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Abstract

In this thesis we present an analysis of the Gierer-Meinhardt model with

saturation (GMS) on various curve geometries in R2. We derive a boundary

fitted coordinate framework which translates an asymptotic two-component

differential equation into a single component reaction diffusion equation with

singular interface conditions. We create a numerical method that generalizes

the solution of such a system to arbitrary two-dimensional curves and show

how it extends to other models with singularity properties that are related

to the Laplace operator. This numerical method is based on integrating log-

arithmic singularities which we handle by the method of product integration

where logarithmic singularities are handled analytically with numerically in-

terpolated densities. In parallel with the generalized numerical method, we

present some analytical solutions to the GMS model on a circular and slightly

perturbed circular curve geometry. We see that for the regular circle, sat-

uration leads to a hysteresis effect for two dynamically stable branches of

equilibrium radii. For the near circle we show that there are two distinct

perturbations, one resulting from the introduction of a angular dependent

radius, and one caused by Fourier mode interactions which causes a vertical

shift to the solution. We perform a linear stability analysis to the true circle

solution and show that there are two classes of eigenvalues leading to breakup
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or zigzag instabilities. For the breakup instabilities we show that the sat-

uration parameter can completely stabilize perturbations that we show are

always unstable without saturation and for the zigzag instabilities we show

that the eigenvalues are given by the near circle curve normal velocity. The

breakup analysis is based on the reduction of an implicit non-local eigen-

value problem (NLEP) to a root finding problem. We derive conditions for

which this eigenvalue problem can be made explicit and use it to analyze a

stripe and ring geometry. This formulation allows us to classify certain tech-

nical properties of NLEPs such as instability bands and a Hopf bifurcation

condition analytically.
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Chapter 1

Introduction

Pattern formation is the observation of orderly outcomes arising from com-

mon attributes in a particular system. Patterns exist across all branches

of science and occurs on many magnitudes of scale from cell division at the

microscopic level to dune formations in the desert. The history of pattern for-

mation is rich and was developed by groups of scientists with interdisciplinary

knowledge in mathematics, chemistry, biology, and physics. The origins of

pattern formation in science are traced to the study of oscillation in chemical

reactions [69]. One of the earliest papers to address this issue mathemati-

cally is credited to Lotka [48] in which he solved differential equations that

could represent a chemical system and showed that damped oscillation so-

lutions occur. However, he conceded that, as of the time of writing (1910),

he was unaware of any real chemical reactions which could be explained by

such models. Lotka’s work was eventually extended to what became known

as the Lotka-Voltera equations (cf. [49],[16]), a general competition model

which has most frequently been used to study predator-prey relationships.

One significant criticism of this type of model to general pattern formation

was that it was more representative of a mechanical equation, such as that of

a pendulum, where the final solutions were heavily dependent on initial data

[69]. Later, a theoretical framework was presented which allowed for this
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required structural stability through limit cycle oscillations. These models

became referred to as Brusselator models (cf. [75],[16]), although at the time

there was still little evidence of actual chemical reactions that had any sort

of oscillatory behaviour. In the many years that followed however, chem-

ical reactions were discovered such as the Briggs-Rauscher (cf. [10], [61])

and perhaps most famously, the Belousov-Zhabotinsky reaction (cf. [8], [83],

[19]), which can be described with the Brusselator framework. In the context

of limit cycles, Schnakenberg (cf. [71], [16]) refined the general ideas of the

Brusselator model into a set of required conditions for limit cycles to form.

Tangent to the study of chemical reactions was the study of patterns in the

context of fluid dynamics, such as the Rayleigh-Bénard convection patterns

(cf. [21], [13]). Unlike the difficulty in experimentally confirming theoreti-

cal models of patterns in chemical reactions, the Rayleigh-Bénard instability

was, experimentally, very well described [69].

Modern understanding of biological pattern formation is mostly attributed

to the seminal paper by Turing [74] in which he showed that diffusion, a

mechanism typically associated with stability, could be a destabilizing mech-

anism in a two-compartment system. His paper showcases several types of

solutions including oscillations and travelling waves. The breadth of patterns

discussed from this work was a catalyst in the rediscovery and correlation of

literature in pattern formation which stimulated the research field [69]. In

particular, many of Turing’s spatiotemporal patterns were found in papers in

population dynamics (cf. [17], [37]). In the context of this thesis, which is a

hybrid analytical and numerical analysis of pattern formation, Turing’s paper
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demonstrates extra significance because it was the first paper to incorporate

numerically computed solutions of reaction-diffusion equations alongside an-

alytical results with Turing himself contributing heavily to the building of

the computer used [69].

Since Turing’s pioneering work, pattern formation problems have been stud-

ied in a variety of contexts including animal spotting [63], sea-shell formation

[67], urban crime analysis [41], and animal aggregation [12]. A common at-

tribute of most pattern formation problems is that pattern initiation is gen-

erally attributed to very complex dynamical systems involving positive feed-

back loops, self-reinforcing conditions, and antagonistic tendencies [67]. The

particular focus on pattern formation in a biological context has interested

scientists because of the large scale where cascades of chemical reactions and

biological processes, often beginning with a single cell, eventually develop into

complex structures that are necessary to support life in organisms. While it

may seem a near impossible endeavour to understand the formation of these

complex structures, many of them, as a first approximation, can be taken to

be independent from one another. For example, the legs of most amphibians

develop regularly even when placed in ectopic positions indicating that the

growth is primarily due to the influence of local variables (with respect to

the larger organism as a whole) [67].

Following the work of Turing, it was postulated that more complex bio-

logical pattern formation requires two conditions in order to persist: local

self-enhancement and long-range inhibition (cf. [20], [72]). One such model,

3



Chapter 1. Introduction

presented in [20], is called the Gierer and Meinhardt (GM) model. The au-

thors postulated a coupled partial differential equation model to describe

morphogen activation and inhibition as it related to head formation in hy-

dra. However, this model later proved to be useful in describing patterns in

such things as the formation of embryonic axes, leaf formation at the tip of

a growing shoot, and shell patterns on mollusks [67]. It is of interest to note

that, when postulating their model, Gierer and Meinhardt were unfamiliar

with the work of Turing and only became aware of it when it was mentioned

by one of their article reviewers [51]. This model has a rich history of analysis

(cf. [39], [80], [33], [46], [32], [15], [79] among many others) and will be the

focus of this thesis. A general non-dimensional GM model can be written

down as

vt = Dv∆v − v +
vp

uq
(1.1a)

τut = Du∆u− u+
vo

us
(1.1b)

with v an activator and u an inhibitor. The coefficients Di are the respective

diffusivities, τ is the inhibitor time constant, and the exponents (p, q, o, s)

satisfy [20],

p > 1, q > 0, o > 0, s ≥ 0,
p− 1

q
<

o

s+ 1
. (1.2)

We refer to the activator as autocatalytic because it encourages its own

growth, satisfying the local-self enhancement for pattern formation. How-

ever the activator also induces production of the inhibitor which ultimately

limits the destabilizing autocatalytic behaviour, satisfying the long-range in-
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hibition requirement.

Typically the onset of pattern formation is initiated by a Turing instabil-

ity of a spatially homogeneous steady-state [74]. For the GM model, this

was conducted in [24] where it was concluded that these types of solutions

are unstable when Du � Dv. In modern nomenclature, this is known as the

semi-strong regime of the GM model which is the focus of the work in this

thesis. Final patterns that ultimately form from perturbations to spatially

homogeneous initial data are strongly localized and qualitatively very differ-

ent from the initial structure (cf. [38], [29]). Therefore there is vast interest

in understanding these patterns far from the Turing regime. For the semi-

strong description, we take Dv = ε2 � 1 and Du = D = O(1) and make the

following scalings which are uniquely determined by appropriate order one

behaviour of the system (cf. [33]),

v = ε
Nq

(p−1)(s+1)−qo v̂, u = ε
N(p−1)

(p−1)(s+1)−qo û; (p− 1)(s+ 1)− qo < 0,

where N is the dimension of the localized domain. Substituting these scaled

variables into (1.1) simplifies to (dropping the hats),

vt = ε2∆v − v +
vp

uq
(1.3a)

τut = D∆u− u+
1

εN
vo

us
. (1.3b)

We remark that the scaling is chosen so that the localized activator is of order

unity as ε tends to zero. We will also consider a weakly saturated variant of
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(1.3) where we replace
vp

uq
→ vp

uq(1 + σvp)
,

where the term weak saturation is denoted when σ = O(1), specifically that

σ � ε
Npq

(p−1)(s+1)−qo .

1.1 Main Contribution and Summary of

Previous Work

Most of the early mathematical work of the GM model was done in the limit

D → ∞, known as the shadow regime (cf. [59], [26]). In this scenario, the

inhibitor is spatially constant and (1.3) resolves to a single parabolic PDE for

the activator. The solution to this problem concentrates on a finite number

of points in a way that is related to a ball-packing problem. Moving from the

shadow regime and taking D finite, multiple spike solutions were considered

in a one dimensional variant of (1.3) for which τ = 0 (cf. [33], [32]). It

was concluded that an N spike pattern is stable if D < DN , some critical

diffusivity related to the properties of Green’s functions. The analysis of this

work was based upon the time constant τ being zero. As τ increases the

inhibitor takes longer to notice changes in the activator concentration and it

was postulated that this should destabilize the pattern. Indeed the extension

for τ 6= 0 in [79] showed this unstable behaviour for τ large and included the

conditions for which a Hopf bifurcation occurs on a quasi-equilibrium spike

pattern.
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One extension of the study of (1.3) to two dimensions involved analyzing

a stripe solution centered at the mid-line of a rectangular domain (cf. [15],

[39]). The construction of this solution was such that the cross-section was a

1-spike pattern constructed in the one dimensional analysis. The stability of

this stripe solution was analyzed in [39] in terms of both breakup and zigzag

instabilities which are generated by a class of even and odd eigenfunctions

respectively. This work also shows that the addition of saturation can sta-

bilize a stripe from equilibrium. Unlike the one dimensional case however,

studies in two-dimensional domains are not as abundant, particularly for

non-stripe geometries. Steady-state ring solutions to N -D radially symmet-

ric domains with N ≥ 2 was investigated in [58] but with no accompanying

stability analysis information. The stability of homoclinic stripes and rings

has been considered for other models with the Grey-Scott model ([52], [40]),

the Schnakenberg model [11], and the Swift-Hohenberg model [22], but less

work is available for the GM model. Many of these models share similar

characteristics but the presence of a saturation parameter in the GM model

introduces unique aspects from previously studied models.

Through the use of matched asymptotic analysis (cf. [9]), we analyze the

existence and stability of ring solutions to breakup and zigzag instabilities

for the saturated Gierer-Meinhardt model. The analysis of breakup instabil-

ities has a similar structure to that of a stripe and leads to the same con-

clusions but relies on a different Green’s function formulation. Specifically,

the ring geometry involves modified Bessel functions which are less analyti-

cally tractable than the exponential Green’s functions that are generated on
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a rectangular domain. As such we require numerical computations of key

monotonicity properties to show regions of stability and instability for the

breakup. The analysis of zig-zag eigenvalues associated with the odd eigen-

functions for the ring geometry shows a significant difference in derivation as

compared to the stripe in [39] or [33]. The latter analysis relies on differenti-

ating the global problem for the activator for which the Laplacian coefficients

for a stripe are constant. In contrast, the polar form of the Laplace oper-

ator has non-constant coefficients arising from the 1/r curvature term and

therefore we present a more natural formulation relying on the inner region

asymptotic analysis of (1.3).

Unlike the stripe, there is no equivalent universal mid-line with which to

place a ring equilibrium. Instead, the equilibrium values depend on the pa-

rameters of the problem and, when there is no saturation, undergo a saddle-

node bifurcation with which equilibrium radii only exist on D > Dc for some

critical diffusivity that depends on the outer disk radius and exponent set.

In the presence of saturation a ring equilibrium does exist for all diffusivity

values and initiates a hysteresis effect with an unstable branch of equilibrium

between two stable branches. This is a phenomena that has not been ob-

served in previous steady-state analysis of the GM or related models. Away

from the equilibria values, the dynamics of the ring radii follow a differential

equation which persists on an O(ε−2) time scale. As such, in contrast to

the stripe problem, the steady-state is quasi time dependent and therefore

the linear stability analysis formulation involves an application of the WKB

method (or alternatively the multiple time scales method) [9] for handling
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the eigenvalue problems. Typically, this slow-time evolution analysis arises

with the dynamic evolution of a critical bifurcation parameter [76], but is

rarely needed for a linear stability formulation.

Using a boundary fitted coordinate system, we are able to pose the GM

model in an arbitrary two-dimensional framework. We use this model to find

the existence of saturated near-ring solutions. We believe this is one of the

first attempts to analytically treat a non-standard, non-symmetric geometry

with this model. The generalization of the model to the boundary fitted

coordinates, makes it non-self-adjoint and, as such, intractable to analysis

in general geometries. However, it is easily recast as a singular interface

problem which can be analyzed and computed numerically using the method

of layer potentials. We formulate a numerical method to solve generalized

singular interface problems, one of which is the saturated GM model. These

singular interface problems are in contrast to pattern formation models de-

veloped in [23] which reduce to non-singular curve evolution equations which

are more tractable for computation than the models we present. Aside from

solving the GM model, we show the generality of our numerical method by

applying it to the well studied Mullins-Sekerka problem [55]. The method

involves singular properties of the Laplace operator and related operators,

such as the modified Helmholtz operator in the GM model. Recent work (cf.

[68]) has studied the modified Helmholtz operator using a layer potential

formulation as well. However, the focus of that work was for solutions in

all of space based on a set of static singular interfaces. Since we are gener-

ally interested solely on the evolution of curves, we have designed our method
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to focus only on the tracking of curves subject to a set of dynamic conditions.

Finally, for both stripes and rings using general exponent sets for (1.3), the

stability analysis involves understanding a non-self-adjoint, non local eigen-

value problem (NLEP). The complex structure of the eigenvalue problem

generally leads to bounding arguments for eigenvalues such as the results

in [39] and what we present in Chapter 3. However, for specific choices of

exponent sets, the eigenvalue problems can be formed in an explicitly solv-

able way. These results were first discovered in [57] and we generalize the

conditions for which an NLEP can be explicitly solvable, leading to a new

stability classification for a previously unreported exponent set.

1.2 Thesis Outline

We present the material of this thesis as follows. In Chapter 2 we formulate

the general boundary fitted coordinate Laplace operator for use in solving

the Gierer-Meinhardt model and reduce it to a singular interface problem

involving a flux jump condition across some (possibly disconnected) curve

Γ and a normal velocity condition. We then restrict this problem to two

geometries. In 2.3.1, we first consider the asymptotic construction of a ring

solution on some circular domain Ωring including the extension of the normal

velocity condition to a dynamic differential equation for the ring radius. We

use this to analyze the ring radii equilibrium and conclude that the equilib-

rium structure is drastically different with and without saturation where a

saddle node bifurcation occurs for the former and a hysteresis effect for the
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latter. We also show the existence of ring solutions for which the inhibitor

is non-radially symmetric. The determination of these solutions relies on

studying a root finding problem of a Fourier transform decomposition and

is extremely preferential to the radially symmetric solution root. However,

this root finding problem can be used to verify non-radially symmetric solu-

tions that are found with the numerical study of Chapter 6. Next in 2.3.2,

we utilize the boundary fitted coordinate framework to analyze the quasi-

steady solutions of a near circular solution where the ring radius r = r(θ).

The same model could be derived from a polar coordinate framework but

the jump and velocity conditions would be less natural to implement. The

boundary-fitted framework extracts both of these conditions regardless of the

underlying geometry. We show, using a Fourier analysis, that the first or-

der corrections introduce sinusoidal perturbations to both the curve inhibitor

value and radial velocity but that a second order correction is required to

account for vertical shifts that may occur. This shifting is due to the inter-

action of Fourier modes at higher order. Furthermore, we show that when

the base radius of a slightly perturbed ring radius is small enough, the ve-

locity corrections are in phase with the curve perturbation and therefore act

to stabilize the curve toward a circle. This is due to the curvature being a

stabilizing term in the normal velocity equation.

In Chapter 3 we return to the pure radially symmetric ring problem, and

perform a linear stability analysis for arbitrary initial ring radius r0, not

necessarily in equilibrium. Because of this, the problem is not separable in

time and we rely on a multiple scales argument through the WKB method
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to formulate the stability problem. We then derive an NLEP that exists for

a certain class of even functions as activator perturbations. We show that

without saturation there is, for all τ , an unstable branch of real eigenvalues

that leads to breakup instabilities. However, with the inclusion of satura-

tion, we show that breakup patterns can be stabilized. We verify all of these

stability bands in 3.2.10, where we discretize the eigenvalue problem and

solve it numerically. This requires a robust Newton solve due to the high

nonlinearity in the eigenvalue. We perform several numerical experiments to

compare asymptotic and numeric computations of upper and lower stability

bounds. In 3.3 we consider a second class of instabilities where the activator

perturbation is odd. These eigenvalues are perturbations of λ = 0 and, as we

show, are of order ε2. The analysis of these eigenvalues is intimately related

to the asymptotic construction of the activator and inhibitor solutions in the

inner region near the ring.

In Chapter 4 we introduce the notion of an explicitly solvable NLEP and

provide a general framework to classify an NLEP as such. We then ap-

ply this framework to a specific exponent set for the GM model in 4.2 for

a rectangular domain and in 4.3 for a circular domain. This exponent set

yields the same conclusions as the non-explicit case in Chapter 3 but in a

way that is more tractable to analysis. Furthermore, in the case of a stripe,

the simplicity of the Green’s function allows us to determine the stability

boundary, dominant mode, and Hopf bifurcation analytically which is gen-

erally not obtainable in the classic NLEP formulation. For the ring in which

the Green’s function involves modified Bessel functions, we can recast the

12



1.2. Thesis Outline

problem in a way that is amendable to the framework for general NLEPs on

a ring in Chapter 3. In this decomposition, we see that the explicit formu-

lation has the effect of extracting the singular behaviour of the eigenvalue

pole, a crucial component of the NLEP analysis. Chapter 5 is devoted to full

numerical computations of (1.3) in order to verify the existence of stripe and

ring solutions, as well as to verify stability results. This includes performing

a number of numerical experiments which verify predicted dominant wave-

modes for breakup instabilities, the stabilizing effect of saturation, and the

stability effects of a circle to zig-zag instabilities.

