Further-

more, w2p is the particular solution satisfying (4.121) with the far-field behaviour
given by (4.81). By using the far-field behaviour of wc, (4.53), combined with a
few simple estimates, we find that the far-field behaviour of w2 is

w2 ∼ (Bj + χ1)
(

1− cj

|y|
)

+
v0cj

2
log(|y|+ Λ). (4.144)

From matching we must then conclude that

v3 ∼ −cj (Bj + χ1)
|x− xj | as x → xj . (4.145)

We must solve for v3 from (4.117) and (4.145). We rewrite the boundary con-
dition of (4.117) as

∂rv3 = −2π

N∑

j=1

cj (Bj + χ1)
δ(ϕ− ϕj)δ(φ− φj)

sin ϕj
on r = 1. (4.146)

We apply the Divergence Theorem to (4.117) and use the boundary condition
(4.146). We find that

χ1 = −
∑N

j=1 cjBj∑N
j=1 cj

, (4.147)

where Bj is given by (4.132). We let R = − 9
20π as in (4.90). Substituting for

v0 from (4.127) we find that

χ1 =
2πv0∑N
j=1 cj




N∑

j=1


c2

jR + cj

N∑

i=1,i6=j

ciGs(xj , xi)





 . (4.148)

Substituting for χ1 and v2 into (4.140), we find that the outer solution for
the MFPT is
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v(x) =
|Ω|

2πεD
∑N

j=1 cj


1− ε

2
log

(ε

2

)
(∑N

j=1 c2
j

)

∑N
j=1 cj

− 2πε

N∑

i=1

ciG(x,xi)




+
|Ω|

2πεD
∑N

j=1 cj


 2πε∑N

j=1 cj




N∑

j=1


c2

jR + cj

N∑

i=1,i 6=j

ciGs(xj ,xi)










+ O(ε2 log ε). (4.149)

Notice that
(∑N

j=1

(
c2
jR + cj

∑N
i=1,i6=j ciGs(xj ,xi)

))
is the same expression as

p(x1,x2, ..., xN ) given by (4.95). Thus, we have recovered the result that was
derived in the previous section for the MFPT with N holes on the boundary,
Proposition 4.4, (4.104). Thus, by simplifying (4.149) in the same manner as we
did (4.104), we recover Corollary 4.5, 4.6 and 4.7 for N identical holes, one hole
and one hole of radius a = 1. Thus, the two methods for deriving the MFPT
agree exactly.

Lastly, we compare the asymptotic results with the numerical results solving
(4.112) computed using COMSOL [15] by R. Straube [28]. We use the expression
for the average MFPT for N identical holes, (4.107). We set a = 1, so that we
have N identical circular windows of radius ε equidistantly placed on the surface
of the sphere. We let v̄2 be the two-term asymptotic result obtained be omitting
the O(ε) terms in (4.107), v̄3 be the full three-term asymptotic result (4.107)
and v̄n the full numerical result. We tabulate the results for N = 1, 2 and 4 in
Table 4.1 below.

N = 1 N = 2 N = 4
ε v̄2 v̄3 v̄n v̄2 v̄3 v̄n v̄2 v̄3 v̄n

0.02 53.89 53.29 52.81 26.95 26.40 26.12 13.47 13.10 12.99
0.05 22.17 21.57 21.35 11.09 10.54 10.43 5.54 5.17 5.12
0.10 11.47 10.87 10.78 5.74 5.19 5.14 2.87 2.50 2.47
0.20 6.00 5.40 5.36 3.00 2.45 2.44 1.50 1.13 1.13
0.50 2.56 1.95 1.96 1.28 0.73 0.70 0.64 0.27 0.30

Table 4.1: Comparison of v̄2, v̄3 and v̄n for various values of ε, N = 1, 2 and 4.