Finally, in Chapter 6 we derive a numerical scheme to solve the singular

interface limit of (1.3) derived in Chapter 2 for any curve geometry in R2.

This involves the use of a layer potential formulation to handle the curve

singularities and normal interface velocity. We formulate the problem over

M possibly disjoint curves using a scaled arclength formulation in 6.1.2. In

6.1.5, we discuss methods of handling the singular logarithmic integrals and

discretize them using a combined Lagrange interpolation, trapezoid method

in 6.2.1. In order to validate our method we solve a different, but related

problem known as the Mullins-Sekerka problem in 6.2.2. We show that the

error converges in the standard way with chosen finite difference and time

stepping schemes. In 6.3 we solve the saturated GM model for a variety of

initial curves including circles, perturbed circles, ellipses in concentric and

non-concentric initializations. We use the analytical results of Chapter 2

to confirm the numerical errors are consistent with the chosen discretizing

schemes.

13



Chapter 2

General Curve Formulation and

Quasi-Steady Solutions

Consider a general reaction diffusion equation for an activator v and inhibitor

u of the form

vt = ε2∆v − v + g(u, v) (2.1a)

τut = D∆u− u+
1

ε
f(u, v) (2.1b)

on a domain Ω ⊂ R2 subject to Neumann boundary conditions on ∂Ω. τ

is an effective time scale delay between the activator and inhibitor while D

and ε2 are the diffusivities of the inhibitor and activator respectively. As was

discussed in Chapter 1, we consider D = O(1) while ε� 1 which defines the

semi-strong regime.

2.1 Choosing a Coordinate System

Before proceeding to specific geometries, we will derive a general global prob-

lem for the inhibitor based on activator localization on arbitrary curves Γ.

To do this, we will consider a boundary fitted coordinate system (cf. Figure
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2.1. Choosing a Coordinate System

2.1, [22], [35], [27]) where

x ≡ γ1(s) + ηn̂x, y ≡ γ2(s) + ηn̂y.

Here s is the arclength of the curve with 〈γ1(s), γ2(s)〉 being the parametriza-

tion of Γ and η is the signed normal distance from the curve with normal

n̂ = 〈n̂x, n̂y〉. We consider the normal to be the inward pointing normal

relative to Γ and so η > 0 denotes inside the curve for a single curve.

Γ = 〈γ1(s), γ2(s)〉

t̂

n̂

1

Figure 2.1: The boundary fitted coordinate system for some curve in R2. The
normal points inward relative to the moving curve which is parametrized by
unit arclength.

We need to determine the Laplace operator using these boundary fitted coor-

dinates. If we keep in mind that the curve is being parametrized by arclength
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2.1. Choosing a Coordinate System

then the unit tangent and normal vectors satisfy

t̂ ≡ 〈γ′1, γ′2〉, n̂ ≡ 〈−γ′2, γ′1〉;

t̂′ = κn̂, n̂′ = −κt̂

where prime denotes differentiation with respect to s and κ is the signed cur-

vature (positive for convex curves). Using this information we can compute

the (s, η) derivatives for (x, y) to get the Jacobian,

J =

xs xη

ys yη

 =

(1− κη)γ′1 −γ′2
(1− κη)γ′2 γ′1

 ; det J = 1− κη

by noting that |t̂| =
√
γ′21 + γ′22 = 1. Therefore, by the inverse function

theorem, sx sy

ηx ηy

 =

 γ′1
(1−κη)

γ′2
(1−κη)

−γ′2 γ′1.

 (2.2)

Taking higher order derivatives and using the chain rule we can ascertain

that the Laplace operator in the new coordinate system can be written as

∆ = ∂xx + ∂yy = ∂ηη −
κ

(1− κη)
∂η +

1

(1− κη)
∂s

(
∂s

(1− κη)

)
. (2.3)

It is worth noting that there is a slight issue with this formulation and that

is the singularity (1 − κη) in the Laplace operator. The curvature at a

point s is the inverse of the radius of the osculating circle tangent to the

curve at s which is centered at some x ∈ R2. The singularity arises if the
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2.2. Asymptotic Expansion of Steady-State

normal distance from the curve is equal to this osculating radius. Since points

infinitesimally close to s will also lie on the osculating circle then they would

be the same distance η away from the centre of the circle x. Therefore x

is no longer uniquely defined by a single (s, η) coordinate which means it

cannot be a coordinate system for all of R2. However, the specific use of this

coordinate transformation will be in analysis of the activator problem where

η � 1 in which case the coordinate system is uniquely defined as long as the

curvature is not sufficiently large.

2.2 Asymptotic Expansion of Steady-State

We begin by determining a quasi steady-state solution to (2.1) in the bound-

ary fitted coordinates. We define quasi-steady solutions such that the only

time dependence should come from a potential motion of the curve Γ, i.e.

for some slow time scale T = a(ε)t, we have that the boundary fitted coordi-

nates satisfy (η, s) = (η(T ), s(T )). Quasi-steady solutions are typical when

considering front motion problems (cf. [65], [31], [11]). We rescale our time

derivative,
∂

∂t
→ aη̇

∂

∂η
+ aṡ

∂

∂s

where the dot indicates differentiation with respect to T . We will begin

by considering an inner region near the front where v is localized. Having

defined the boundary fitted coordinate system, it is easy to see that an O(ε)

region near Γ can be defined with the local distance coordinate η̂ = η
ε
. We
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2.2. Asymptotic Expansion of Steady-State

will also define the activator and inhibitor variable near the front,

ũ(η̂, s) = u(εη̂, s), ṽ(η̂, s) = v(εη̂, s).

In the local coordinate frame, the system (2.1) becomes,

a

ε
η̇ṽη̂ + aṡṽs =ṽη̂η̂ −

εκ

(1− εκη̂)
ṽη̂

+
ε2

(1− εκη̂)

∂

∂s

(
ṽs

(1− εκη̂)

)
− ṽ + g(ũ, ṽ) (2.4a)

εaτ η̇ũη̂ + ε2aτ ṡũs =Dũη̂η̂ −
εDκ

(1− εκη̂)
ũη̂

+
ε2D

(1− εκη̂)

∂

∂s

(
ũs

(1− εκη̂)

)
− ε2ũ+ εf(ũ, ṽ). (2.4b)

We expand the inner solutions as follows:

ṽ ∼ ṽ0+εṽ1+. . . ũ ∼ ũ0+εũ1+. . . , κ ∼ κ0+εκ1+. . . , η̇ ∼ η̇0+εη̇1+. . .

and note that since we want the curve motion to be on a sub-order one time

scale, it is most natural to take a = ε2. To first order we get,

ṽ0η̂η̂ − ṽ0 + g(ũ0, ṽ0) = 0 (2.5a)

ũ0η̂η̂ = 0. (2.5b)

We can solve (2.5b) to get,

ũ0 = Aη̂ +B

18



2.2. Asymptotic Expansion of Steady-State

but since we expect the global solution for the inhibitor to be O(1), matching

would required that A = 0. Therefore we have that

ũ0 = U0(s, T )

where we explicitly note the possible dependence on the arclength and timescale

T . We now draw our attention to (2.5a) which is supplemented by far-field

conditions decaying to zero so that the solution is entirely localized. Since

the problem exhibits translational invariance, we will impose that ṽ0η̂(0) = 0

as a front centering condition. We consider the following Lemma for the

existence of a homoclinic orbit solution,

Lemma 2.2.0.1 Consider the problem

wyy − w + f(w) = 0, −∞ < y <∞, w → 0 as |y| → ∞,

w′(0) = 0, wm = w(0) > 0 (2.6)

and assume f(w) is C2 smooth on w > 0 with f(0) = 0 and f ′(0) < −1. If

we define Q(w) ≡ f(w)−w then a unique, positive, homoclinic orbit solution

exists when

1. Q(0) = 0, Q′(0) < 0

2. For s > 0 Q(s) = 0, Q′(s) > 0; Q(w) < 0, for 0 < w < s

3. Q(w) > 0 for s < w < wm with wm satisfying
∫ wm

0
Q(w) dw = 0.

The requirements on f(w) are needed so that w decays exponentially in the

far-field. When f ′(0) is finite (such as the case when f(w) = wp) then it
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2.2. Asymptotic Expansion of Steady-State

is easy to see the exponential decay condition holds. In an example where

f ′(0) is not finite such as f(w) = w logw we can solve (2.6) exactly and show

that w → exp(−y2) as y tends to infinity which has an even faster decay

than the finite case. The conditions on Q(w) can be proven by taking a

first integral of (2.6) and using the front centering condition w′(0) = 0. If

we take w = ṽ0 and f(w) = g(U0, ṽ0) then Lemma 2.2.0.1 gives the condi-

tions for (2.5a) to have homoclinic orbit solutions. See [39], [33], and [43] as

examples of where this formulation is used to form homoclinic orbit solutions.

Completely separate from the homoclinic orbit solution, we note that g(u, v)

does not depend explicitly on the space parameter and so the solutions to

(2.5a) can be written as a superposition of an even and odd function [30].

Since the homoclinic orbit satisfies positivity, this must be the even solution

and so formally we say that ṽ0 is the even homoclinic orbit solution to (2.5a).

A corollary to the even homoclinic orbit solution is that the odd solution to

(2.5a) necessarily blows up as |η̂| → ∞.

Continuing the expansion of (2.4) we have at O(ε),

Lṽ1 = κ0ṽ0η̂ − gu(U0, ṽ0)ũ1 + ṽ0η̂η̇0 (2.7a)

ũ1η̂η̂ = − 1

D
f(U0, ṽ0) (2.7b)

where

Lṽ1 = ṽ1η̂η̂ − ṽ1 + gv(U0, ṽ0)ṽ1.
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2.2. Asymptotic Expansion of Steady-State

Consider the problem for the homoclinic orbit (2.5a) and differentiate,

(ṽ0η̂)η̂η̂ − ṽ0η̂ + gv(U0, ṽ0)ṽ0η̂ = Lṽ0η̂ = 0. (2.8)

Here we see that ṽ0η̂ is a homogeneous solution to (2.7a) and therefore we

will require an orthogonality condition with the source terms. This condition

is

κ0

∫ ∞
−∞

ṽ2
0η̂ dη̂ + η̇0

∫ ∞
−∞

ṽ2
0η̂ dη̂ −

∫ ∞
−∞

gu(U0, ṽ0)ṽ0η̂ũ1 dη̂︸ ︷︷ ︸
I

= 0. (2.9)

If we define

G ≡
∫ ṽ0

0

gu(U0, x) dx (2.10)

then we can simplify the final integral and use integration by parts to get

I = −
∫ ∞
−∞

Gũ1η̂ dη̂

by noting that since ṽ0 is even then G(−∞) = G(∞) = 0. We now define a

new function,

Ĝ(η̂) ≡
∫ η̂

0

G(x) dx (2.11)

so that integrating I by parts once more, we have

I = − ũ1η̂Ĝ
∣∣∣∞
−∞

+

∫ ∞
−∞

Ĝũ1η̂η̂ dη̂.
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2.2. Asymptotic Expansion of Steady-State

Again, since ṽ0 is even then G is as well, which ensures Ĝ is an odd function,

so that

I = −Ĝ(∞) (ũ1η̂(∞) + ũ1η̂(−∞))− 1

D

∫ ∞
−∞

Ĝf(U0, ṽ0) dη̂, (2.12)

where we have simplified the last integral by using (2.7b). However, since ṽ0

is even then so to is f(U0, ṽ0) so the final integrand is odd and hence vanishes

over the domain. Finally then we can write the solvability condition (2.9) as

η̇0 = −κ0 −
Ĝ(∞)∫∞
−∞ ṽ

2
0η̂ dη̂

(ũ1η̂(∞) + ũ1η̂(−∞)) (2.13)

which prescribes the leading order velocity of the curve. We can also relate

the difference in ũ1η̂ by integrating (2.7b),

(ũ1η̂(∞)− ũ1η̂(−∞)) = − 1

D

∫ ∞
−∞

f(U0, ṽ0) dη̂. (2.14)

Finally, we will consider the expansion at O(ε2) as this will be needed when

analyzing the spectrum of the linearization for a radial geometry,

Lṽ2 =κ0ṽ1η̂ + κ1ṽ0η̂ + κ2
0η̂ṽ0η̂ + η̇0ṽ1η̂ + η̇1ṽ0η̂ + ṡ0ṽ0s − ṽ0ss

− 1

2
guu(U0, ṽ0)ũ2

1 − guv(U0, ṽ0)ũ1ṽ1 −
1

2
gvv(U0, ṽ0)ṽ2

1 − gu(U0, ṽ0)ũ2,

(2.15a)

ũ2η̂η̂ =
1

D
U0 + κ0ũ1η̂ −

1

D
fu(U0, ṽ0)ũ1 −

1

D
fv(U0, ṽ0)ṽ1. (2.15b)

Once again, this will have an orthogonality relationship with ṽ0η̂ producing

a condition for the velocity correction η̇1 but we do not derive this here as
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2.2. Asymptotic Expansion of Steady-State

we will consider a singularity limit where we take ε to zero and hence this

correction will occur at higher order.

2.2.1 Global Inhibitor Sharp Interface Limit

Turning our attention to the global region where η = O(1), we have that

v ≡ 0 (to within exponential order) and so we only need to consider the

problem for the inhibitor u:

D∆u− u+
1

ε
f(u, v) = 0 (2.16)

where we assume that f(u, 0) = 0 so that the inhibitor solution does not

experience global blowup as ε→ 0. Therefore then, the only contribution to

the reaction term is very close to the curve. In fact, since f(u, 0) = 0 and v

decays super-linearly to zero we have that,

f(u, v)

ε
=
f(u, ṽ

(
η
ε

)
)

ε
=
ε→0

∞, η = 0

0, else

and so (cf. [33])

lim
ε→0

f(u, v)

ε
= Aδ(η)

with δ(η) the Dirac mass centered at η = 0. To find A, we integrate over a

small domain including zero and scale to the inner coordinate,

lim
ε→0

∫ 0+

0−

f(u(η), v(η))

ε
dη = lim

ε→0

∫ 0+/ε

0−/ε

f(ũ(η̂), ṽ(η̂)) dη̂ = A.
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2.2. Asymptotic Expansion of Steady-State

Expanding out f(ũ, ṽ),

f(ũ, ṽ) = f(U0, ṽ0) + ε (fu(U0, ṽ0)ũ1 + fv(U0, ṽ0)ṽ1) + . . . =
ε→0

f(U0, ṽ0)

so that

A =

∫ ∞
−∞

f(U0, ṽ0) dη̂,

and finally (2.16) becomes

D∆u− u = −
(∫ ∞
−∞

f(U0, ṽ0) dη̂

)
δ(η). (2.17)

We refer to this as the sharp interface limit of (2.16) since we have captured

all of the asymptotic structure via a singularity at the interface. By using

the sharp interface limit, we do not need to expand u in powers of ε as (2.17)

captures the entire global problem. Upon solving u we will need to match to

the inner region via

u(εη̂, s) ∼ u(0, s) + εη̂
∂u

∂η

∣∣∣∣
η=0±

+ · · · = ũ0(±∞) + εũ1(±∞),

where the ± indicates approaching the curve from either side of η = 0. Upon

performing the matching we have u(0, s) = U0 and

ũ1η̂(±∞) =
∂u

∂η

∣∣∣∣
η=0±

. (2.18)

Using this with (2.14) we have that

[
∂u

∂n

]
η=0

= − 1

D

∫ ∞
−∞

f(U0, ṽ0) dη̂,
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2.2. Asymptotic Expansion of Steady-State

where [·]η=a indicates a jump from η = a+ to η = a−. This is the equiva-

lent singularity structure to match the Dirac measure in (2.17). Combining

everything we can write the problem for u as

D∆u− u = 0, x ∈ Ω (2.19a)

∂u

∂n
= 0, x ∈ ∂Ω (2.19b)

u = U0(s), x ∈ Γ (2.19c)[
∂u

∂n

]
Γ

= − 1

D

∫ ∞
−∞

f(U0, ṽ0) dη̂, x ∈ Γ. (2.19d)

This quasi-steady problem is subject to a normal velocity V given by (2.13)

which we can rewrite using the outer coordinates as

V0 = κ0 +H
(
∂u

∂n

∣∣∣∣
η=0+

+
∂u

∂n

∣∣∣∣
η=0−

)
(2.19e)

where we have defined

H ≡ Ĝ(∞)∫∞
−∞ ṽ

2
0η̂ dη̂

. (2.20)

Note that if V is the normal velocity measured with respect to the origin

then η̇ = −V . This is because for a single curve, if η̇ > 0 then points

inside the curve are increasing their distance from the curve, i.e. the curve

is expanding in space. However, we have defined the inward pointing normal

to be positive and so V > 0 means that the curve shrinks, hence V = −η̇.

The system (2.19) is what we will solve for quasi-steady state profiles.
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2.3. Quasi-Steady State Profiles for the Gierer-Meinhardt Model

2.3 Quasi-Steady State Profiles for the

Gierer-Meinhardt Model

Moving forward, we will consider the saturated Gierer-Meinhardt (GMS)

model (cf. [20], [39], [82]),

g(u, v) =
v2

uq(1 + σv2)
, f(u, v) =

vo

us
(2.21)

for some exponent set (2, q, o, s) and saturation parameter σ > 0. Notice that

these functions obey the required properties of f(u, v) and g(u, v) outlined

above. With this formulation then we can write ṽ0 = U q
0w and recast (2.5a)

for w with

wη̂η̂ − w +
w2

1 + bw2
= 0, w′(0) = 0, lim

|η̂|→∞
w = 0, (2.22)

where

b = U2q
0 σ > 0 (2.23)

is a modified saturation parameter. Notice if σ = b = 0 then we can analyt-

ically satisfy the conditions of Lemma 2.2.0.1 and get that the positive even

homoclinic orbit solution to (2.22) is

w(η̂) =
3

2
sech 2

(
η̂

2

)
. (2.24)
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2.3. Quasi-Steady State Profiles for the Gierer-Meinhardt Model

If b 6= 0 we can no longer obtain an analytic solution but we can investigate

the criteria on b for which a homoclinic solution exists via Lemma 2.2.0.1

and compute it numerically. This was considered in [39] for a stripe and we

reproduce the analysis here. Let

Q(w) =
w2

1 + bw2
− w

and look for rest-points of the differential equation when Q(w) = 0. We see

that w = 0 is a root for all b and the other two roots are given by,

w± =
1±
√

1− 4b

2b
(2.25)

where we notice that real roots fail to exist if b > 1/4. If b = 1/4 then we have

that the two roots degenerate to a single root w† = 2. If we classify the roots

of (2.25) by linear theory, we have that Q′(0) < 0 for all b which classifies it

as a saddle point as was required via condition 1 in Lemma 2.2.0.1. Aside

from w∗ = 0, we have

Q′(w∗) =
2− w∗
w∗

which is zero when w∗ = w† owing to the degeneracy of the root. Therefore

this root cannot be classified by linear theory but we have that Q′′(w†) =

−1/2 and therefore for b = 1/4 since w = 0 and w = w† are the only roots

then Q(w) < 0 for all w. Therefore we cannot satisfy condition 2 or 3 in

Lemma 2.2.0.1 and no homoclinic orbit exists at this value. For 0 ≤ b < 1/4,

since w+ > w† (w− < w†) then Q′(w+) < 0 (Q′(w−) > 0) and therefore

w = w− is a center while w = w+ is another saddle point. Therefore, in
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2.3. Quasi-Steady State Profiles for the Gierer-Meinhardt Model

terms of condition 2 in Lemma 2.2.0.1, s = w−. To satisfy condition 3, we

require

∫ w(0)

0

Q(u) du = 0. (2.26)

We already concluded that no homoclinic orbit exists when b = 1/4 but as

b decreases from this value, causing w = w† to degenerate into w+ and w−

then by condition 3 of Lemma 2.2.0.1, a homoclinic orbit will begin to exist

at the moment when w(0) = w+. We can determine this critical b = bc value

by numerically solving (2.26) with w+ given by (2.25). We conclude that

bc = 0.2113763204, w+(bc) = 3.295208658. (2.27)

Notice that at this point exactly, the maximum value w(0) = w+ is also a

saddle point of the phase space and therefore we actually have a heteroclinic

orbit here connecting w = 0 to w = w+. However for b < bc then w(0) < w+

and therefore, the homoclinic orbit exists on 0 ≤ b < bc. Having chosen a b

value in the acceptable range then we can compute solutions to (2.22) using

a standard finite difference solver on a truncated domain [0, L̂] (see section

6.3). Examples of homoclinic orbits for different b values are in Figure 2.2.
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Figure 2.2: Solutions to (2.22) for different values of b. Here we choose L̂ = 20
as a sufficient representation of infinity. Note we can solve the equation on
[0, L̂] and use symmetry because the functions are even.

The homoclinic orbit problem holds for any curve Γ and hence the only effect

of the geometry of the curve is in the inhibitor problem u. Separating the

homoclinic, we can write (2.19) in a more tractable way. Firstly we have that

∫ ∞
−∞

f(U0, ṽ0) dη̂ = Uβ
0

∫ ∞
−∞

wo dη̂,

∫ ∞
−∞

ṽ2
0η̂ dη̂ = U2q

0

∫ ∞
−∞

w2
η̂ dη̂; (2.28a)

β =qo− s. (2.28b)

Furthermore, we can actually simplify Ĝ in (2.11) which we first write using
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the homoclinic as

Ĝ(∞) = −qU2q−1
0

∫ ∞
0

∫ w(η̂)

0

v2

1 + bv2
dv dη̂ = qU2q−1

0

∫ ∞
0

W(w) dη̂

where W is defined by

W ≡
∫ w

0

v2

(1 + bv2)
dv. (2.29)

To simplify this, consider the homoclinic orbit problem (2.22), multiply by

wη̂, and integrate to get

w2
η̂ − w2 + 2W(w) = 0.

If we integrate again, we get

∫ ∞
0

W(w) dη̂ =
1

4

(∫ ∞
−∞

w2 dη̂ −
∫ ∞
−∞

w2
η̂ dη̂

)
(2.30)

where we have exploited thatW(w) is an even function. Finally then we can

use this expression for Ĝ with (2.28a) in H to write (2.20) as

H = − q

4U0

(∫∞
−∞w

2 dη̂∫∞
−∞w

2
η̂ dη̂

− 1

)
≡ − q

4U0

Ĥ. (2.31)

This form is convenient because we avoid the integral with respect to w and

the spatial integrals can easily be computed from an analytic or numerically

computed homoclinic. This form is also useful because it holds for any func-

tion g(u, v) with perhaps slightly different leading constants which makes it

more universal. Furthermore, as long as g(u, v) is such that U0 can easily be
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extracted from ṽ0 then we explicitly remove the U0 dependence in a tractable

way. With this simplification we now have the inhibitor problem is

D∆u− u = 0, x ∈ Ω (2.32a)

∂u

∂n
= 0, x ∈ ∂Ω (2.32b)

u = U0(s), x ∈ Γ (2.32c)[
∂u

∂n

]
Γ

= − 1

D
Uβ

0A, (2.32d)

V0 = κ0 −
q

4U0

Ĥ
(
∂u

∂n

∣∣∣∣
η=0+

+
∂u

∂n

∣∣∣∣
η=0−

)
, (2.32e)

where we have defined

A =

∫ ∞
−∞

wo dη̂. (2.33)

2.3.1 Inhibitor Problem on a Circular Curve

We start by considering the curve Γ to be a circle of radius r0 inside a circular

domain 0 ≤ r ≤ R. In this case, the inward normal is n̂ = −r̂ and

du

dn

∣∣∣∣
η̂=0±

= −ur(r∓0 )

where we note that η̂+ is slightly on the inside of the curve which from the

radial coordinate perspective is r−0 and the opposite is true for η̂−. Using

a polar coordinate system, we have, for this geometry, that the inhibitor
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problem (2.32) reduces to

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

Dr2

∂2u

∂θ2
− 1

D
u = 0, 0 ≤ r ≤ R, r 6= r0, (2.34a)

∂u

∂r
= 0, r = R (2.34b)

u = U0(θ), r = r0 (2.34c)[
∂u

∂r

]
r0

= − 1

D
Uβ

0A, (2.34d)

dr0

dt
= − 1

r0

− q

4U0

Ĥ
(
∂u

∂r

∣∣∣∣
r=r+0

+
∂u

∂r

∣∣∣∣
η=r−0

)
.

(2.34e)

Here we have noted that the curvature κ0 and normal velocity V are, κ0 = 1
r0

,

dr0
dt

= −V respectively.

Radially Symmetric Solution

We will begin by considering U0 a constant and denote this as the radially

symmetric ring solution, the details of which are similar to [45]. We can

immediately write the bounded solution to (2.34a) satisfying ur = 0 on r = R

and u bounded as r → 0+ as

u(r) =

AI0

(
r√
D

)
, 0 ≤ r ≤ r0

E
(
α0I0

(
r√
D

)
+K0

(
r√
D

))
, r0 ≤ r ≤ R

, α0 = −
K0

(
R√
D

)′
I0

(
R√
D

)′
where I0 and K0 are the zeroth order modified Bessel functions and prime

indicates differentiation with respect to r. To avoid certain chain rule ex-

pressions, we will adopt the following notation for the location of the prime
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throughout:

f ′(u(r)) =
df

du

∣∣∣∣
u=u(r)

, f(u(r))′ =
df(u(r))

dr
= f ′(u(r))

du

dr
. (2.35)

Enforcing continuity and the jump condition (2.34d) at r0 we have

u(r) =
r0

D
Uβ

0AG0(r; r0) (2.36)

where we have used the Wronskian relationship,

W (r) = I0

(
r√
D

)
K0

(
r√
D

)′
−K0

(
r√
D

)
I0

(
r√
D

)′
= −1

r
. (2.37)

Here G0(r; r0) is the Green’s function

G0(r; r0) =

J0,1(r)J0,2(r0), 0 ≤ r ≤ r0

J0,1(r0)J0,2(r), r0 ≤ r ≤ R

(2.38)

where

J0,1(r) = I0

(
r√
D

)
, J0,2(r) = α0I0

(
r√
D

)
+K0

(
r√
D

)
. (2.39)

We can determine the value of U0 by solving u(r0) = U0 to get

U0 =

(
D

r0AG0(r0; r0)

)1/(β−1)

. (2.40)

For b = 0, this is an explicit expression for U0, However, for b 6= 0 then A
depends on b and hence U0 as well. However, this can be solved with an
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iterative technique such as Newton’s Method. Regardless we can use (2.23)

to define (cf. [39])

G̃(b) ≡ bA
2q
β−1 =

(
D

r0G0(r0; r0)

) 2q
β−1

σ (2.41)

and numerically (Figure 2.3) we see that dA
db

> 0. Therefore, dG̃
db

> 0 and so

for each σ there is a unique b and vice-versa. An elegant proof in appendix

B of [82] shows analytically that dG̃
db

> 0 when o = 2. The monotonicity of

G̃ guarantees that there is a unique root U0 to find with the Newton solve of

(2.40).
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Figure 2.3: Numerical computation of the b derivative of A for o = 1 to
o = 6. Here we see that the derivative is always positive and each value of
o is bounded from below by the previous values. The integral diverges as b
approaches bc from the left.
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Finally, we can determine the normal velocity of the ring solution. We can

re-write (2.36) as

u(r) =
U0

G0(r0; r0)
G0(r; r0) (2.42)

which we substitute into (2.34e) to get

dr0

dT
= − 1

r0

− q

4
Ĥ
(J ′0,1(r0)

J0,1(r0)
+
J ′0,2(r0)

J0,2(r0)

)
. (2.43)

Rather than consider varying R and D separately, typically (cf. [39]) the

outer radius is set to R = 1 in an absolute geometry frame and then it is

rescaled to an effective domain with a unit diffusion coefficient. We note that

this can be achieved in the current formulation by setting D = 1 everywhere

and then replacing

R =
1√
D

= `

where this D or ` is to be varied. Unless otherwise stated, we will adopt this

formulation moving forward. It is worth noting that when the saturation is

not zero, the problems are not entirely equivalent as the diffusivity does not

properly scale in (2.41). We begin by considering no saturation (σ = b = 0)

where Figure 2.4 shows (2.43) versus r0 for exponent set (2, 1, 2, 0) and various

values of R = `.
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Figure 2.4: Phase portrait of (2.43) for D = 1, b = 0, exponent set (2, 1, 2, 0),
and various values of R.

Notice that (2.43) does not depend on the exponents o or s and so only

varying q can make a difference. The plot for q = 2 is shown in Figure 2.5

which overall does not show any qualitative difference to q = 1.
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Figure 2.5: Phase portrait of (2.43) for D = 1, b = 0, exponent set (2, 2, 2, 0),
and various values of R.

In both Figure 2.4 and 2.5, we have that for small values of R = ` there

are no equilibrium values to (2.43) and that transitions to a stable and un-

stable equilibrium as ` increases. Therefore, (2.43) undergoes a saddle-node

bifurcation. We compute this bifurcation curve numerically by using a New-

ton’s method continuation on r0 starting from the smallest root r0s. We can

approximate these roots asymptotically by defining

F (r) =

(J ′0,1(r)

J0,1(r)
+
J ′0,2(r)

J0,2(r)

)
=
I1 (r)

I0 (r)
+
α0I1 (r)−K1 (r)

α0I0 (r) +K0 (r)
(2.44)
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and then for r � 1 we have

F (r) ∼ − 1

(α0 + log(2)− log(r)− γ)r

with γ ≈ 0.5772156649 the Euler-Mascheroni constant. Therefore from

(2.43),

dr0

dT
∼
(

qĤ
4(α0 + log(2)− log(r)− γ)

− 1

)
1

r0

+O(r0). (2.45)

and we can approximate r0s by setting the expression in brackets to zero,

r0s ≈ exp

(
α0 + log(2)− γ − qĤ

4

)
. (2.46)

As R tends to infinity, α0 tends to zero and so there is a limiting small radius,

r0s ≈ 1.1229 exp(−q) (2.47)

where we have noted that when σ = 0 then Ĥ = 4. In Figures 2.4 and 2.5

we can see this limiting small stationary point radius being approached as

` increases. For the continuation method then we take R sufficiently large

(here we choose R = 10) and take as an initial guess r0 = r0s and iterate until

convergence. We then increase r0 and find the corresponding R that creates

an equilibrium value. We plot the σ = 0 bifurcation diagram in Figure 2.6.

Notice that for q = 1 the asymptotic approximation is not very accurate for

the lower root but from Figure 2.4 we see that atR = 10 the small equilibrium

radius is r0s ≈ 1 which is sufficiently far from the small r0 asymptotic regime
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that terms of O(r0) can no longer be neglected in (2.45). However, since we

are mostly interested using the asymptotic approximation for initializing the

numerical algorithm, the accuracy is not of critical importance.
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Figure 2.6: Bifurcation diagram to (2.43) for different values of the exponent
q and b = 0. The differential equation undergoes a saddle node bifurcation
when R = 3.6220 (for q = 1) and R = 1.4296 (for q = 2). The larger of
the equilibrium r0 values belong to the stable branch. The red dashed curve
represents an asymptotic approximation to the lower radius.

The case with no saturation was mentioned as an extension of work for
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ring solutions with the Grey-Scott model [45]. However, the analysis did

not consider saturation which we now present. The addition of saturation

requires a more delicate approach since the saturation value σ is the static

parameter and not b which varies as U0 varies. Therefore, Ĥ in (2.43) is no

longer static when b 6= 0 and to solve (2.43) we must first solve (2.40) for

a given r0 and then compute b (and hence Ĥ) with (2.23). We solve the

problem (2.40) for U0 numerically using Newton’s method. However, we do

so in a special way that stabilizes b. The details of this are presented in

6.3.2 and are omitted here but we indicate that the reason is to prevent b

from exceeding its maximum value artificially (i.e. as in the intermediate

Newton’s method steps). Something we notice immediately from (2.41) is

that the denominator tends to zero as r0 tends to zero and thus for any

σ > 0 we have that A diverges or that b tends to the critical value as r0

tends to 0. This is demonstrated numerically in Figure 2.7.

40



2.3. Quasi-Steady State Profiles for the Gierer-Meinhardt Model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

r0

b

 

 

σ=0.01

σ=0.5

σ=2

σ=5

σ=10

σ=25

Figure 2.7: Modified saturation parameter b as a function of r0 for various
saturation values σ. Here we take D = 1, R = 1 and exponent set (2, 1, 2, 0).

When σ = 0 we had that as r0 tended to zero then F (r0) from (2.44) tended

to zero as well since Ĥ was fixed. Therefore dr0/dt tended to negative infinity

as evidenced by Figures 2.4 and 2.5. However, when σ 6= 0 then since b tends

to the critical value as r0 tends to zero then Ĥ tends to infinity. While it

can be hard to analyze the growth of Ĥ analytically, from Figure 2.8, we can

conjecture that it grows faster than log r0 and so therefore we actually have

that F (r0) (and hence dr0/dt) tends to positive infinity as r0 tends to zero.
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Figure 2.8: Growth of Ĥ versus − log(r0) for R = 1 and when σ = 5.

We plot (2.43) in Figure 2.9 for saturation values σ = 0.5, 5, 10, and 25 for

exponent set (2, 1, 2, 0) and various values of R = ` (with D = 1). Figure

(2.10) repeats the experiment but with the exponent set (2, 2, 2, 0) and ex-

cludes σ = 25 since the single root is so close to r0 = R for R large that it is

difficult to compute.
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(a) σ = 0.5
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(b) σ = 5
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(c) σ = 10
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(d) σ = 25

Figure 2.9: Right-hand side to (2.43) for various saturation values, σ and
boundary values R. The exponent set here is (2, 1, 2, 0) and D = 1.
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(a) σ = 0.5
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(b) σ = 5
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(c) σ = 10

Figure 2.10: Right-hand side to (2.43) for various saturation values, σ and
boundary values R. The exponent set here is (2, 2, 2, 0) and D = 1.

The addition of saturation drastically alters the root structure to (2.43). If

σ � 1 then the behaviour should be similar to σ = 0 since, from Figure 2.7,

b very quickly tends to zero. This means that very quickly, for R not too

large, dr0/dt goes negative and there must be a root very close to r0 = 0 as is

evidenced in Figure 2.9a when σ = 0.5. Since dr0/dt starts positive, this root

is necessarily stable and exists prior to R = Rc, the saddle-node bifurcation

point when σ = 0. Therefore, the effect of the saturation is to add an extra

stability branch emanating from r0 = 0. Since these stable roots are very
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small, they can quickly cause instability in Newton algorithms where b is

near the critical value. Furthermore, since dr0/dt starts at positive infinity,

we can no longer guarantee the existence of a small root for R � 1 and

therefore cannot initialize around something analogous to (2.47). However,

as r0 tends to R we have that b tends to zero and so we still expect the

larger stable root near r0 = R. As such, we begin the bifurcation solver

by numerically searching for a root near r0 = R and follow a downward

continuation in r0. Figure 2.11 shows the bifurcation diagram for σ = 10

and σ = 8 with exponent set (2, 1, 2, 0) along with the small r0 asymptotic

expression computed from (2.46) where now this has to also be handled with

a Newton solve since Ĥ = Ĥ(r0).
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Figure 2.11: Bifurcation diagram to (2.43) for exponent set (2, 1, 2, 0) and
different values of σ. The dashed curve represents an asymptotic approxi-
mation for r0 � 1. The smallest and highest equilibrium values are stable
while there is an unstable transition branch in the middle.