We see good agreement between the numerical results and the asymptotic
results, especially when using the full three-term asymptotic result, v̄3.
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4.4 Discussion

In this Chapter we aimed to find the MFPT in a unit sphere. To this end, we
began with a derivation of the Neumann Green’s function for a sphere of radius
R. As in two dimensions, we transformed the problem for the MFPT into an
eigenvalue problem. We solved for the principle eigenvalue, λ0, and the principle
eigenfunction, φ0 for N holes of differing radius, using the method of matched
asymptotic expansions. These results are given by (4.88) and (4.89). We then
simplified the expressions for λ0 and φ0 for the case of N identical holes, given by
(4.97) and (4.98). We then found the MFPT in a unit sphere with N absorbing
patches of differing radii on the boundary given by (4.104). We found a simpler
expression in the case of N identical holes, given by (4.106). In the case of
one hole in a unit sphere we were able to compare our result, (4.110), to that
derived by Singer et al. in [25], (4.111). Our result agrees asymptotically with
(4.111) and determines explicitly the O(ε) term. Our result, (4.104) generalizes
the result obtained in [25]. Furthermore, the result contains more terms in the
asymptotic expansion for the MFPT, which depend on the initial position x,
the location of the patches, xj , j = 1, .., N , and the radii of the holes.

Next, we derived the MFPT directly using the method of matched asymp-
totic expansions. We found that the result for the MFPT derived directly,
(4.149), agrees exactly with (4.104). In addition, we compared our asymptotic
result for the average MFPT for identical holes, (4.107), with numerical results
solving (4.112). We considered N equidistantly placed identical holes of radius
ε for N = 1, 2 and 4. The numerical results were computed using COMSOL [15]
by R. Straube [28]. We found good agreement with the numerical results when
using the three-term expression for the average MFPT, (4.107). The results are
tabulated in Table 4.1.

It is worth noting that in the case of N circular absorbing windows of com-
mon radius ε, that the MFPT is minimized in the limit as ε → 0 at the con-
figuration {x1, x2, ..., xN} that minimizes the discrete sum

∑N
i=1

∑N
j=1,j 6=i Hij .

This also maximizes the eigenvalue λ0, thus minimizing the MFPT.
Recall that our expressions for the MFPT are valid in the outer region and

are not valid in the vicinity of the absorbing windows. That is, our results for
the MFPT hold when |x− xj | >> O(ε), for each absorbing window j.
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Conclusion

In this thesis we focused on the mean first passage time, which is the mean time
a Brownian particle takes to escape from a domain Ω ∈ Rd, d = 2, 3, whose
boundary is reflecting, ∂Ωr, except for a small absorbing window, ∂Ωa. We let
ε = |∂Ωa|. This is known as the narrow escape problem, a singular perturbation
problem. As we have discussed, the mean first passage time has applications
in many fields including electrostatics, biology, and finance to name a few. We
discussed specific applications in biology and relevant results found in [25], [5],
[23], [24]. We compared our results with the work of these authors.

As it was shown in Chapter 1, the MFPT is defined in terms of a conditional
expectation, (1.10), dependent on the initial position x, which satisfies a mixed
boundary value problem for the Poisson equation, (1.26)-(1.28). The focus of
this thesis was to find the MFPT in various two-dimensional domains and in a
unit sphere.

In Chapter 2, we transformed the problem for the MFPT, (2.3)-(2.5), into
an eigenvalue problem by writing the MFPT in terms of a complete set of eigen-
functions. We found that the MFPT to leading order is inversely proportional
to the principal eigenvalue in the limit that ε → 0. This agrees with the lit-
erature. Recall that the absorbing arc ∂Ωa is a perturbation that is small in
extent but large in magnitude in a localized region. Thus, our methodology was
to find the principal eigenvalue and eigenfunction, λ0 and φ0, using the method
of matched asymptotic expansions, a singular perturbation technique.

We found the two-term asymptotic behaviour of the principal eigenvalue and
eigenfunction, in the limit that ε → 0. We then proceeded to find the MFPT.
We determined the two-term asymptotic behaviour of the MFPT in an arbitrary
two-dimensional domain with one hole on the boundary in the limit as ε → 0,
given by (2.53). The leading order term agrees with that derived by Singer et.
al in [25]. Our result provides more information since it is dependent on the
initial position, x, the location of the hole, x0, the length of the hole through d

and the shape of the domain.
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We extended our results to include N absorbing holes on the boundary. We
derived results for the principal eigenvalue and eigenfunction with N holes on
the boundary and N identical holes on the boundary. In the case of N identical
holes, we derived another result that exploited the special property of a cyclic
matrix in the matrix system (2.85). We proceeded to derive results for the
MFPT in these cases, given by (2.99), (2.101) and (2.103). We found in the
case of N identical holes that the leading order term was proportional to 1

N ,
which agrees with a result found by Holcman and Schuss in [5].