Non-Radially Symmetric Solutions

Standard techniques guarantee that solutions to the modified Helmholtz

problem are unique for prescribed Dirichlet or Neumann boundary data (cf.
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[68]) and thus one would expect that the radially symmetric solution to (2.34)

is unique. However, since the boundary data U0 is an unknown of the prob-

lem, we can no longer prescribe uniqueness and we briefly demonstrate that

by finding solutions for which U0 is a periodic, non-constant, function. Even

while removing the restriction that U0 be constant, (2.34a) is still separable

and therefore we can perform a Fourier eigenfunction expansion,

u(r, θ) =
∞∑

n=−∞
Un(r) exp(inθ), U0 =

∞∑
n=−∞

an exp(inθ),

Uβ
0 =

∞∑
n=−∞

fn exp(inθ)

where we treat the Uβ
0 term separately just for simplicity. Using this expan-

sion in (2.34) we get for each eigenmode n,

1

r

d

dr

(
r

dUn
dr

)
− n2Un

r2
− Un
D

= 0, (2.48a)

dUn
dr

∣∣∣∣
r=R

= 0, (2.48b)

Un(r0) = an, (2.48c)[
dUn
dr

]
r=r0

= − 1

D
fnA. (2.48d)

This is the n > 0 analogue of the radially symmetric case and so if we define

the functions

Jn,1(r) = In

(
r√
D

)
, Jn,2(r) = αnIn

(
r√
D

)
+Kn

(
r√
D

)
(2.49a)
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where

αn = −
Kn

(
R√
D

)′
In

(
R√
D

)′ =

Kn+1

(
R√
D

)
− n

√
D

R
Kn

(
R√
D

)
n
√
D

R
In

(
R√
D

)
+ In+1

(
R√
D

)
 (2.49b)

then the solution can be written as

Un(r) =
r0

D
fnAG0,n(r; r0)

with G0,n(r; r0), the Green’s function

G0,n(r; r0) =

Jn,1(r)Jn,2(r0), 0 ≤ r ≤ r0

Jn,1(r0)Jn,2(r), r0 ≤ r ≤ R

. (2.50)

Using the Dirichlet value at r0 we have a condition to solve for U0,

an =
r0

D
AG0,n(r0; r0)fn.

Notice that for radial symmetry, an = fn = 0 for n 6= 0 and f0 = aβ0 leading

to the form for U0 in (2.40). We can approximate the Fourier coefficients cn

of a discrete vector g using the discrete Fourier transform,

cn ≈
1

N

N∑
j=1

exp

(−2πin(j − 1)

N

)
gj,

where here N is the number of discrete wavemodes to consider. We can write

this as

c =
1

N
Fg,
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for a Fourier transform matrix F where

Fn,j = exp

(−2πin(j − 1)

N

)
.

Using this, we can get the Fourier coefficients we desire by numerically solv-

ing,

FU0 = diag(Y)FUβ
0 , (2.51)

for fixed r0 where Y is a vector with entries,

Yn =
r0

D
AG0,n(r0; r0).

Computing solutions to (2.51) using Newton iterations starting at arbitrary

initial data tends to converge to the radially symmetric solution which is not

surprising since the decay of Fourier coefficients for increasing n will always

have the constant term dominate regardless. We will therefore return to this

formulation in 6.3.2 when we compute solutions on arbitrary domains to use

this as a verification of non-radially symmetric solutions.

2.3.2 Inhibitor Problem on a Near Circular Curve

Now consider the curve Γ to be a perturbed circle given by

r = r0 + εh(θ), ε� 1 (2.52)

48



2.3. Quasi-Steady State Profiles for the Gierer-Meinhardt Model

still inside a global circular domain 0 ≤ r ≤ R. We will not consider the

equilibria of such a geometry because dynamics may distort it beyond a near-

circle and we will therefore consider the inhibitor and velocity perturbation

for any initial base ring radius 0 < r0 < R. Recall that in deriving the

singular limit inhibitor problem (2.32), we took the limit as ε tends to zero

and so for our machinery to work with this perturbed circle geometry, we

require ε� ε� 1. We can write the inner normal to Γ as

n̂ =
〈−1, εh′(θ)

r0+εh(θ)
〉√

1 + ε2h′(θ)2

(r0+εh(θ))2

,

where prime here indicates differentiation with respect to θ. We can use this

normal vector to write

∂u

∂n
=
−ur + εh′(θ)

(r0+εh(θ))2
uθ√

1 + ε2h′(θ)2

(r0+εh(θ))2

.

We consider solving (2.32) with a formal expansion

u(r, θ) = u0(r) + εu1(r, θ) + ε2u2(r, θ) + . . .

where we explicitly note that we want to consider a perturbation from the

radially symmetric inhibitor solution hence why u0 is independent of θ. Using
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the condition (2.32c) we have

U0 = u(r0 + εh(θ)) ∼ u0(r0) + ε(u0r(r)h(θ) + u1(r))r0

+ ε2

(
1

2
u0rr(r)h(θ)2 + u1r(r)h(θ) + u2(r)

)
r0

= U00 + εU01(θ) + ε2U02(θ). (2.53)

Here we have put the evaluation at r = r0 outside the brackets since individ-

ually, each term may be discontinuous but together, they must be continuous

since U0 has a fixed value. Using our asymptotic expansion we can write the

normal derivative as

du

dn

∣∣∣∣
η̂=0±

∼ − u0r(r
∓
0 ) + ε

(
−u0rr(r

∓
0 )h(θ)− u1r(r

∓
0 )
)

+ ε2

(
−1

2
u0rrr(r

∓
0 )h(θ)2 − u1rr(r

∓
0 )h(θ) +

u1θ(r
∓
0 )h′(θ)

r2
0

+
u0r(r

∓
0 )h′(θ)2

2r2
0

− u2r(r
∓
0 )

)
(2.54)

where we recall that because we are using the inner normal, η̂ = 0± corre-

sponds to r = r∓0 . Finally we use (2.53) to write

Uβ
0 ∼ Uβ

00 + εβUβ−1
00 U01 + ε2β

Uβ−2
00

2

(
(β − 1)U2

01 + 2U00U02

)
. (2.55)

In the presence of saturation, both A and Ĥ depend on the curve inhibitor

value U0 and so we will also need to consider an expansion of the effective
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saturation parameter b,

b = U2q
0 σ ∼ U2q

00σ + ε2qU2q−1
00 U01σ + ε2qU2q−2

00

(
(2q − 1)U2

01 + 2U00U02

)
σ

= b0 + εb1 + ε2b2, (2.56)

and then write

A ∼ A0 + ε
dA0

db
b1 + ε2

(
dA0

db
b2 +

1

2

d2A0

db2
b2

1

)
, (2.57a)

Ĥ ∼ Ĥ0 + ε
dĤ0

db
b1 + ε2

(
dĤ0

db
b2 +

1

2

d2Ĥ0

db2
b2

1

)
, (2.57b)

where the zero subscript indicates evaluation at b = b0, the unperturbed

saturation parameter. We will begin by looking at corrections to the inhibitor

value before analyzing the corrections to the curve front velocity. The leading

order problem for u0 is given precisely by the radially symmetric version of

(2.34) in section 2.3.1 with solution (2.36) and curve value U00 given by (2.40)

and as such we continue directly to the problem at O(ε):

1

r

∂

∂r

(
r
∂u1

∂r

)
+

1

r2

∂2u1

∂θ2
− 1

D
u1 = 0, r 6= r0, (2.58a)

∂u1

∂r

∣∣∣∣
r=R

= 0, (2.58b)

[u1]r0 = −h(θ)

[
du0

dr

]
r0

, (2.58c)[
∂u1

∂r

]
r0

= −h(θ)

[
d2u0

dr2

]
r0

− A0

D
Uβ−1

00
¯̄A0U01,

(2.58d)
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where we have defined

¯̄A0 = β +
2qb0

A0

dA0

db
. (2.59)

The continuity condition (2.58c) comes from utilizing (2.53) and that glob-

ally, the inhibitor value U0 must be continuous across the front. The deriva-

tive condition (2.58d) comes from (2.54), (2.55), and (2.56) where we have

expressed b1 in terms of b0. We can rewrite (2.58d) by noticing that

[
d2u0

dr2

]
r0

=Ā0r0

[
d2G0

dr2

]
r0

= Ā0r0 (J0,1(r0)J0,2(r0)′′ − J0,1(r0)′′J0,2(r0))

=Ā0r0

(
K0

(
r0√
D

)′′
I0

(
r0√
D

)
−K0

(
r0√
D

)
I0

(
r0√
D

)′′)

where we define

Ā0 =
A0

D
Uβ

00, (2.60)

G0(r; r0) by (2.38) and J0,1 and J0,2 by (2.39). If we use the Wronskian

(2.37) and differentiate we get,

W ′(r) = K0

(
r√
D

)′′
I0

(
r√
D

)
−K0

(
r√
D

)
I0

(
r√
D

)′′
=

1

r2
.

Therefore, [
d2u0

dr2

]
r0

=
Ā0

r0

(2.61)
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and the derivative jump condition (2.58d) becomes

[
∂u1

∂r

]
r0

= −h(θ)
Ā0

r0

− Ā0

U00

¯̄A0U01. (2.62)

Since the problem (2.58) is linear in the θ dependence, we can perform an

eigenfunction expansion,

u1(r, θ) =
∞∑

n=−∞
V1n(r) exp(inθ), U01(θ) =

∞∑
n=−∞

U1n exp(inθ),

h(θ) =
∞∑

n=−∞
Hn exp(inθ)

for integer eigenmodes, n. Upon this expansion, (2.58) becomes

1

r

d

dr

(
r

dV1n

dr

)
− n2

r2
V1n −

1

D
V1n = 0, r 6= r0, (2.63a)

dV1n

dr

∣∣∣∣
r=R

= 0, (2.63b)

[V1n]r0 = HnĀ0, (2.63c)[
dV1n

dr

]
r0

= −HnĀ0

r0

− Ā0

U00

¯̄A0U1n. (2.63d)

This problem is very similar to the non-radially symmetric case for the pure

circle geometry and so if we define Jn,1, Jn,2, and αn by (2.49) then we can

write

V1n =

AJn,1(r), 0 ≤ r < r0

BJn,2(r), r0 < r ≤ R
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where the boundary derivative condition (2.63b) has been used. Using (2.63c)

and (2.63d) we have

−Jn,1(r0) Jn,2(r0)

−J ′n,1(r0) J ′n,2(r0)


︸ ︷︷ ︸

=M

A
B

 =

 HnĀ0

−HnĀ0

r0
− Ā0

U00

¯̄A0U1n

 =

Ā1n

B̄1n

 .

Using the Wronskian relationship (2.37), which holds for any n, we have that

detM = 1/r0 and therefore

A
B

 =

Ā1nr0J ′n,2(r0)− B̄1nr0Jn,2(r0)

Ā1nr0J ′n,1(r0)− B̄1nr0Jn,1(r0)

 .
If we define G0,n(r; r0) as in (2.50) and G1,n via

G1,n(r; r0) =

Jn,1(r)J ′n,2(r0), 0 ≤ r < r0

J ′n,1(r0)Jn,2(r), r0 < r ≤ R

. (2.64)

then we can write

V1n(r) = Ā1nr0G1,n(r; r0)− B̄1nr0G0,n(r; r0). (2.65)

Now we can determine U1n via (2.53),

U1n = V1n +Hn
du0

dr
,
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evaluated from either side of r = r0. However, since this must be continuous

across r0 we can actually compute it using the average value,

U1n =Ā1nr0

(
〈G1,n(r; r0)〉r0 +

〈
dG0

dr

〉
r0

)

+

(
Ā1n +

Ā0r0

U00

¯̄A0U1n

)
G0;n(r0, r0),

where 〈·〉a indicates the average value across r = a. If we notice that

Ā0r0 =
U00

G0(r0; r0)
,

then we can solve for U1n and get

U1n =
HnU00

G0(r0; r0)(
1− ¯̄A0

G0;n(r0; r0)

G0(r0; r0)

)−1
(
G0,n(r0; r0)

r0

+

〈
G1,n(r, r0) +

dG0

dr

〉
r0

)
.

(2.66)

Typically, we consider the perturbation h(θ) to be a finite combination of

sinusoidal modes and if this is the case then the correction at O(ε) will

add components in each of those modes. However, unless an n = 0 mode is

explicitly part of h(θ), the perturbation at this order can not describe vertical

shifting as there is no cross-mode influence. Therefore, we will consider the

expansion at O(ε2) to account for this shifting since mode interactions occur
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at this level through quadratic terms. The problem at O(ε2) is

1

r

∂

∂r

(
r
∂u2

∂r

)
+

1

r2

∂2u2

∂θ2
− 1

D
u2 = 0, r 6= r0 (2.67a)

∂u2

∂r

∣∣∣∣
r=R

= 0, (2.67b)

[u2]r0 = −h(θ)

[
∂u1

∂r

]
r0

− h(θ)2

2

[
d2u0

dr2

]
r0

,

(2.67c)[
∂u2

∂r

]
r0

=
1

2

h′(θ)2

r2
0

[
du0

dr

]
r0

+
h′(θ)

r2
0

[
∂u1

∂θ

]
r0

− h(θ)

[
∂2u1

∂r2

]
r0

− 1

2
h(θ)2

[
d3u0

dr3

]
r0

− Ā0

U2
00

(
¯̄A1U

2
01 + ¯̄A0U00U02

)
, (2.67d)

where we define

¯̄A1 =
1

2
β(β − 1) +

qb0(2q − 1)

A0

dA0

db
+

2q2b2
0

A0

d2A0

db2
.

As with the O(ε) expansion, this is generated by appropriately substituting

the expansions from (2.53), (2.54), (2.55), and the corrections to b have been

expressed using (2.56). We can rewrite the continuity condition (2.67c) using

(2.61) and (2.62) to get

[u2]r0 = h(θ)2 Ā0

2r0

+ h(θ)
Ā0

¯̄A0

U00

U01. (2.68)
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Next we turn our attention to the jump condition (2.67d). First we notice

using (2.63c) that

[
∂u1

∂θ

]
r0

=
∞∑

n=−∞
in [V1n]r0 exp(inθ) = Ā0

∞∑
n=−∞

inHn exp(inθ) = Ā0h
′(θ).

Next, we need to determine

[
∂2u1

∂r2

]
r0

=
∞∑

n=−∞

(
Ā1nr0

[
d2G1,n

dr2

]
r0

− B̄1nr0

[
d2G0,n

dr2

]
r0

)
exp(inθ)[

d3u0

dr3

]
r0

= Ā0r0

[
d3G0

dr3

]
r0

.

Since the Wronskian relationship (2.37) also holds for n 6= 0 we have

W0,n(r) = In

(
r√
D

)
Kn

(
r√
D

)′
−Kn

(
r√
D

)
In

(
r√
D

)′
= −1

r
(2.69)

which we can differentiate to get

W ′
0,n(r) =In

(
r√
D

)
Kn

(
r√
D

)′′
−Kn

(
r√
D

)
In

(
r√
D

)′′
=

[
d2G0,n

dr2

]
r

=
1

r2
0

,
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just as in the n = 0 case. If we differentiate this again,

W ′′
0,n(r) = In

(
r√
D

)
Kn

(
r√
D

)′′′
−Kn

(
r√
D

)
In

(
r√
D

)′′′
+ In

(
r√
D

)′
Kn

(
r√
D

)′′
−Kn

(
r√
D

)′
In

(
r√
D

)′′
=

[
d3G0,n

dr3

]
r

+ In

(
r√
D

)′
Kn

(
r√
D

)′′
−Kn

(
r√
D

)′
In

(
r√
D

)′′
= − 2

r3
0

+W1,n(r0),

where we define the new Wronskian,

W1,n(r) = In

(
r√
D

)′
Kn

(
r√
D

)′′
−Kn

(
r√
D

)′
In

(
r√
D

)′′
. (2.70)

Furthermore,[
d2G1,n

dr2

]
r0

= In

(
r0√
D

)′
Kn

(
r0√
D

)′′
−Kn

(
r0√
D

)′
In

(
r0√
D

)′′
,

and therefore[
d3G0

dr3

]
r0

= − 2

r3
0

−W1,0(r0),

[
d2G1,n

dr2

]
r0

= W1,n(r0).

To determine the Wronskian (2.70), consider that y = u0 = In

(
r√
D

)
and

y = v0 = Kn

(
r√
D

)
satisfy

d2y

dr2
+

1

r

dy

dr
−
(
n2

r2
+

1

D

)
y = 0
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and differentiate this expression. Therefore u = In

(
r√
D

)′
and v = Kn

(
r√
D

)′
satisfy

d2u

dr2
+

1

r

du

dr
−
(
n2 + 1

r2
+

1

D

)
u+

2

n2
r3u0 = 0,

d2v

dr2
+

1

r

dv

dr
−
(
n2 + 1

r2
+

1

D

)
v +

2

n2
r3v0 = 0

respectively. We define W1,n(r) = u′v − uv′ and so multiplying the first

expression by v and the second by u we have

dW1,n

dr
+
W1,n

r
− 2n2

r3
W0,n(r) =

dW1,n

dr
+
W1,n

r
+

2n2

r4
= 0.

Solving for this Wronskian, we get

W1,n(r) =
n2

r3
+

1

Dr
, (2.71)

where the 1/Dr term is determined by looking at the small r asymptotics of

W1,n(r) for n = 0 (since the expression must hold for all n). We therefore

have that

[
∂2u1

∂r2

]
r0

=
∞∑

n=−∞

(
Ā1n

(
n2

r2
+

1

D

)
− B̄1n

r0

)
exp(inθ),[

d3u0

dr3

]
r0

= −Ā0

(
2

r2
0

+
1

D

)
.