With these results in hand, we proceeded to investigate the MFPT in specific
geometries, namely the unit disk and unit square in Chapter 3. We compared
our results for a unit disk with one hole on the boundary with those derived by
Singer et al. in [23]. We found good agreement with their results. Furthermore,
we investigated the behaviour of the MFPT as the initial position moves towards
the hole on the boundary. We found that the MFPT decreases in this case. We
also investigated two holes on the boundary, and found that the MFPT reaches a
minimum when the holes are furthest apart. These results are shown in Figures
3.1 and 3.2. With N symmetrically located holes on the boundary of the unit
disk, we found a special result. In the limit as N → ∞, v(x) → 1

4D when x is
placed at the centre of the disk, with log 1

ε >> N .
We derived the Green’s function for a unit square. We used this result to

find the MFPT. In the case where the initial position moves towards the hole,
the MFPT decreases. When the initial position is fixed and the hole moves
along one side of the unit square, we find that the MFPT is a minimum where
the distance between the hole and the initial position is a minimum. These
results are depicted in Figures 3.4 and 3.5. We then considered two holes on
the boundary, one fixed, and one moved. The results are illustrated in Figure
3.6 and 3.7. We found that the MFPT is not a minimum where the distance
between the initial position and the moving arc is a minimum along sides 1
and 2. This is a result of the interaction with the second arc which is fixed
at the midpoint of side 1. However, along side 3, the MFPT is a minimum
when the two holes are furthest apart, and the distance from the moving arc
and the initial position is a minimum. This is a consequence of the symmetry
of the configuration with the moving exit window along side 3. Notice that
our expression for the MFPT is not uniformly valid at the corners of the unit
square, since the boundary is non-smooth at these points. By considering the
expression for the Green’s function at the corner, we see that the singularity
at the corner is twice as large as a singularity along the smooth portion of the
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boundary. We derived an expression for the MFPT that is valid at the corner
x0 = (0, 0) given by (3.55).

As we have seen from the general expressions for v(x), the Neumann Green’s
function plays an important role. To investigate different geometries, we must
find the Neumann Green’s function. We proposed a numerical technique, the
boundary element method, to find the Neumann Green’s function. We showed
that the method gave accurate results in the case of the unit circle. We then
attempted to use the method to find the Green’s function in an ellipse. We
found that R(x, x0) = 0.1291 for all x ∈ Ω and x0 ∈ ∂Ω. Thus, we concluded
that R was a constant. This implies that R(x0,x0) = 0.1291. We plotted the
behaviour of the Green’s function for x at the origin and x0 moving along the
boundary in Figure 3.8. We attempted to find R(x0, x0) numerically. However,
the numerical method did not converge in this case. We require many more
mesh points to attain the desired accuracy. At the present time, we do not
have the computational ability to reach the desired accuracy of four decimal
places. We propose using an integration technique that converges quicker, or
Richardson’s extrapolation to attain a more accurate answer.

In the case of perturbed circular domains, we used an analytical approach,
derived by T. Kolokolnikov [7], to find the Green’s function. The result, given
by (3.141), is unique up to a constant. To find the constant, we must impose
the integral condition

∫
Ω

G(x, x0)dx = 0. This analytic approach allows for
a comparison with the numerical approach. We considered an example of a
particular domain with σ given by (3.142), which is depicted in Figure 3.11 (a).
We found that the regular part of the Green’s function, ρ, (3.145), has a local
maximum where the curvature, κ, (3.143), has a local minimum at θ = π for a
particular parameter regime, a ∈ ( 1

6 , 4
15 ). We plotted the the curvature and ρ

in Figure 3.11 (b) for a = 0.2 and ε = 0.1. We then used our numerical method
to plot Rm(x0, x0) versus θ0 in Figure 3.12, for the shape given by (3.142),
for N = 600 and N = 2400 mesh points along the boundary. By comparing
these curves we see that the numerical method is converging extremely slowly
since the two curves are similar. The numerical results qualitatively agree with
the analytical result in that Rm(x0, x0) has a maximum at θ = π. However,
the scaling is incorrect in comparison to the analytical result. To obtain a
more accurate numerical result, or at least one that converges faster, we must
calculate the integral (3.78) more accurately instead of using the midpoint rule.

In three-dimensions, the statement of the narrow escape problem is no dif-
ferent from the statement in two dimensions. Thus, the MFPT must satisfy
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(1.26)-(1.28). As in two-dimensions, we transform the problem into an eigen-
value problem, for the principal eigenvalue and eigenfunction. To proceed by the
method of matched asymptotic expansions, we solved for the Green’s function
first. This is different to the approach in two dimensions. In three-dimensions,
one must find the Green’s function first, before finding the MFPT. We found
the Neumann Green’s function for a sphere of radius R. We found the principal
eigenvalue and eigenfunction in a unit sphere with N holes on the boundary
given by (4.88) and (4.89). We derived simplified results in the case of N iden-
tical holes. We found the MFPT for N absorbing patches of differing radii
on the boundary, (4.104). We simplified this result for the case of N identical
patches. The result is given by (4.106). For one hole on the boundary of radius
a the MFPT is given by (4.108). In the case of one hole with radius a = 1 in
a unit sphere we were able to compare our result, (4.110), to that derived by
Singer et al. in [25], (4.111). Our result agrees asymptotically with (4.111) and
determines explicitly the O(ε) term. Our result, (4.104), generalizes the result
obtained in [25]. Furthermore, the result contains more terms in the asymptotic
expansion for the MFPT, which depend on the initial position x, the location
of the patches, xj , j = 1, .., N , and the radii of the holes.

Next, we derived the MFPT directly using the method of matched asymp-
totic expansions. We found that the result for the MFPT derived directly,
(4.149), agrees exactly with (4.104). We also compared our asymptotic result
for the average MFPT for N identical holes of radius ε on the boundary, (4.107),
with numerical results solving (4.112). These numerical results were computed
for N = 1, 2 and 4 identical holes placed equidistantly on the surface of the
sphere using COMSOL [15] by R. Straube [28]. We found good agreement with
the numerical results when comparing them to the three-term asymptotic result
(4.107). The results are tabulated in Table 4.1.

It is worth noting that in the case of N circular absorbing windows of com-
mon radius ε, that the MFPT is minimized in the limit as ε → 0 at the con-
figuration {x1, x2, ..., xN} that minimizes the discrete sum

∑N
i=1

∑N
j=1,j 6=i Hij .

This also maximizes the eigenvalue λ0, thus minimizing the MFPT.
We note that our expressions for the MFPT are valid in the outer region

and are not valid in the vicinity of the absorbing windows. That is, our results
for the MFPT hold when |x− xj | >> O(ε), for each absorbing window j.

We would like to extend the framework introduced in Chapter 4 to include
an arbitrary three-dimensional domain. It is an open problem to find the MFPT
and the Green’s function in an arbitrary three-dimensional domain.
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We would like to improve the convergence of the boundary element method
introduced in Chapter 3 when finding R(x0,x0). As mentioned, we could cal-
culate the integrals more accurately using gaussian quadrature. Alternatively,
we could find the error term for the technique and attempt Richardson extrapo-
lation to find more accurate answers for R(x0, x0). Lastly, we could change the
elements for the method by using line segments instead of circular arcs. With
improved convergence, we could use the technique to find the Neumann Green’s
function for domains with smooth boundaries more accurately.

Finally, the related problem for the Dwell time would be an extension of the
work presented in this thesis.
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Appendix A

Derivation of d

We want to solve for vc(y), where vc satisfies

∆yvc = 0, y /∈ ∂Ω0,

vc = 0, y ∈ ∂Ω0,

vc → log |y| as |y| → ∞. (A.1)

The problem for vc(y), (2.28), has a unique solution and the behaviour at ∞ is
[8]

vc(y) ∼ log |y| − log d +
p.y

|y|2 . (A.2)

where d, the logarithmic capacitance and p = (p1, p2), the dipole vector, are
determined from the length of the hole, ∂Ωa. In our case, where the length of
the hole is |∂Ωa| = 2ε, d = 1

2 . This is obtained by a special solution in terms of
elliptic cylindrical coordinates. We present a derivation here.

In elliptic cylindrical polar coordinates y = (x, y) transforms as

x = R cosh ξ cos Λ, y = R sinh ξ sinΛ, (A.3)

with 0 ≤ Λ < 2π. Furthermore we find for a function f(x, y) that fxx + fyy =
fξξ + fΛΛ = 0.