We can simplify the first expression,

[
∂2u1

∂r2

]
r0

=
Ā0

r2
0

(h(θ)− h′′(θ)) +
Ā0

D
h(θ) +

Ā0
¯̄A0

U00r0

U01
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and finally write

[
∂u2

∂r

]
r0

=
Ā0h

′(θ)2

2r2
0

+
Ā0

r2
0

h(θ)h′′(θ)− Ā0

2D
h(θ)2

− Ā0
¯̄A0

U00r0

h(θ)U01 −
Ā0

U2
00

(
¯̄A1U

2
01 + ¯̄A0U00U02

)
. (2.72)

We wish to perform an eigenfunction expansion on this problem but we must

delicately handle the product of infinite sums that occurs. We will define the

product in the following way,

Definition 2.3.2.1 Assume two functions f(θ) and g(θ) have a fourier se-

ries given by

f(θ) ∼
∞∑

n=−∞
an exp(inθ), g(θ) ∼

∞∑
m=−∞

bm exp(imθ)

and that there exists some N and M such that |an| = 0 when |n| > N and

|bm| = 0 when |m| > M . If this is the case then we can define the product of

these functions as

f(θ)g(θ) =
∞∑

m=−∞

∞∑
n=−∞

anbm exp(i(n+m)θ).

This definition states that when a Fourier series terminates then we can

use the finite series product. This is in contrast to the Cauchy-product

typically used for infinite sums. Since we expect the perturbation h(θ) is

composed of finite sinusoidal modes, the Fourier series will terminate. This

allows us to use Definition 2.3.2.1 for quadratic products of h(θ) at O(ε2).

Using definition 2.3.2.1 for handling series products, we can perform the
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eigenfunction expansion as

u2(r, θ) =
∞∑

k=−∞
V2k(r) exp(ikθ), U02(θ) =

∞∑
k=−∞

U2k exp(ikθ),

and the base problem is identical to (2.63) so we can immediately write

V2k =

AJk,1(r), 0 ≤ r < r0

BJk,2(r), r0 < r ≤ R

.

The continuity and derivative jump conditions for each mode k become

[V2k]r0 =
Ā0

2r0

∑
n∈N

HnHk−n +
Ā0

¯̄A0

U00

∑
n∈N

HnU1k−n = Ā2k, (2.73a)[
dV2k

dr

]
r0

=− Ā0

2r2
0

∑
n∈N

n(k − n)HnHk−n −
Ā0

r2
0

∑
n∈N

(k − n)2HnHk−n

− Ā0

2D

∑
n∈N

HnHk−n −
Ā0

¯̄A0

U00r0

∑
n∈N

HnU1k−n

− Ā0

U2
00

(
¯̄A1

∑
n∈N
U1nU1k−n + ¯̄A0U00U2k

)
= B̄2k. (2.73b)

Here the sum is over a set N which contains the integer modes n that produce

valid integer k modes. For example, if h(θ) = cos(6θ) then there are two

modes at O(ε) of n = −6 and n = 6. Various quadratic combinations of

these modes leads to k = −12, k = 0, and k = 12 as the only possible modes

that can occur at O(ε2). Therefore, if k = −12 then N = {−6} since it is

only through this mode that frequencies exp(−12iθ) can occur but for k = 0

then the set N = {−6, 6} since these two modes lead to terms of frequency 1.
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As another example, consider h(θ) = cos(3θ) + cos(6θ) which has admissible

modes at O(ε2) of k = 0,±3,±6,±9,±12 and here for k = 0, the set is

N = {±3,±6} while for k = 9, the set is N = {3, 6}. In similar fashion to

(2.63) at O(ε), we can use (2.73) to write,

V2k(r) = Ā2kr0G1,k(r; r0)− B̄2kr0G0,k(r; r0). (2.74)

As with U1n, we can solve U2k by taking the average value of (2.53) at O(ε2)

U2k =
Ā0r0

2

d2G0

dr2

∑
n∈N

HnHk−n + r0

∑
n∈N

Hn

(
Ā1k−n

dG1,k−n
dr

− B̄1k−n
dG0,k−n

dr

)
+ r0Ā2kG1,k − r0B̄2kG0,k.

If we define

B̃2k = B̄2k +
Ā0

¯̄A0

U00

U2k

then we can solve

U2k =

(
1− ¯̄A0

G0,k(r0; r0)

G0(r0; r0)

)−1
(
Ā0r0

2

〈
d2G0

dr2

〉
r0

∑
n∈N

HnHk−n

+r0

∑
n∈N

Hn

(
Ā1k−n

〈
dG1,k−n

dr

〉
r0

− B̄1k−n

〈
dG0,k−n

dr

〉
r0

)
+r0Ā2k 〈G1,k〉r0 − r0B̃2kG0,k(r0; r0)

)
. (2.75)

Thus we have completely solved the inhibitor problem up to O(ε2). We will

present an example verifying the asymptotic calculations in section 2.3.2 but

first will consider velocity corrections.
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Velocity Correction

We will now furnish corrections to the velocity magnitude (2.32e) which we

rewrite as

V0 = κ0 −
q

2U0

Ĥ
〈

du

dn

〉
η=0

.

The process of determining this asymptotically is much simpler than deter-

mining the inhibitor value because it can be computed explicitly in terms

of already known quantities. First we note that in polar coordinates we can

write the curvature as (cf [25]),

κ0 =

∣∣∣∣dt̂

ds

∣∣∣∣ =
r2 + 2r′2 − rr′′

(r2 + r′2)3/2

where t̂ is the unit tangent vector and once again prime is differentiation

with respect to s. Using the near-circle radius (2.52) we have that

κ0 ∼
1

r0

− ε
(
h′′(θ) + h(θ)

r2
0

)
+ ε2

(
4h(θ)h′′(θ) + h′(θ)2 + 2h(θ)2

2r3
0

)
. (2.76)

We can make a velocity expansion as follows

V0 ∼ V00 + εV01 + ε2V02

and to leading order, the velocity is exactly that which was derived for the

radially symmetric case (2.43). Using (2.53), (2.54), (2.76), and (2.57b) we
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can get the velocity correction at O(ε) is

V01 =−
(
h′′(θ) + h(θ)

r2
0

)
− qĤ0

2U2
00

(
1− 2qb0

Ĥ0

dĤ0

db

)〈
du0

dr

〉
r0

U01

+
qĤ0

2U00

(
h(θ)

〈
d2u0

dr2

〉
r0

+

〈
∂u1

∂r

〉
r0

)
(2.77)

All of the necessary values to compute V1 have been obtained and can there-

fore be directly substituted. Notice that if r0 � 1 then to leading order

V01 ∼ −
(
h′′(θ) + h(θ)

r2
0

)
,

and for typical h(θ) = cos(mθ) then

V01 ∼
(
m2 − 1

r2
0

)
cos(mθ),

which is in phase with h(θ) and so the velocity is positive where the perturbed

radius is larger than the base radius r0 and negative where the radius is

smaller. Therefore, since the inward normal is positive, this has the effect of

circularizing the curve. If r0 � 1 then it is possible for the curve velocity to

be negative allowing the perturbation to grow but this does not necessarily

mean that the pattern destabilizes. Continuing in the expansion, we can get
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that the velocity at O(ε2) is

V02 =

(
4h(θ)h′′(θ) + h′(θ)2 + 2h(θ)2

2r3
0

)
+
q

2

((
U2

01

U2
00

− U02

U2
00

)
Ĥ0 −

U01

U2
00

dĤ0

db
b1

+
1

U00

(
1

2

d2Ĥ0

db2
b2

1 +
dĤ0

db
b2

))〈
du0

dr

〉
r0

+
q

2U2
00

(
U00

dĤ0

db
b1 − U01Ĥ0

)
(
h(θ)

〈
d2u0

dr2

〉
r0

+

〈
∂u1

∂r

〉
r0

)
− qĤ0

2U00

(
−1

2
h(θ)2

〈
d3u0

dr3

〉
r0

−h(θ)

〈
∂2u1

∂r2

〉
r0

+
h′(θ)

r2
0

〈
∂u1

∂θ

〉
r0

+
h′(θ)2

2r2
0

〈
du0

dr

〉
r0

−
〈
∂2u2

∂r2

〉
r0

)
(2.78)

which is also explicitly known in terms of previously computed values.

Numerical Validation of the Asymptotic Theory

In Chapter 6, we discuss and derive a method for solving the full problem

(2.32) for arbitrary curves of which a near circle could be chosen. Therefore,

while we omit the numerical details here, we can compare our asymptotic

corrections to the full numerically computed simulations. To ensure that

the errors we make are asymptotic and not numeric, we choose a proper

computational resolution that is significantly smaller than our choice of ε

(taken here to be 0.01). In all of our simulations we take σ = 10, R = 1,

D = 1, exponent set (2, 1, 2, 0), and r0 = 0.5 and we consider the near circle

perturbation h(θ) = cos(6θ). Figure 2.12 shows the corrections at each order

of ε for U0 and b.
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Figure 2.12: Asymptotic corrections compared to numeric simulations of
the curve inhibitor value U0 and the corresponding saturation value b from
solving (2.32) for a perturbed circle with radius (2.52) and h(θ) = cos(6θ).
Here we take exponent set (2, 1, 2, 0), R = 1, D = 1, r0 = 0.5, σ = 10, and
ε = 0.01.

We see that indeed the correction at O(ε) introduces the sinusoidal pertur-

bation only whereas the correction at O(ε2) allows for the vertical shift cor-

rection. Figure 2.13 shows the corrections at each order of ε for the velocity

V0. In Figure 2.13b we zoom in to better show the asymptotic alignment.
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Figure 2.13: Asymptotic corrections compared to numeric simulations of the
curve velocity V0 from solving (2.32) for a perturbed circle with radius (2.52)
and h(θ) = cos(6θ). Here we take exponent set (2, 1, 2, 0), R = 1, D = 1,
r0 = 0.5, σ = 10, and ε = 0.01.
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Chapter 3

Linear Stability of Ring

Solutions to Breakup and

Zigzag Modes

We will now consider the linear stability analysis to the problem of the ra-

dially symmetric inhibitor value produce by the activator localized on a ring

of radius r0. The base problem for this is

vt = ε2
1

r

∂

∂r

(
r
∂v

∂r

)
+
ε2

r2

∂2v

∂θ2
− v +

v2

uq(1 + σv2)
(3.1a)

τut = D
1

r

∂

∂r

(
r
∂u

∂r

)
+
D

r2

∂2u

∂θ2
− u+

1

ε

vo

us
(3.1b)

which leads to a quasi-steady state for the activator v = U q
0w where w is a

homoclinic orbit obtained by solving (2.22) and U0 is given by (2.40). The

quasi-steady state for the inhibitor u is then given by (2.36).

3.1 Linear Stability Formulation

To perform a linear stability analysis of this steady state we first note that

since the activator is locally confined to a ring of radius r0 then we can define
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3.1. Linear Stability Formulation

an inner radius

ρ =
r − r0(T )

ε

and we expect that the perturbation will also be localized entirely around

this radius. Secondly, we note that the linearization of the full equation (3.1)

is linear in θ and so we can perform a Fourier expansion as follows:

v ∼ ṽe

(
r − r0

ε
, T

)
+ φ

(
r − r0

ε
, t

)
exp(imθ) (3.2a)

u ∼ ue(r, T ) +M (r, t) exp(imθ) (3.2b)

where ve is the radial geometry form of the homoclinic orbit discussed in

section 2.3 and ue is the steady-state from section 2.3.1. Continuity in θ

dictates that m is an integer on (−∞,∞), but in what follows we will consider

m to be a continuous parameter bearing in mind that all results will need to

be rounded down to the nearest integer mode. Furthermore, we will consider

it to be a positive parameter since the eigenfunctions for m < 0 are the

same as for m > 0 and so we just need to be aware that all results need

to accompany the complex conjugate mode. Note that in our expansion

(3.2), we do not perform a standard Laplace expansion in time because the

base state is actually dependent on the slow time T = ε2t. Substituting our
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3.1. Linear Stability Formulation

expansion (3.2) into (3.1) we get

ε2φT − εφρ
dr0

dT
=

1

r0 + ερ

∂

∂ρ
((r0 + ερ)φρ) (3.3a)

− ε2m2

(r0 + ερ)2
φ− φ− qṽ2

e

ũq+1
e (1 + σṽ2

e)
M(r0 + ερ)

+
2ṽe

ũe(1 + σṽ2
e)

2
φ, (3.3b)

ε2τMT =
D

r

∂

∂r
(rMr)−

Dm2

r2
M −M +

1

ε

ovo−1
e

use
φ

(
r − r0

ε

)
− 1

ε

svoe
us+1
e

M (3.3c)

where we have scaled to the inner coordinate for the activator problem and

have explicitly removed the slow-time dependence on r0. Furthermore, we

have rewritten the time dependence on φ and M using the long time scale.

We now consider a WKB ansatz (cf. [9]) for each eigenfunction,

φ(ρ, T ) = Φ(ρ, T ) exp

(
ϕ(T )

ε2

)
, M(r, T ) = N(r, T ) exp

(
ϕ(T )

ε2

)
. (3.4)

Here we assume that the amplitude can vary with the radial coordinate but

not the phase and we choose the phase function to be the same for each

eigenfunction. The derivation of (3.4) can also be done via an application

of multiple time scales (cf. [27]). We use this formulation in (3.3) to get
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3.1. Linear Stability Formulation

(dividing out the exponential function)

ε2ΦT + ΦϕT − εΦρ
dr0

dT
=

1

r0 + ερ

∂

∂ρ
((r0 + ερ)Φρ)

− ε2m2

(r0 + ερ)2
Φ− Φ− qṽ2

e

ũq+1
e (1 + σṽ2

e)
N(r0 + ερ)

+
2ṽe

ũe(1 + σṽ2
e)

2
Φ, (3.5a)

ε2τNT + τNϕT =
D

r
(rNr)r −

Dm2

r2
N −N +

1

ε

ovo−1
e

use
Φ

(
r − r0

ε

)
− 1

ε

svoe
us+1
e

N. (3.5b)

Since N is O(1) to leading order, we seek a natural asymptotic expansion of

the inner activator function and phase,

Φ ∼ Φ0 + εΦ1 + . . . ϕ ∼ ϕ0 + εϕ1 + . . .

to finally get the leading order problem

Φ0ϕ0T =Φ0ρρ −
ε2m2

r2
0

Φ0 − Φ0 +
2w

(1 + bw2)2
Φ0 −

qU q−1
0 w2

(1 + bw2)
N(r0), (3.6a)

τNϕ0T =
D

r
(rNr)r −

Dm2

r2
N −N +

1

ε

ovo−1
e

use
Φ0

(
r − r0

ε

)
− 1

ε

svoe
us+1
e

N,

(3.6b)

where we have used in (3.6a) that to leading order ũe ∼ U0 and ṽe ∼ U q
0w.

Note that this formulation assumes that N(r0) is O(1) to leading order and

we will analyze when this is so. We also include terms that are O(ε2m2)

71



3.1. Linear Stability Formulation

because if m� 1 then this can be an O(1) term. If we define,

L0bΦ0 = Φ0ρρ − Φ0 +
2w

(1 + bw2)2
Φ0, (3.7)

then we can write (3.6a) as

L0bΦ0 − qU q−1
0

w2

(1 + bw2)
N(r0) =

(
ϕ0T +

ε2m2

r2
0

)
Φ0, lim

|ρ|→∞
Φ = 0, (3.8)

and so we can think of ϕ0T = λ as the eigenvalues of (3.8). In (3.8) we

don’t define the normalization of the eigenfunctions but rather leave this

discussion to section 3.2.11 where we compute them numerically. If we solved

the eigenvalues of (3.8) we would have

φ(ρ, T ) ∼ Φ0 exp

(∫ T

0

λ(s) ds/ε2
)
, (3.9)

where we have assumed that ϕ0(0) = 0 without loss of generality. Notice

that if the eigenvalues were not time-dependent we would get the standard

exp(λt) from the Laplace expansion in a linear stability analysis. This slight

difference can actually lead to delays in stability or instability if an eigenvalue

changes sign over the long-time domain. This behaviour is similar to what is

responsible for parameter delayed bifurcations in certain dynamical systems

models (cf. [76], [50], [28]). We will now turn our attention to actually

determining the eigenvalues of (3.8). To analyze this eigenvalue problem we

need to first solve (3.6b) which requires looking at the apparent singular

term,

1

ε

ovo−1
e

use
Φ

(
r − r0

ε

)
=
oṽe
(
r−r0
ε

)o−1

ũe
(
r−r0
ε

)s Φ =
ε→0

Aδ(r − r0).
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To find A, we follow a procedure similar to section 2.2.1 and integrate this

expression around the singularity r0 to get

A = oUβ−q
0

∫ ∞
−∞

wo−1Φ0 dρ.

In a similar fashion we have that

1

ε

svoe
us+1
e

N(r) =
ε→0

sUβ−1
0 N(r0)Aδ(r − r0), A =

∫ ∞
−∞

wo dρ,

and so we can write (3.6b) as

1

r
(rNr)r −

m2

r2
N − θ2

λN

=

(
sUβ−1

0

D
N(r0)A− oUβ−q

0

D

∫ ∞
−∞

wo−1Φ0 dρ

)
δ(r − r0), (3.10)

where

θλ =

√
1 + τλ

D
. (3.11)

Like for the non-radially symmetric ring solution (2.48) or the near circular

ring solution (2.63) from section 2.3.1, (3.10) is the n > 0 analogue to the

radially symmetric problem (eqn:circprob) and the solution technique imme-

diately mimics that of section sec:radialsym. As such, we omit the details

here but simply write down

N(r) = r0

(
oUβ−q

0

D

∫ ∞
−∞

wo−1Φ0 dρ− sUβ−1
0

D
N(r0)A

)
Ḡ0,m(r; r0), (3.12)
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where

Ḡ0,m(r; r0) =

J̄m,1(θλr)J̄m,2(θλr0), 0 ≤ r ≤ r0

J̄m,1(θλr0)J̄m,2(θλr), r0 ≤ r ≤ R

,

with

J̄m,1(θλr) = Im (θλr) , (3.13a)

J̄m,2(θλr) = ᾱmIm (θλr) +Km (θλr) , (3.13b)

and ᾱm given by

ᾱm = −Km (θλR)′

Im (θλR)′
=

(
Km+1 (θλR)− m

θλR
Km (θλR)

m
θλR

Im (θλR) + Im+1 (θλR)

)
. (3.13c)

If we notice that
AUβ−1

0 r0

D
=

1

G0(r0; r0)
,

with G0 defined by (2.38) then we can write (3.12) as

N(r) =

(
oU1−q

0

G0(r0; r0)A

∫ ∞
−∞

wo−1Φ0 dρ− s

G0(r0; r0)
N(r0)

)
Ḡ0,m(r; r0).