Under these coordinates we have that

x2

R2 cosh2 ξ
+

y2

R2 sinh2 ξ
= 1. (A.4)

Thus, curves of constant ξ form ellipses. We choose

R cosh ξ0 = a, R sin ξ0 = b. (A.5)
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Therefore,

R = (a2 − b2)1/2, ξ0 =
1
2

log
(

1 + b/a

1− b/a

)
for a > b. (A.6)

We have mapped the ellipse onto an infinite sheet in the Λ− ξ plane. To solve
the problem (A.1) we must solve

fξξ + fΛΛ = 0, ξ > ξ0, 0 ≤ Λ < 2π,

f = 0 on ξ = ξ0,

f ∼ log |r| as ξ →∞, (A.7)

where r =
√

x2 + y2 and f is 2π periodic in Λ. The solution is f = C(ξ − ξ0),
where C is a constant.

As ξ →∞ the coordinates (A.3) become

x =
Reξ

2
cosΛ, y =

Reξ

2
sinΛ. (A.8)

In this limit r = Reξ

2 and therefore ξ = log r + log 2
R . We find the behaviour of

f as ξ → ∞ by substituting for ξ in this limit and ξ0 and R from (A.6). We
find that

f = C

(
log r + log

2
R
− 1

2
log

(
1 + b/a

1− b/a

))
,

= C

(
log r − log

(
a + b

2

))
. (A.9)

Thus, to obtain f ∼ log r at ∞, C = 1. By setting d = a+b
2 we obtain the

behaviour (A.2) at ∞. In our case b = 0, thus for an arc of length 2a, d = a
2 . In

general, for an arc of length l, d = l
4 . The solution for vc is given by C(ξ − ξ0),

where one must map back to Cartesian coordinates. The far-field behavior of
vc is given by (A.2).
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Far-Field Behaviour of ψc

We consider

ψcΛΛ + ψcs1s1 + ψcs2s2 = 0, Λ ≥ 0, −∞ < s1, s2 < ∞, (B.1)

∂Λψc = 0, Λ = 0, s2
1 + s2

2 ≥ a2
j , (B.2)

ψc = 1, Λ = 0, s2
1 + s2

2 ≤ a2
j . (B.3)

The exact solution from [6] is

ψc =
2
π

∫ ∞

0

sin µ

µ
e−µΛ/aj J0

(
µσ

aj

)
dµ, (B.4)

where σ = (s2
1 +s2

2)
1/2. Now, we want to derive the asymptotics of this solution

as |y| = (
Λ2 + s2

1 + s2
2

)1/2 →∞.
We introduce r = µσ

aj
. Then

ψc =
2aj

πσ

∫ ∞

0

sin (ajr/σ)
ajr/σ

e−γrJ0(r)dr, (B.5)

where γ = Λ/σ. We would like to determine the asymptotic behavoiur as
σ →∞, but with γ fixed. As x → 0 we know that sin x

x ∼ 1− x2

6 + · · · . Thus,

ψc ∼ 2aj

πσ

(
I0 −

a2
j

6σ2
I1 + · · ·

)
, (B.6)

where

I0 =
∫ ∞

0

e−γrJ0(r)dr, (B.7)

I1 =
∫ ∞

0

r2e−γrJ0(r)dr. (B.8)
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It follows that I0 is the Laplace transform of J0(r). Hence

I0 =
1√

1 + γ2
. (B.9)

Also I1 = d2

dγ2 I0(γ).
We find that

ψc ∼ 2aj

π

[
I0

σ
− a2

j

6σ3
I1 + · · ·

]
, (B.10)

where

I0

σ
=

1√
Λ2 + σ2

, (B.11)

I1

σ3
= − 1

(Λ2 + σ2)3/2
+

3Λ2

(Λ2 + σ2)5/2
. (B.12)

Defining |y| = (
Λ2 + s2

1 + s2
2

)1/2 we find that

ψc ∼ 2aj

π

(
1
|y| +

a2
j

6

(
1
|y|3 −

3Λ2

|y|5
))

as |y| → ∞. (B.13)

This is the asymptotic behaviour at ∞ uniform in Λ, s1 and s2.
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Matlab Code

Here we give the code for the boundary element method for an ellipse. We
first give the code for finding R(x,x0) and then the code for finding R(x0, x0).
Lastly we give the code for finding the integral of R(x, x0) over Ω.

clear all;

N=640; dth = 2*pi/N; th = 0:dth:2*pi;

s = zeros(N,1); %arclength vector

m = 5000; %number of steps in the trapezoidal rule for

the arclength

a = 2; b = 1; sum2 = 0; area = pi*a*b; for j = 1:N

lowerth = th(j);

upperth = th(j+1);

ht = (upperth-lowerth)/m;

sum2 = 0;

for k = 0:m

thk = lowerth + k*ht;

if k == 0

sum2 = ht/2*sqrt((a^6*b^2*(sin(thk))^2+a^2*b^

6*(cos(thk))^2)/((a^2*(sin(thk))^2 +

b^2*(cos(thk))^2)^3)) + sum2;

elseif k == m

sum2 = ht/2*sqrt((a^6*b^2*(sin(thk))^2+a^2*b^

6*(cos(thk))^2)/((a^2*(sin(thk))^2 +

b^2*(cos(thk))^2)^3)) + sum2;

else

sum2 = ht*sqrt((a^6*b^2*(sin(thk))^2+a^2*b^6*

(cos(thk))^2)/((a^2*(sin(thk))^2 +

b^2*(cos(thk))^2)^3)) + sum2;

end;

end;
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s(j) = sum2;

end;

% s is the vector of lengths of each segment

% Setting up the midpoints

for j = 1:N

nth(j) = (0.5*(th(j)+th(j+1))); %midpoints

end; r = (a*b)./(a^2.*sin(nth).^2 + b^2.*cos(nth).^2).^(1/2); xm

=r.*cos(nth); ym = r.*sin(nth);

plot(xm,ym,’*r’); %plot of meshpoints

x = 1; y = 0.5;

c = -a*b*(a^2-b^2); d = a^2.*sin(nth).^2 + b^2.*cos(nth).^2;

rdr = c*sin(nth).*cos(nth).*(a^2.*sin(nth).^2+b^2.*cos(nth).^2).

^(-3/2); %first derivative

rddr = c.*((cos(nth).^2-sin(nth).^2).*(d.^(-3/2))-3*(a^2-b^2).*

(sin(nth).^2).*(cos(nth).^2).*d.^(-5/2)); %second derivative

k = (r.^2+2*rdr.^2-r.*rddr)./((r.^2+ rdr.^2).^(3/2)); %curvature

nx = (1./sqrt(rdr.^2+r.^2)).*(xm+rdr.*sin(nth)); ny =

(1./sqrt(rdr.^2+r.^2)).*(ym-rdr.*cos(nth));

f = inline(’sqrt((x1-x2)^2+(y1-y2)^2)’);

for j = 1:N

bb(j) = 0;

for i = 1:N

if i == j

A(i,j) = 1-(s(i)*k(i))/(4*pi);

bb(j) = s(i)/(4*pi*area)*log(f(x,xm(i),y,ym(i)))

*(xm(i)*nx(i)+ym(i)*ny(i))+bb(j);

else

A(i,j) = -s(i)/(2*pi*f(xm(i),xm(j),ym(i),ym(j))^2)*

(nx(i)*(xm(i)-xm(j))+ny(i)*(ym(i)-ym(j)));

bb(j) = s(i)/(4*pi*area)*log(f(x,xm(i),y,ym(i)))

*(xm(i)*nx(i)+ym(i)*ny(i))+bb(j);

end;

end;

end; R = A’\bb’;
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Now we give the code for the calculation of R(x0, x0).

clear all; clf

N=2400; dth = 2*pi/N; th = 0:dth:2*pi; s = zeros(N,1); m = 5000;

a = 2; b = 1; area = pi*a*b; sum2 = 0; delta = 0; for j = 1:N

lowerth = th(j);

upperth = th(j+1);

ht = (upperth-lowerth)/m;

sum2 = 0;

for k = 0:m

thk = lowerth + k*ht;

if k == 0

sum2 = ht/2*sqrt((a^6*b^2*(sin(thk))^2+a^2*

b^6*(cos(thk))^2)/((a^2*(sin(thk))^2 +

b^2*(cos(thk))^2)^3)) + sum2;

elseif k == m

sum2 = ht/2*sqrt((a^6*b^2*(sin(thk))^2+a^2*

b^6*(cos(thk))^2)/((a^2*(sin(thk))^2 +

b^2*(cos(thk))^2)^3)) + sum2;

else

sum2 = ht*sqrt((a^6*b^2*(sin(thk))^2+a^2*

b^6*(cos(thk))^2)/((a^2*(sin(thk))^2 +

b^2*(cos(thk))^2)^3)) + sum2;

end;

end;

s(j) = sum2;

end;

% s is the vector of lengths of each segment

for j = 1:N

nth(j) = (0.5*(th(j)+th(j+1))); %midpoints

end; r = (a*b)./(a^2.*sin(nth).^2 + b^2.*cos(nth).^2).^(1/2); xm

=r.*cos(nth); ym = r.*sin(nth); plot(xm,ym,’.’); c =

-a*b*(a^2-b^2); d = a^2.*sin(nth).^2 + b^2.*cos(nth).^2; rdr =

c*sin(nth).*cos(nth).*(a^2.*sin(nth).^2+b^2.*cos(nth).^2).^(-3/2);

rddr = c.*((cos(nth).^2-sin(nth).^2).*d.^(-3/2)-3*(a^2-b^2).