(3.14)

By evaluating this expression at r = r0, we solve for N(r0) to get

N(r0) = oU1−q
0

(
s+

J0,1(r0)J0,2(r0)

J̄m,1(θλr0)J̄m,2(θλr0)

)−1
∫∞
−∞w

o−1Φ0 dρ

A (3.15)
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with J0,1 and J0,2 defined by (2.39). There is something significant to note

about N(r0) and that is the integral involving Φ0. The structure of (3.8)

dictates that Φ0 will admit both an even and an odd solution (cf. [30]).

Since w is even then if Φ0 is odd, N(r0) vanishes and the assumption that

it is O(1) to leading order fails. If Φ0 is even and has multiple nodal points

then N(r0) may still vanish. In this case, the eigenvalue of (3.8) is part of

the spectrum of (3.7) for which we adapt the following Lemma of [7]:

Lemma 3.1.0.1 Consider the problem

wyy − w + f(w) = 0, wy(0) = 0, w → 0 as |y| → ∞, w(0) > 0

and assume this has a homoclinic orbit solution via Lemma 2.2.0.1. The

associated linearized operator

LΦ = Φyy − Φ + f ′(w)Φ = λΦ

has a discrete simple positive eigenvalue λ0 > 0 associated to a positive eigen-

function Φ0. There is also a discrete eigenvalue λ1 = 0 with the eigenfunction

Φ1 = w′. Furthermore when f ′(0) is finite, a continuous spectrum exists on

Re(λ) ≤ −1 + f ′(0) < 0 with Im(λ) = 0.

A corollary to Lemma 3.1.0.1 is that if other discrete eigenvalues λj, j > 1

exist then −1 + f ′(0) < λj < 0. See [14] for other discretely computed

eigenvalues with f(w) = wp. Since the principal eigenvalue is the only one

for which Re(λ) > 0 and its eigenfunction is even and of one sign, instability

can only occur for even eigenfunctions where N(r0) does not vanish.

75



3.2. Eigenvalues Associated with Φ0 Even

3.2 Eigenvalues Associated with Φ0 Even

Since the curve is defined as the point where the activator reaches its maxi-

mum (defined to be at r = r0 for the steady-state) then if the eigenfunction

is even, this will affect the amplitude of the maximal value but not the

location (the derivative at r0 still vanishes). Therefore, we consider even

eigenfunctions to correspond with amplitude or break-up instabilities. Using

the expression (3.15), we define

χm = qo

(
s+

J0,1(r0)J0,2(r0)

J̄m,1(θλr0)J̄m,2(θλr0)

)−1

,

so that we can write (3.8) as

L0bΦ0 −
χm
A

w2

(1 + bw2)

∫ ∞
−∞

wo−1Φ0 dρ =

(
λ+

ε2m2

r2
0

)
Φ0, (3.16)

subject to far-field decay conditions. We call (3.16) the non-local eigenvalue

problem (NLEP) for λ and the study of NLEPs has a rich history of study

(cf. [39], [45], [46], [81]). The non-local feature of the eigenvalue problem

is common in pattern formation problems as a measure of the long-range

inhibitor effect in the semi-strong regime. Aside from being non-local, NLEPs

such as (3.16) are also non-self-adjoint and as such are notoriously difficult

for finding conditions for which the eigenvalues satisfy Re(λ) < 0. If we

define the quantities

µ = λ+
ε2m2

r2
0

, A(Φ0) =

∫ ∞
−∞

wo−1Φ0 dρ (3.17)
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then we can write (3.16) as

L0bΦ0 −
χm
A

w2

(1 + bw2)
A(Φ0) = µΦ0.

We notice that L0b is a self-adjoint operator and with this in mind, multiply

the eigenvalue problem with a function ψ, satisfying the same boundary

conditions as Φ0, and integrate

∫ ∞
−∞

(L0bΦ− µΦ0)ψ dρ =
χm
A

∫ ∞
−∞

w2

(1 + bw2)
A(Φ0)ψ dρ.

Since L0b is self-adjoint,

∫ ∞
−∞

(L0bΦ0 − µΦ0)ψ dρ =

∫ ∞
−∞

(L0bψ − µψ)Φ0 dρ,

and so ∫ ∞
−∞

(L0bψ − µψ)Φ0 −
χm
A

w2

(1 + bw2)
A(Φ0)ψ dρ = 0.

Define ψ such that

(L0b − µ)ψ =
w2

(1 + bw2)
, (3.18)

so that ∫ ∞
−∞

w2

(1 + bw2)

(
Φ0 −

χm
A A(Φ0)ψ

)
dρ = 0.

Since everything outside the brackets in the integrand is positive, the integral

can only vanish if

Φ0 =
χm
A A(Φ0)ψ.
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We can use this to write (3.16) as

χm
A A(Φ0)L0bψ −

χm
A A(Φ0)

χm
A

w2

(1 + bw2)

∫ ∞
−∞

wo−1ψ dρ =
χm
A A(Φ0)µψ.

Dividing through by χm
A A(Φ) and using (3.18) we get,

1

χm
−
∫∞
−∞w

o−1ψ dρ

A = 0.

We define Cm(λ) and f(µ) by,

Cm(λ) ≡ 1

χm
=

1

qo

(
s+

J0,1(r0)J0,2(r0)

J̄m,1(θλr0)J̄m,2(θλr0)

)
, (3.19a)

f(µ) ≡
∫∞
−∞w

o−1ψ dρ

A , (3.19b)

and so the eigenvalue problem (3.16) becomes a root finding problem

gm(λ) ≡ Cm(λ)− f(µ) = 0, (3.20)

subject to (3.18) where µ is given by (3.17). Note that we are only interested

in roots satisfying Re(λ) > 0 which correspond to unstable eigenvalues.

3.2.1 Removing Saturation: The case b = 0

We begin by considering σ = 0 (hence b = 0) as this will allow us to recover

some analytic properties for the even eigenfunctions for which the nonlocal

78



3.2. Eigenvalues Associated with Φ0 Even

term in (3.16) does not vanish. First when b = 0, we write (3.7) as

L0Φ0 = L00Φ0 = Φ0ρρ − Φ0 + 2wΦ0, (3.21)

so that the NLEP (3.16) simplifies to

L0Φ0 −
χm
A w2

∫ ∞
−∞

wo−1Φ0 dρ = µΦ0. (3.22)

For this limiting case, the root finding problem (3.20) remains unchanged

except that now the function ψ from (3.19b) satisfies

(L0 − µ)ψ = w2, (3.23)

instead of (3.18). We will decompose the process of determining unstable

eigenvalues by considering real and complex eigenvalues separately.

3.2.2 Real Eigenvalues

If λ is purely real then the root finding problem remains completely un-

changed. When b = 0 then we can determine the discrete eigenvalues

L0Ψ = νΨ using Lemma 3.1.0.1 explicitly (cf. [14], [47]). The continuous

spectrum exists on Re(ν) < −1 and the discrete eigenvalues and eigenfunc-

tions satisfy,

ν0 =
5

4
, Ψ0 = w3/2; ν1 = 0, Ψ1 = w′; ν2 = −3

4
, Ψ2 =

(
1− 5

6
w

)
w1/2.

(3.24)
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The principal eigenfunction Ψ0, is a solution to the homogeneous problem

(3.23) when µ = ν0 and since the operator is self-adjoint, there will only be

a solution ψ if the compatibility condition,

∫ ∞
−∞

w2Ψ dρ = 0,

is satisfied which is impossible because both functions are even and hence

their product is as well. Therefore we immediately understand that f , as

defined in (3.19b), will have a vertical asymptote at µ = ν0. Properties of

f(µ) in (3.19b) have been analyzed in [79] where the asymptotic structure of

f(µ) for µ� 1 is given by

f(µ) ∼ 1 +

(
1− 1

2o

)
µ+ κcµ

2 + . . . (3.25)

with

κc =

∫∞
−∞w

o−1ψc dρ

A , ψc = L−3
0 (w2). (3.26)

In general, ψc needs to be computed numerically. However, in Proposition

3.1 of [79], an explicit analytic representation is given for the case o = 2 and

o = 3 (based on the exponent 2 in (2, q, o, s)). With these same cases, the

following global properties of f(µ) are also provided in Proposition 3.5:

f ′(µ) > 0, µ ∈ [0, ν0) (3.27a)

f ′′(µ) > 0, µ ∈ [0, ν0) (3.27b)

f(µ) < 0, µ ∈ (ν0,∞). (3.27c)
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3.2. Eigenvalues Associated with Φ0 Even

These properties rely on easily being able to compute or bound the integrals

in (3.19b) and solve (3.23) along with derivatives of eigenfunctions. However,

in the absence of analytic solutions, we can solve (3.23) and (3.19b) numeri-

cally and we conjecture that (3.27) holds for any exponent o. In Figure 3.1,

we plot f(µ) for o = 1, 4, and 5.
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Figure 3.1: Computation of f(µ) from (3.19b) for various o with m = 0,
r0 = 0.5, and ε = 0.025. We set m = 0 solely to satisfy µ = λ and deal with
a single variable. The properties (3.27) derived analytically from o = 2 or
o = 3 still hold for various exponents.

To understand the singularity properties of the asymptote to (3.19b) at µ =
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3.2. Eigenvalues Associated with Φ0 Even

ν0 we consider a small parameter δ such that

µ = ν0 + δµ1, ψ = ω(δ)(ψ0 + δψ1),

with ω(δ) to be determined and substitute this into (3.23). The source of

this asymptote, as previously stated, is that the homogeneous solution is

incompatible with the non-homogeneous term. Near ν0, we can only achieve

solution compatibility if the right hand-side of (3.23) is subdominant to ψ0.

If we expand our substitution,

L0ψ0 − ν0ψ0 + δ(L0ψ1 − ν0ψ1 − ν1ψ0) +O(δ2) =
w2

ω
,

then a reasonable balance is to take ω = 1/δ. The leading order problem

then results in ψ0 = Ψ0, the eigenfunction for ν0. At next order the problem

is,

L0ψ1 − ν0ψ1 = w2 + µ1ψ0.

We notice that ψ1 = Ψ0 is a solution to the homogeneous problem and so, in

order for a solution to exist, we must have that the compatibility condition,

∫ ∞
−∞

w2Ψ0 dρ+ µ1

∫ ∞
−∞

Ψ2
0 dρ = 0,

is satisfied. This yields that

µ1 = −
∫∞
−∞w

2Ψ0 dρ∫∞
−∞Ψ2

0 dρ
.
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3.2. Eigenvalues Associated with Φ0 Even

If we rewrite

δ =
µ− ν0

µ1

,

then we have that to leading order,

ψ ∼ µ1

µ− ν0

Ψ0,

for µ near ν0. With this we can compute,

f(µ) ∼ µ1

µ− ν0

∫∞
−∞w

o−1Ψ0 dρ∫∞
−∞w

o dρ
, µ ≈ ν0. (3.28)

Therefore we have that there is a simple pole to f(µ) at µ = ν0 satisfying

f → ∞ as µ → ν−0 and f → −∞ as µ → ν+
0 . In Figure 3.2 we show f(µ)

computed numerically for m = 0, r0 = 0.5, ε = 0.025, and o = 2 and overlay

the asymptotic approximation (3.28). The asymptotic agreement extends

quite well beyond the asymptote and generally describes the entire function.
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Figure 3.2: Numerical computation of f(µ) when m = 0, r0 = 0.5, ε = 0.025,
and o = 2 along with the asymptotic expression (3.28) demonstrating the
simple pole at µ = ν0.

Returning to the root problem g given by (3.20), the structure can depend

significantly on the magnitude of m and specifically centers around the term

ε2m2/r2
0 being significant or not. As such we will independently investigate

these cases.

3.2.3 Real Eigenvalues: m = O(1)

Consider m = O(1) so that for ε� 1,

µ = λ+
ε2m2

r2
0

≈ λ.
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3.2. Eigenvalues Associated with Φ0 Even

First note that if λ > ν0 then since Cm(λ) > 0 and f(λ) < 0 from (3.27) then

we conclude that gm(λ) > 0 when λ > ν0. Therefore, to leading order, all

eigenvalues to (3.22) satisfy λ < ν0. We begin by finding the neutral stability

point λ = 0. From the asymptotic expansion of f(µ) given by (3.25), we have

that f(0) = 1 and so

gm(0) = Cm(0)− 1.

Furthermore, when λ = 0 then θλ = 1/
√
D and when m = 0 we have that

J̄m,i(θλr) = J0,i(r) so from (3.19a), C0(0) = s/qo and so since s + 1 < qo,

g0(0) < 0. To understand the existence of roots we must look at the Cm

function in (3.19a) and differentiate it with respect to order,

∂Cm
∂m

= − C̄0

(J̄m,1(θλr0)J̄m,2(θλr0))2

∂

∂m

(
J̄m,1(θλr0)J̄m,2(θλr0)

)
,

where

C̄0 =
J0,1(r0)J0,2(r0)

qo
> 0.

Order derivative expressions have been formulated (cf. [1]) but are relatively

intractable for general m in terms of obtaining sign estimates. However, they

do simplify for m = 0 to,

∂

∂m
Im (z)

∣∣∣∣
m=0

= −K0 (z) ,
∂

∂m
Km (z)

∣∣∣∣
m=0

= 0,

and so in this case

∂Jm
∂m

∣∣∣∣
m=0

= −2ᾱ0I0 (θλr0)K0 (θλr0)−K0 (θλr0)2 + I0 (θλr0)2 ∂ᾱm
∂m

∣∣∣∣
m=0

,

(3.29)
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3.2. Eigenvalues Associated with Φ0 Even

where

Jm(r0) = J̄m,1(θλr0)J̄m,2(θλr0). (3.30)

To understand this better we require the order derivative of ᾱ0,

dᾱm
dm

∣∣∣∣
m=0

=

∂Km(θλR)
∂m

∣∣∣
m=1
−K0 (θλR)

I1 (θλR)

−
K1 (θλR)

(
∂Im(θλR)

∂m

∣∣∣
m=1

+ I0 (θλR)
)

I1 (θλR)2 .

Once again from [1] we can compute that

∂Im (z)

∂m

∣∣∣∣
m=1

= K1 (z)− I0 (z)

z
,

∂Km (z)

∂m

∣∣∣∣
m=1

=
K1 (z)

z
,

and using the Wronskian relationship (2.37) we can finally write that

dᾱm
dm

∣∣∣∣
m=0

=
1

(θλR)2I1 (θλR)2 (1− θλR)− ᾱ2
0.

For θλR > 1, this expression is negative and for θλR < 1, if we use the small

argument asymptotics for the modified Bessel functions [1], we have

dᾱm
dm

∣∣∣∣
m=0

∼ − 1

4(θλR)3
,

and therefore the order derivative of ᾱ0 is always negative so (3.29) is always

negative and therefore
∂Cm
∂m

∣∣∣∣
m=0

> 0.
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3.2. Eigenvalues Associated with Φ0 Even

We expect this still to hold for m near zero and in fact, numerically, we can

confirm positivity on Cm holds for all m with r0 ∈ [0, R] via Figure 3.3 which

plots the maximum of the order derivative of (3.30) for r0 ∈ [0, R] versus θλ

for various values of R. This derivative is always negative and tending to

zero so therefore we have that ∂Cm
∂m

> 0 for all m.
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Figure 3.3: Numerical computation of the derivative of (3.30) with respect
to m. For a given value of m, R, and θλ, we compute the order derivative of
(3.30) over r0 ∈ [0, R] and then take the maximum value over that interval.
The figure shows each maximal value of the derivative as a function of θλ for
various values of R.

Since the derivative is always positive, we can have at most one root to Cm.
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3.2. Eigenvalues Associated with Φ0 Even

If we consider m large then we can use the small argument asymptotics for

Im (x) and Km (x) which are valid for x �
√
m+ 1 [1]. These expansions

are,

Im (x) ∼ 1

Γ(m+ 1)

(x
2

)m
, Km (x) ∼ Γ(m)

2

(
2

x

)m
(3.31)

and so therefore

Cm(λ) ≈
m�1

C̄0

Jm(r0)
∼ C̄0

2m

1 +
(
r0
R

)2m � 1. (3.32)

This in combination with C0(0) < 0 and dCm
dm

> 0 shows there exists exactly

one point where Cm(0) = 1 and hence a single value m = mb− such that

gmb− (0) = 0. (3.33)

Now, just because there is a value of m for which a neutral stability point oc-

curs, this does not mean that λ = 0 is the largest eigenvalue when m = mb− .

To investigate this, we need to consider the λ derivative and second deriva-

tive for Cm. In a similar fashion to what we did with the order derivative,

we can conclude numerically that

∂Cm
∂λ

> 0,
∂2Cm
∂λ2

< 0, (3.34)

when τ 6= 0. When τ = 0 then Cm(λ) = Cm(0) since the eigenvalue only

occurs in a product with τ and therefore dCm
dλ

= 0 when τ = 0. Using these
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3.2. Eigenvalues Associated with Φ0 Even

expressions along with (3.27) we have that

∂2gm
∂λ2

=
∂2Cm
∂λ2

− ∂2f

∂λ2
< 0. (3.35)

Since this expression holds for all m, it must hold at m = mb− and so gmb−

can have at most 2 roots of which we already know λ = 0 is one. As λ tends

to ν0 from the left then gmb− tends to negative infinity. If
dgm

b−
dλ

< 0 when

λ = 0 then the only possible way there can exist a second root and have

the far-field behaviour be satisfied is if there are at least three roots to gmb−

which violates the maximal root condition. Conversely, if the derivative is

positive when λ = 0 then there must be a second crossing to achieve the

far-field behaviour and therefore a second, larger, root must exist. When

τ = 0, we know that dCm
dλ

= 0 and so by (3.27)

dgmb−
dλ

∣∣∣∣
τ=0

< 0, (3.36)

always. If τ � 1 then θλ � 1 and we can use the large argument asymptotic

expansions for the Bessel functions [1],

Im (x) ∼ exp(x)√
2πx

, Km (x) ∼
√

π

2x
exp(−x)

to write

Cm(λ) ∼ 2C̄0r0θλ
1

(1 + exp(−2θλ(R− r0)))
≈ 2C̄0r0θλ � 1 τ � 1.