*(sin(nth).^2).*(cos(nth).^2).*d.^(-5/2));
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k = (r.^2+2*rdr.^2-r.*rddr)./((r.^2+ rdr.^2).^(3/2)); %curvature

nx = (1./sqrt(rdr.^2+r.^2)).*(xm+rdr.*sin(nth)); ny =

(1./sqrt(rdr.^2+r.^2)).*(ym-rdr.*cos(nth));

f = inline(’sqrt((x1-x2)^2+(y1-y2)^2)’); Ns = N; for ks = 1:Ns

x = xm(ks);

y = ym(ks);

for j = 1:N

bb(j) = 0;

for i = 1:N

if i == j

A(j,i) = 1-(s(i)*k(i))/(4*pi);

if (x == xm(i))& (y == ym(i))

c = 0;

m = (k(i)*s(i)-delta)/2;

bb(j) = 1/(8*pi*area*k(i)^2)*(s(i)*k(i)*log(2/k(i)^2

)+2*(s(i)*k(i))*log(s(i)*k(i)/2) - s(i)*k(i)*log(2)

-2*s(i)*k(i)+m*(log(2*(1-cos(c+m/sqrt(3)))/

((c+m/sqrt(3))^2))+log(2*(1-cos(c-m/sqrt(3)))/

((c-m/sqrt(3))^2)))) + bb(j);

else

%THIS INTEGRAL IS CALCULATED IN THE GLOBAL COORD

%SYSTEM WITH THE MIDPOINT RULE

bb(j) = s(i)/(4*pi*area)*0.5*log((x-xm(i))^2+

(y-ym(i))^2)*(xm(i)*nx(i)+ym(i)*ny(i))+bb(j);

end;

else

%EXPRESSION USING GLOBAL COORDINATE SYSTEM AND MIDPOINT

%RULE

A(j,i) = -s(i)/(2*pi*((xm(i)-xm(j))^2+(ym(i)-ym(j))^2)

)*(nx(i)*(xm(i)-xm(j))+ny(i)*(ym(i)-ym(j)));

if (x == xm(i))& (y == ym(i))

c=0;

m = (k(i)*s(i)-delta)/2;

bb(j) = 1/(8*pi*area*k(i)^2)*(s(i)*k(i)*log(2/k(i)^2
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)+2*(s(i)*k(i))*log(s(i)*k(i)/2) - s(i)*k(i)*log(2)

-2*s(i)*k(i)+m*(log(2*(1-cos(c+m/sqrt(3)))/

((c+m/sqrt(3))^2))+log(2*(1-cos(c-m/sqrt(3)))/

((c-m/sqrt(3))^2)))) + bb(j);

else

%THIS INTEGRAL IS CALCULATED IN THE GLOBAL COORD

%SYSTEM WITH THE MIDPOINT RULE

bb(j) = s(i)/(4*pi*area)*0.5*log((x-xm(i))^2

+(y-ym(i))^2)*(xm(i)*nx(i)+ym(i)*ny(i))+bb(j);

end;

end;

end;

end; R = A\bb’; finalR(1,ks) = R(1,1);

%finalR(:,ks) = R;

end; %ks

min = 1; max = 0; for k = 1:N

if finalR(1,k) < min

min = finalR(1,k);

end;

if finalR(1,k) > max

max = finalR(1,k);

end;

end;

Finally, we give the code for calculating
∫
Ω
R(x0, x0)dx using the midpoint

rule.

clear all;

%changed to use the midpoint rule

N=80; %x_0’s, the integral should be independent of this

m=5000; %integration steps in theta for finding the arclength

dth = 2*pi/N; th = 0:dth:2*pi; s = zeros(N,1); a = 2; b = 1; sum2

= 0; area = pi*a*b;

for j = 1:N

lowerth = th(j);

upperth = th(j+1);

ht = (upperth-lowerth)/m;
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sum2 = 0;

for k = 0:m

thk = lowerth + k*ht;

if k == 0

sum2 = ht/2*sqrt((a^6*b^2*(sin(thk))^2+a^2*

b^6*(cos(thk))^2)/((a^2*(sin(thk))^2 +

b^2*(cos(thk))^2)^3)) + sum2;

elseif k == m

sum2 = ht/2*sqrt((a^6*b^2*(sin(thk))^2+a^2*

b^6*(cos(thk))^2)/((a^2*(sin(thk))^2 +

b^2*(cos(thk))^2)^3)) + sum2;

else

sum2 = ht*sqrt((a^6*b^2*(sin(thk))^2+a^2*

b^6*(cos(thk))^2)/((a^2*(sin(thk))^2 +

b^2*(cos(thk))^2)^3)) + sum2;

end;

end;

s(j) = sum2;

end;

% s is the vector of lengths of each segment

for j = 1:N

nth(j) = (0.5*(th(j)+th(j+1))); %midpoints/singular points

end; r = (a*b)./(a^2.*sin(nth).^2 + b^2.*cos(nth).^2).^(1/2); xm

=r.*cos(nth); ym = r.*sin(nth); plot(xm,ym,’*’); hold on; c =

-a*b*(a^2-b^2); d = a^2.*sin(nth).^2 + b^2.*cos(nth).^2; rdr =

c*sin(nth).*cos(nth).*(a^2.*sin(nth).^2+b^2.*cos(nth).^2).^(-3/2);

rddr = c.*((cos(nth).^2-sin(nth).^2).*d.^(-3/2)-3*(a^2-b^2).

*(sin(nth).^2).*(cos(nth).^2).*d.^(-5/2));

kr = (r.^2+2*rdr.^2-r.*rddr)./((r.^2+ rdr.^2).^(3/2)); %curvature

nx = (1./sqrt(rdr.^2+r.^2)).*(xm+rdr.*sin(nth)); ny =

(1./sqrt(rdr.^2+r.^2)).*(ym-rdr.*cos(nth));

%this sets up the integration variables over x

n = 100; ht = (2*pi)/n; k = 1:1:n; tk = k.*ht; uppert =

(a*b)./((a^2.*(sin(tk)).^2 + b^2.*(cos(tk)).^2).^(1/2));

hr =(uppert); f = inline(’sqrt((x1-x2)^2+(y1-y2)^2)’);

%we have separated everything out into integrals

137



Appendix C. Matlab Code

for k = 1:n

thk = tk(k);

h = hr(k); % this is the length of the interval, b-a

x = 0.5*h*cos(thk);

y = 0.5*h*sin(thk);

plot(x,y,’.r’);

hold on;

for j = 1:N

bb(j) = 0;

for i = 1:N

if i == j

A(i,j) = 1-(s(i)*kr(i))/(4*pi);

bb(j) = s(i)/(4*pi*area)*log(f(x,xm(i),y,ym(i)))

*(xm(i)*nx(i)+ym(i)*ny(i))+bb(j);

else

A(i,j) = -s(i)/(2*pi*f(xm(i),xm(j),ym(i),ym(j))^2)

*(nx(i)*(xm(i)-xm(j))+ny(i)*(ym(i)-ym(j)));

bb(j) = s(i)/(4*pi*area)*log(f(x,xm(i),y,ym(i)))

*(xm(i)*nx(i)+ym(i)*ny(i))+bb(j);

end;

end;

end;

R(:,k) = A’\bb’;

end;

for ks = 1:N %this is the loop over the x0,y0’s

%numerical integration

sum3 = 0; sumt = 0; sumw = 0;

for k = 1:n %(t index)

h = hr(k);

thk = tk(k);

sumt = sumt + 0.5*ht*0.5*h^2*log((0.5*h*cos(thk)-xm(ks))^2

+(0.5*h*sin(thk)-ym(ks))^2);

sum2 = 0.5*h^2*R(ks,k); %r index, midpoint rule

sum3 = sum3 + ht*sum2;
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sumw = sumw + 0.5*ht*h^2*(h^2/4+xm(ks)^2+ym(ks)^2);

end;

sumfinal(ks) = sum3;

sum2final(ks) = sumt;

sum3final(ks) = sumw;

end; %for ks
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