(3.37)
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3.2. Eigenvalues Associated with Φ0 Even

Consider λ small such that f ∼ 1 via (3.25) but large enough (i.e. λ >

O(1/τ)) so that for τ � 1

gm ∼ Cm � 1.

Specifically then, when m = mb− , and if τ is large, we have

dgmb−
dλ

∣∣∣∣
τ�1

> 0

for some range of λ and therefore this must be true when λ = 0 otherwise the

two-root condition will be violated. Therefore, there must exist some critical

value τ = τ ∗mb− which satisfies

dgmb−
dλ

(0)

∣∣∣∣
τ=τ∗m

b−

= 0 (3.38)

such that a new root λτ∗m
b−
> 0 is created and persists for τ > τ ∗mb− . We can

find this point by using a numerical root-finding algorithm to solve (3.33) and

(3.38). For example using Newton’s method with r0 = 0.5, R = 1, D = 1,

and exponent set (2, 1, 2, 0), we get,

mb− ≈ 0.4003 τ ∗mb− ≈ 1.8376. (3.39)

While we solve this problem numerically, it is still an asymptotic approxima-

tion as we are ignoring the terms ε2m2/r2
0.

Now that we have investigated the neutral stability point, we will turn our

attention to the intervals that m = mb− creates. Firstly, we will look at
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m ∈ [0,mb−). When m = mb− we have that Cmb− = 1 and since dCm
dm

> 0 for

all m then for 0 ≤ m < mb− we must have Cm(0) < 1. Since f(0) = 1 then

gm(0) < 0. When τ = 0 then recall Cm(λ) = Cm(0) and therefore via (3.36),

there are no positive λ for m ∈ [0,mb−) when τ = 0. When τ is really large

then (3.37) holds for Cm and by a similar logic as when m = mb− there is a

range of λ for which gm(λ) > 0. Furthermore, we still have that gm → −∞
as λ → ν−0 , and so combining this information there are at least two roots

to gm for τ � 1 for m ∈ [0,mb−). Using (3.35) we can restrict this further

and conclude that there are exactly two roots when τ � 1. Of course, this

means there must exist some τ = τ ∗m such that there is exactly one positive

root λτ∗m which will occur when

gm(λτ∗m) =
∂gm
∂λ

∣∣∣∣
λτ∗m

= 0.

Note that since the only neutral stability point occurs at m = mb− , these

positive roots cannot transition through λ = 0 and must become real via the

complex plane.

Finally, we consider m ∈ (mb− ,∞), bearing in mind that we are only asymp-

totically considering m = O(1). On this region, Cm(0) > Cmb− (0) = 1 and

so gm(0) > 1. When τ = 0, then once again (3.36) holds and by the far-field

behaviour of gm, there must be exactly one root to gm. When τ 6= 0 then

(3.35) states that there can be at most one critical point to gm. Regardless

of the sign of dgm
dλ

(0), there will be exactly one root to gm as otherwise the

far-field behaviour dictates the single critical point condition will be violated.
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3.2.4 Real Eigenvalues: m� O(1)

We now turn our attention to the case when m is large enough that µ ≈ λ is

no longer valid as an approximation to (3.17). This approximation ceases to

be valid when m = O(ε−1) and so we define

m̃ = εm.

Since m � 1, we can use (3.32) as an approximation to Cm which means

that χm = O(ε−1)� 1, and so to leading order (3.22) becomes

L0Φ0 =

(
λ+

m̃2

r2
0

)
Φ0. (3.40)

We once again start by looking for a neutral stability point and so setting

λ = 0, we know from Lemma 3.1.0.1 that ν0 in (3.24) is the only eigenvalue,

eigenfunction pair with Re(λ) > 0 to L0, and so we have a neutral stability

point m̃ = m̃b+ which satisfies

m̃b+ = r0

√
ν0. (3.41)

We can find a correction to this by expanding

m̃2
b+ ∼ r2

0ν0 + εm̃1, Φ0 ∼ Ψ0 + εΦ01,

and after substituting into (3.22), Φ01 and m̃1 satisfy

L0Φ01 − ν0Φ01 =
w2

2C̄0r0
√
ν0A

∫ ∞
−∞

wo−1Ψ0 dρ+
m̃1

r2
0

Ψ0. (3.42)
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Here we have used (3.32) for large m asymptotics to Cm (and hence χm) and

have taken that since r0 < R,
(
r0
R

)2m
tends to zero as m→∞. The solution

Φ01 = Ψ0 is a homogeneous solution to (3.42) and so we require a solvability

condition for the right-hand side. From this we get m̃1 satisfies

m̃1 = − r0

2C̄0
√
ν0

B,

where

B =

∫∞
−∞w

2Ψ0 dρ
∫∞
−∞w

o−1Ψ0 dρ

A
∫∞
−∞Ψ2

0 dρ
.

Therefore, overall we have,

mb+ ∼
1

ε

√
r2

0ν0 + εm̃1 =
r0
√
ν0

ε
− B

4C̄0ν0

. (3.43)

Now, unlike the case when m = mb− , λ = 0 is the only eigenvalue when

m = mb+ . This is because if λ > 0 then µ > ν0 and there is no solution to

(3.40). In fact, this conclusion holds on the interval m > mb+ because for all

λ ≥ 0, µ > ν0 always. Now we consider m̃ < m̃b+ and first note that by the

same logic just discussed, if λ > ν0− m̃ then there are no solutions to (3.40).

We therefore restrict our attention to λ < ν0 − m̃. From (3.27) we have

f(0) = 1, and from (3.32) we have Cm(0) � 1 so gm(0) � 1. Once again

via (3.35), we have that gm can have at most one critical point and since

gm → −∞ as λ→ ν−0 then there is exactly one root to gm on m̃ ∈ [0, m̃b+).

Asymptotically, this root is given by,

λ = ν0 −
m̃2

r2
0

. (3.44)
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3.2.5 Real Eigenvalue Summary

We have now analyzed all the possible cases for real eigenvalues and we

summarize them here. For 0 ≤ m < mb− with mb− given asymptotically

by the numerical solution of (3.33) and (3.38), we have that there are no

real, positive eigenvalues when τ is sufficiently small and two positive real

eigenvalues when τ is sufficiently large. Furthermore, there exists some τ =

τ ∗m where there is exactly one real eigenvalue on this interval. When m = mb−

then λ = 0 is the largest eigenvalue for 0 ≤ τ < τ ∗mb− with τ ∗mb− satisfying

(3.38). When τ > τ ∗mb− , there exists a non-zero positive real eigenvalue as the

largest eigenvalue. When mb− < m < mb+ with mb+ given asymptotically

by (3.43) then there is exactly one real eigenvalue for all values of τ . When

m = mb+ , λ = 0 is the largest eigenvalue and when m > mb+ all the real

eigenvalues are strictly negative.

3.2.6 Complex Eigenvalues

We now consider the possibility that λ is complex. Note that the possibility

of complex eigenvalues is due to the full operator in (3.22) being non self-

adjoint. We start by letting

λ = λR + iλI , ψ = ψR + iψI (3.45)
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which we substitute into (3.23) to get

L0ψR =

(
λR +

ε2m2

r2
0

)
ψR − λIψI + w2, (3.46a)

L0ψI =

(
λR +

ε2m2

r2
0

)
ψI + λIψR. (3.46b)

We then define

fR =

∫∞
−∞w

o−1ψR dρ

A , fI =

∫∞
−∞w

o−1ψI dρ

A , (3.47)

and gm = gmR + igmI with

gmR = Re(Cm(λ))− fR, gmI = Im(Cm(λ))− fI , (3.48)

and Cm(λ) still defined by (3.19a). To determine the number of roots to gm,

we will use the Nyquist criteria [70] which says that the change in argument

of a function is related to the number of zeros, N0, and the number of poles,

Np, inside a given closed contour, Γ, via

[arg f(x)]Γ = 2π(N0(f)−Np(f)). (3.49)

We take as a contour Γ = ΓI ∪ ΓK with

ΓK :
{
λ = K exp(it)|t ∈

[
−π

2
,
π

2

]}
, ΓI : −Ki ≤ λ ≤ Ki,

traversed counter-clockwise and we consider what happens as K tends to

infinity while assuming that τ is chosen so that gm has no roots on the
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imaginary axis. As K tends to infinity, so does µ, and from (3.23) we have

that ψ tends to zero. Therefore fR and fI tend to zero as well as µ → ∞.

Also since |λ| � 1 then (3.37) holds and

Cm(λ) ∼ 2C̄0r0

√
Kτ

D
exp

(
it

2

)
(3.50)

where we have chosen the principal value for the square root by taking the

branch cut along the negative real axis. We are interested in the change in

argument of gm as we traverse ΓK in the counter clockwise direction. When

t = −π/2 then from (3.50),

arg gm = argCm = −π
4
,

and conversely when t = π/2,

arg gm = argCm =
π

4
,

and so

[arg gm]ΓR =
π

2
.

For the change in argument along ΓI , since Cm(λ) is holomorphic and real

valued when λ is real then Cm(λ̄) = Cm(λ). This similarly holds for f and

so we can write

[arg gm]ΓI = 2[arg gm]Γ+
I
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where Γ+
I is the positive imaginary axis traversed from infinity to zero. We

therefore have from (3.49) that

N0(gm) =
1

4
+Np(gm) +

1

π
[arg gm]Γ+

I
.

We are already aware from (3.28) that f(µ) (and hence gm) has a simple pole

when µ = ν0. However, we also determined that if m > mb+ then µ > ν0,

and so the pole only exists inside the contour on m ∈ [0,mb+). Therefore,

we have the number of roots to gm is given by

N0(gm) =


5
4

+ 1
π
[arg gm]Γ+

I
, m < mb+

1
4

+ 1
π
[arg gm]Γ+

I
, m > mb+

. (3.51)

At the start of Γ+
I , coming in from infinity, where K � 1, we can once again

use (3.37) and write

Cm(λ) ∼ 2C̄0r0

√
iKτ

D
,

where

Re(Cm) = Im(Cm) ∼
√

2C̄0r0

√
Kτ

D
. (3.52)

As we already discussed, ψ → 0 as λ→∞ and so for K � 1,

arg gm = argCm = arctan

(
Im(Cm)

Re(Cm)

)
=
π

4
.

Near the end of Γ+
I , traversing towards the origin, we have K � 1 and so

we can use (3.32) which, even though derived for m � 1, was based off of
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small argument asymptotics and so will be valid for all m with K � 1. In

this case we have

Re(Cm) =
2C̄0m

1 +
(
r0
R

)m , Im(Cm) = 0.

From Proposition 3.1 and 3.2 of [79], we have that for λI � 1 and m = O(1),

fR(λI) ∼ 1− κcλ2
I +O(λ4

I), (3.53a)

fI(λI) ∼
(

1− 1

2o

)
λI +O(λ3

I) (3.53b)

where κc is defined by (3.26). If m� O(1) then for λI � 1 (3.46b) simplifies

to

L0ψI =
ε2m2

r2
0

ψI

which only has a non-trivial solution at m = mb+ but we are not considering

this point since it places the pole on the contour. Therefore, regardless of

m, we have fI = 0 for λI � 1 and gmI = 0. For gmR, recall that we already

determined gm(0) < 0 on 0 ≤ m < mb− and gm(0) > 0 on m > mb− so

therefore,

arg gm = arctan

(
gmI
gmR

)
=

π, m ∈ [0,mb−)

0, m ∈ (mb− ,∞) \mb+

,

near λI = 0 of Γ+
I . All that we are left to do now is determine the path

of gm as it changes its global argument and to do that, we will need a new
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set of properties for fR and fI . Particularly we require that for λI > 0 and

m = O(1),

∂fR
∂λI

< 0, fI(λI) > 0, (3.54)

which for o = 2 has been proven explicitly in Proposition 3.1 and 3.2 of

[79]. However, as we did for (3.27), we can conjecture numerically that these

properties hold for any o. In Figure 3.4, we verify (3.27) for o = 1, 4, and 5.
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Figure 3.4: Computation of fR and fI from (3.47) for various o with m = 0,
r0 = 0.5, and ε = 0.025. We set m = 0 solely to satisfy dealing with a single
variable λI . The properties (3.54) derived analytically from o = 2 or o = 3
in Proposition 3.1 and 3.2 of [79] still hold for various exponents.
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3.2.7 Complex Eigenvalues: 0 ≤ m < mb−

On this range we know that the argument must transition from π/4 to π and

so we will determine the path to get here by looking at crossings along the

imaginary axis where gmR = 0 of which at least one must exist. From (3.34)

and (3.54) we have

dgmR
dλI

=
d

dλI
Re(Cm)− dfR

dλI
> 0 (3.55)

for all λI and so by the mean value theorem there is a unique crossing of the

imaginary axis. To determine which branch gets crossed, we need to consider

the sign of gmI at the crossing. Recall, if τ = 0 then Cm(λ) = Cm(0) and so

for τ = 0,

Re(Cm) = Cm(0), Im(Cm) = 0,

and so from (3.54),

gmI = Im(Cm)− fI = −fI < 0,

and so the negative imaginary axis is crossed. Therefore,

[arg gm]Γ+
I

= −5π

4
, τ � 1.
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When τ � 1 then from (3.37), we can use (3.52) for the real and imaginary

parts of Cm. Furthermore, since fI does not have a vertical asymptote then

gmI ≈ Im(Cm)� 1

and so for τ � 1, the positive imaginary axis is crossed and

[arg gm]Γ+
I

=
3π

4
, τ � 1.

Therefore on 0 ≤ m ≤ mb− we have from (3.51)

N0(gm) =

0, τ � 1

2, τ � 1

.

Therefore, for τ small, there are no complex eigenvalues with positive real

part which eventually transition to two complex eigenvalues with positive

real part. These eigenvalues cannot transition through λ = 0 since, if λ = 0

for one value of τ , it is an eigenvalue for all values of τ and therefore, the

eigenvalues must cross through the imaginary axis at some value τ = τHm

where a Hopf bifurcation occurs. We know from analyzing the real eigenval-

ues that, eventually for τ large enough, these two complex eigenvalues must

become purely real and therefore τHm < τ ∗m.

3.2.8 Complex Eigenvalues: m > mb−

On this region, the argument transitions from π/4 to 0 and so there must

be zero or an even number of crossings through the imaginary axis. With

101



3.2. Eigenvalues Associated with Φ0 Even

m = O(1), we concluded in the previous section that via (3.55), there can

exist at most one crossing through the imaginary axis and therefore, on

m > mb− with m = O(1), we must have zero crossings. This tells us that

[arg gm]Γ+
I

= −π
4
. (3.56)

For m = O(ε−1), we have that (3.32) holds for Cm � 1 and since, unlike the

case for purely real eigenvalues, fR does not have a vertical asymptote for

m 6= mb+ then

gmR ≈ Re(Cm) ∼ O(m)� 1.

Therefore gmR > 0 always and cannot cross the imaginary axis so (3.56)

holds as well. Therefore, via (3.51), we have

N0(gm) =

1, mb− < m < mb+

0, m > mb+

.

Since we have already determined that a real eigenvalue exists on m ∈
(mb− ,mb+), this must be the only positive eigenvalue for this range.

3.2.9 Eigenvalue Summary

We are now finally in a position to classify the entire spectrum of eigenvalues

to (3.16) for Φ0 even and σ = 0 via the following principal result:

Principal Result 3.2.9.1 Eigenvalue Classification:

On 0 < m < mb−:

There are no eigenvalues with positive real part when τ is sufficiently small
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and two complex eigenvalues with positive real part when τ is sufficiently

large. These eigenvalues undergo a Hopf bifurcation when τ = τHm and as τ

increases further, these eigenvalues coincide as a single real eigenvalue when

τ = τ ∗m before splitting on the real axis for τ > τ ∗m.

If m = mb−:

The eigenvalue λ = 0 persists for all τ and when τ < τ ∗mb− then λ = 0 is the

largest eigenvalue. If τ > τ ∗mb− then there exists some λτ > 0 that is purely

real and positive.

On mb− < m < mb+ :

There is exactly one real positive eigenvalue on this interval for all τ .

On m > mb+:

There are no eigenvalues with positive real part on this interval for all τ .

The condition that there is always at least one unstable eigenvalue for all r0

and all values of τ allows us to classify these eigenvalues as being an instability

on an O(1) time scale. This is because if mb− < m < mb+ then λ(0) > 0 so

when we use condition (3.9), the integral diverges immediately. For an initial

radius r0, unstable modes near the neutral stability points could be delayed or

prevented. Specifically, for mb+ satisfied by (3.41) asymptotically, the mode

decreases with increasing radius. Therefore modes that are initially unstable

may stabilize depending if secondary bifurcations occur before the pattern

can stabilize or not. This is irrelevant however, since there will always be

a band of unstable modes for random perturbations to amplify. However, if
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the ring radius decreases then the upper instability mode increases and this

would lead to previously stable modes becoming unstable.

3.2.10 Numerical Computation of Eigenvalues

We will now verify some of our analytic conclusions by numerically computing

the full non-local eigenvalue problem (3.16) for any b or τ as desired. To do

this, we can discretize L0b with a standard second order finite difference

scheme and in order to discretize the non-local part involving the integral of

Φ0, we first truncate to a finite domain

∫ ∞
−∞

wo−1Φ dρ ≈
∫ L

−L
wo−1Φ dρ.

for some L to be chosen so that as L increases the change in the integral is

below some tolerance. We disretize over N + 1 points with

xk = −L+ kh, k = 0 . . . N, h =
2L

N
.

With this in mind we write the integral as

∫ L

−L
wo−1Φ dρ =

N−1∑
k=0

∫ −L+(k+1)h

−L+kh

wo−1Φ dρ

and discretize each integral with the trapezoid method [6]. Finally, we sup-

plement far-field conditions that Φ0 = 0 at x = ±L.

We will begin computations by setting σ = b = 0 since this is what we

have previously analyzed analytically. Furthermore, when τ = 0, χm is in-
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dependent of λ and the eigenvalue problem becomes completely linear. As

such eigenvalues can easily be computed with a standard eigenvalue package

such as eigs in Matlab. Figure 3.5 plots max{Re(λ)} as a function of m

when τ = 0 for various parameters computed in Matlab.
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(a) (2, q, o, s) = (2, 1, 2, 0), ε = 0.025,
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R = 1, r0 = 0.5

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

1.5

m

m
a
x
R
e(
λ
)

(c) (2, q, o, s) = (2, 4, 3, 3), ε = 0.025,
R = 1, r0 = 0.5
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Figure 3.5: Numerical computation of the largest real part of the eigenvalue
λ in (3.16) for the case τ = 0 and b = 0 using eigs in Matlab. The blue
solid curves are where the largest eigenvalue is negative while the red dashed
curves are where it is positive. In all experiments D = 1.

In all cases, Principal Result 3.2.9.1 holds and there is a spectrum of real

positive eigenvalues. Using the eigenvalue solver we can also numerically
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obtain mb− and mb+ and compare them to the asymptotic approximations

(3.33) for mb− and (3.43) for mb+ . This is presented in Table 3.1 for a variety

of cases, and shows an excellent agreement with the analytical theory. Many

of the experimental cases have been chosen to mimic a similar eigenvalue

discussion for stripe solutions considered in [39].

(2, q, r, s) ε R = ` r0 mb−(n) mb−(a) mb+(n) mb+(a1) mb+(a2)

(2,1,2,0) 0.1 1 0.5 0.4033 0.4003 5.3542 5.5902 5.3671
(2,1,2,0) 0.05 1 0.5 0.4008 0.4003 10.9528 11.1803 10.9573
(2,1,2,0) 0.025 1 0.5 0.3996 0.4003 22.1389 22.3607 22.1376

(2,1,2,0) 0.025 1/
√

10 1/2
√

10 0.0485 0.0485 7.0482 7.0711 7.0469

(2,1,2,0) 0.025
√

10
√

10/2 2.3362 2.3373 69.3076 70.7107 69.3350

(2,1,2,0) 0.025
√

10 2/
√

10 0.9756 0.9745 27.6761 28.2843 27.6900

(2,1,2,0) 0.025
√

10 9/
√

10 3.4737 3.4771 125.7202 127.2792 125.7232
(2,1,3,0) 0.025 1 0.5 0.6974 0.6986 22.0085 22.3607 22.0122
(2,2,3,0) 0.025 1 0.5 1.4307 1.4251 21.6334 22.3607 21.6637
(2,4,3,3) 0.025 1 0.5 2.1107 2.0866 20.8712 22.3607 20.9667

Table 3.1: Comparison for τ = 0 and b = 0 of numerical and asymptotic
computations of mb− and mb+ for a variety of exponent sets, ε, R, and r0

with D = 1 for all. The (n) refers to numeric computations of (3.16) using
eigs in Matlab. mb−(a) is computed via Newton’s method on (3.33), mb+(a1)
is computed via (3.41) while mb+(a2) is computed via (3.43).

3.2.11 Computing Eigenvalues, τ 6= 0

When τ 6= 0 then χm in (3.16) is a function of λ and the eigenvalue problem

is more intricate as χm depends nonlinearly on the product τλ. For this case,

we must solve

T (λ)Φ = 0,

where Φ is the discrete eigenvector and T (λ) are the discretized coefficients

for (3.16). In order to enforce uniqueness of eigenvector solutions, we require
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3.2. Eigenvalues Associated with Φ0 Even

some normalizing constraint,

vTΦ = 1.

We can write the problem as a block system

F(λ,Φ) =

 T (λ)Φ

vTΦ− 1

 = 0

and hence our eigenvalues and eigenvectors are roots to F which we can solve

with Newton’s Method. We can write the Jacobian to the problem as,

J(λ,Φ) =

Tλ(λ)Φ T (λ)

0 vT


and so the Newton problem is,

J(λk,Φk)

 λk+1 − λk
Φk+1 −Φk

 = −F (λk,Φk), (3.57)

where k indicates the iteration count. We note that the normalizing vector

can also change with each iterate and so v = vk. If we write out the first

equation from the matrix multiplication we get

(λk+1 − λk)Tλ(λk)Φk + T (λk)Φk+1 − T (λk)Φk = −T (λk)Φk,
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which can simplify to

Φk+1 = −uk(λk+1 − λk), (3.58)

where we define

uk = T (λk)
−1Tλ(λk)Φk.

If we left-multiply by vTk then

λk+1 = λk −
vTk Φk+1

vTk uk
,

which still appears to depend on the solution Φk+1. However, if we expand

out the second equation in (3.57) then we get

vTk Φk+1 = 1

and so

λk+1 = λk −
1

vTk uk
. (3.59)

This determines λk+1 and we could use (3.58) to determine Φk+1 but since

it is just uk up to a constant we instead renormalize via,

Φk+1 =
uk

vTk uk
,
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which completes the problem. For simplicity we take,

vk =
uk−1

|uk−1|2

to normalize. There are several practical issues to deal with when implement-

ing Newton’s method for this problem because there are several eigenvalues

that exist (including the continuous spectrum that exists below λ = 1). We

are only interested in capturing the eigenvalues at each m for a given τ that

have the largest positive real part. To accomplish this we take as initial data

the τ = 0 case where the problem is linear and the largest eigenvalues are eas-

ily computed. We choose an m = m∗ value in the interval mb− < m < mb+

(typically the average point) because from Principal Result 3.2.9.1, when

b = 0 there is only one positive root in this interval and therefore, the New-

ton solve will be more robust in this region. Having chosen m∗, we compute

the Newton solve by slowly varying τ and finding eigenvalues at m = m∗

until a desired final τ value is reached. At this point, we begin another

Newton solve, fixing τ , for m < m∗ and m > m∗ until we have traversed

the entire spectrum of m, or until we enter the continuous spectrum. We

allow the stepsize on m to vary dynamically, getting smaller when there are

convergence issues and getting larger when roots are found in relatively few

iterations. On m > m∗, there is very little trouble because once m > mb+

we know that there are no eigenvalues with positive real part for all τ and so

we can terminate the Newton iteration quickly after this point. However, on

m < m∗, if τ satisfies τHm < τ < τ ∗m, the Newton iteration has some stability

issues. This is due to the existence of complex eigenvalues with positive real

part on this interval of τ . On this region, there are still real eigenvalues for
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m ≥ mb− and so there is a point where eigenvalues transition from being

real to complex. Since the Newton algorithm at this stage is based on using

the previous m values as initial data, the stability issues arise from trying

to find complex solutions with real initial data. Therefore, if the number

of attempted iterations exceeds a certain threshold within this region of m,

the code modifies the initial guess to include an imaginary component of

magnitude on order with the selected tolerance and the algorithm continues.

One last issue of practicality that occurs when solving the problem is when

the eigenvalues get close to zero (m = mb− and m = mb+). The problem is

that λ = 0 is always an eigenvalue of (3.16) with eigenfunction Φ = w′ (see

Lemma 3.1.0.1). Notice this eigenfunction is odd and so this zero eigenvalue

is ignored in the present analysis of even eigenfunctions but it still exists

and can be captured by the algorithm. Therefore, we have a checking crite-

rion that the solved eigenfunction at some m = m1 is not orthogonal to the

eigenfunction of the previous m = m0 value. If ΦT
m1

Φm0 is less than some

preset threshold then we discard the solution, reduce the step size in m, and

reinitialize the algorithm with the values at m0. In Figure 3.6 we plot the

numerically computed eigenvalues using Newton’s method as outlined above

for various values of τ with (p, q, o, s) = (2, 1, 2, 0), ε = 0.025, D = 1, R = 1,

and r0 = 0.5.
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Figure 3.6: Numerical computation for b = 0 of the largest real part of the
eigenvalue λ in (3.16) using Newton’s method on (3.59). The solid curves are
where the largest eigenvalue has negative real part while the dashed curves
are where it has positive real part. In all experiments (2, q, o, s) = (2, 1, 2, 0),
ε = 0.025, D = 1, R = 1, and r0 = 0.5.

When τ � 1 as in Figure 3.6a then the plot is almost indistinguishable from

the linear case of τ = 0 (Figure 3.5a) as should be expected. This helps verify

that the Newton algorithm is working properly. In Figure 3.6c when τ = 2 we

see that at m = mb− the zero eigenvalue is no longer the largest eigenvalue.

In (3.39) we estimated that τ ∗mb− = 1.8376 and in this case τ > τ ∗mb− . Figure

3.7 verifies our predicted τ ∗mb− value as in Figure 3.7a-3.7b τ = 1.82 < τ ∗mb−
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and we indeed still see at m = mb− that λ = 0 as the largest eigenvalue. In

Figure 3.7c-3.7d, τ = 1.84 > τ ∗mb− and at m = mb− there is an eigenvalue

larger than 0.
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Figure 3.7: Numerical computation of eigenvalues near m = mb− for τ > τ ∗mb−
and τ < τ ∗mb− . In all experiments (2, q, o, s) = (2, 1, 2, 0), ε = 0.025, D = 1,
R = 1, and r0 = 0.5.

In Figure 3.7b it may appear that there is a second neutral eigenvalue near

m = mb− as there is certainly another eigenvalue where Re(λ) = 0. However,

as we mentioned in doing the analytical analysis, there should only be one

truly neutral stability point. To emphasize this, we plot the imaginary part
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of the eigenvalues for a range of τ in Figure 3.8. For τ = 1.83, we see

that indeed the second eigenvalue with Re(λ) = 0 has a non-zero imaginary

part and thus there is a Hopf bifurcation at this m value for this particular

value of τ . We see that when τ = 1.84 > τ ∗mb− and λ = 0 is no longer

the biggest eigenvalue that the eigenvalues on m < mb− are complex and

therefore τ ∗m > 1.84. However, when τ = 30 we that all of the eigenvalue are

purely real so τ ∗m < 30.
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(d) τ = 1.84
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Figure 3.8: Imaginary part of the eigenvalues with largest real part computed
using Newton’s method on (3.59). The black x mark points where Re(λ) = 0.
In all experiments (2, q, o, s) = (2, 1, 2, 0), ε = 0.025, D = 1, R = 1, and
r0 = 0.5.
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3.2.12 Adding Saturation

We now turn our attention to the case when there is saturation and b 6= 0.

Fortunately, the Newton algorithm for (3.59) holds for any value of b and

so we can easily consider this case numerically. One thing that does hold

true analytically for b 6= 0 is the leading result on mb+ of section 3.2.4 when

m � 1. There we have that the non-local part in (3.16) is negligible to

leading order and therefore the only contribution with saturation is through

the operator L0b (3.7). This operator is still classified by Lemma 3.1.0.1 and

so there must still be a single positive eigenvalue with an eigenfunction that

has no nodal lines when a homoclinic orbit exists. If we let ν0(b) be this

largest discrete eigenvalue to b 6= 0 then the upper bound neutral stability

wave mode is given by,

mb+ ∼
r0

√
ν0(b)

ε
.

In section 2.3 we have that the homoclinic orbit solution w(η̂) only exists up

to a critical value b < bc with bc given by (2.27). When b = bc we saw that

w became a heteroclinic orbit and therefore in this instance w′ is even and

has no nodal lines. Therefore when b = bc, we must have that the largest

eigenvalue is the zero eigenvalue and therefore

lim
b→b−c

mb+ = 0.

We can compute the eigenvalues of L0b numerically using eigs which we plot

in Figure 3.9 and we indeed notice that the largest eigenvalue goes to zero

as b approaches the critical value.
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Figure 3.9: Computation of b dependent eigenvalues to L0b given by (3.7).

We demonstrate the spectrum of the NLEP (3.16) becoming entirely negative

in Figure 3.10 where we take (2, q, o, s) = (2, 1, 2, 0), ε = 0.025, R = 1, r0 =

0.5, and D = 1. In this figure, we have plotted the numerically computed

eigenvalues to (3.16) for τ = 0 and various values of b. It can be seen that

by the time b = 0.2 all of the eigenvalues satisfy Re(λ) < 0.
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Figure 3.10: Computation of eigenvalues for b 6= 0 and τ = 0. In all cases
(2, q, o, s) = (2, 1, 2, 0), ε = 0.025, R = 1, r0 = 0.5, and D = 1

Finally, in Figure 3.11 we plot the eigenvalues for b = 0.2, (2, q, o, s) =

(2, 1, 2, 0), ε = 0.025, R = 1, r0 = 0.5, and D = 1 for various values of τ .
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Figure 3.11: Computation of eigenvalues for b = 0.2 and τ 6= 0. In all cases
(2, q, o, s) = (2, 1, 2, 0), ε = 0.025, R = 1, r0 = 0.5, and D = 1

Unsurprisingly, since we saw gm � 1 for τ � 1, we have that there is a

threshold of τ where eigenvalues begin to enter Re(λ) > 0. However, unlike

r0, and b, τ is a static parameter and so for a fixed τ , there will exist a range

of b for which all of the eigenvalues satisfy Re(λ) < 0. There is some delicacy

required here since as we saw in section 2.3.1, b depends intimately on r0 and

generally decreases as r0 increases. Therefore, in the dynamic transition of

circle radii, bands of instability can arise. Fortunately due to the delay effect

from (3.9), as long as these instability bands are transient, it is possible to

stabilize everything. As is noted in Figure 2.7, the rate at which b decreases

as r0 increases gets slower as a function of saturation and so it is possible to
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3.3. Eigenvalues Associated with Φ0 Odd

find a saturation value σ∗ such that for σ > σ∗, the spectrum of the NLEP

(3.16) satisfies Re(λ) < 0 for most values of r0.

3.3 Eigenvalues Associated with Φ0 Odd

We will now consider the second class of eigenfunctions for which Φ0 is odd.

Odd functions do not obtain their maximum values at r = r0 and so this

class of functions will affect the position of the curve where maximal acti-

vator occurs. Therefore, we consider odd eigenfunctions to correspond with

translation or zig-zag instabilities. As we already discussed, when Φ0 is odd

then from (3.15), we have N(r0) = 0 to leading order, and so for Φ0 the

leading order problem from (3.8) is

L0bΦ0 =

(
λ+

ε2m2

r2
0

)
Φ0 = µΦ0.

For λ ≥ 0 then µ ≥ 0 and from [14] and section 3.2.12, we have that the only

possibility for Φ0 to be odd is if µ = 0 and Φ0 = w′ where w is the homoclinic

orbit solution (2.22) and prime indicates differentiation with respect to ρ. We

could once again analyze for m = O(1) and m� O(1) but for the latter case

note that µ = 0 implies

λ = −ε
2m2

r2
0

< 0

and so there are no unstable roots for m� 1 with an odd eigenfunction. As

such we will strictly consider m = O(1) moving forward. If we consider the

expansion (3.5), the most natural scaling for the inhibitor function is ε and
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3.3. Eigenvalues Associated with Φ0 Odd

therefore, to leading order,

Φ0 ∼ w′, λ = ω(ε)λ̂, N(r) = εN̂

with ω � 1 to be determined. We let Ñ(ρ) = N̂(r0 + ερ) and make the

following expansions,

Φ ∼ w′ + εΦ1 + ε2Φ2 + . . . , Ñ(ρ) ∼ Ñ0 + εÑ1 + . . . .

We also consider the asymptotic expansion of the equilibrium solution from

sections 2.2 and 2.3,

ṽe ∼ U q
0w + εṽ1 + ε2ṽ2 + . . . , ũe ∼ U0 + εũ1 + ε2ũ2 + . . . .

We have already satisfied the leading order problem and so we consider the

problem at O(ε) for Φ1 (by expanding (3.5a)) which becomes,

L0bΦ1 = −Φ0ρ

r0

− Φ0ρ
dr0

dT
− a1Φ0 +

qU q−1
0

(1 + bw2)
w2Ñ0 + λ̂Φ0, (3.60)

where we have defined

a1 ≡
2

U0(1 + bw2)2

(
(1− 3bw2)

U q−1
0 (1 + bw2)

ṽ1 − qwũ1

)
, (3.61)
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3.3. Eigenvalues Associated with Φ0 Odd

and, at least temporarily, consider ω(ε) = ε. Next, consider the problem for

ṽ1 and ũ1 given by (2.7) which, in radial coordinates, is

L0bṽ1 = −U
q
0

r0

w′ + qU q−1
0

w2

(1 + bw2)
ũ1 − U q

0

dr0

dT
w′, (3.62a)

ũ′′1 = − 1

D
Uβ

0 w
o. (3.62b)

Upon differentiating (3.62a), we obtain

L0bṽ
′
1 + 2

(1− 3bw2)

(1 + bw2)3
w′ṽ1 =− U q

0

r0

w′′ + qU q−1
0

2w

(1 + bw2)2
w′ũ1

+ qU q−1
0

w2

(1 + bw2)
ũ′1 − U q

0

dr0

dT
w′′, (3.63)

where we note that

(L0by)′ = L0by
′ + 2

(1− 3bw2)

(1 + bw2)3
w′y. (3.64)

We can rearrange (3.63) to get

a1w
′ = − 1

U q
0

L0bṽ
′
1 −

w′′

r0

+
q

U0

w2

(1 + bw2)
ũ′1 −

dr0

dT
w′′, (3.65)

so that (3.60) becomes

L0bΦ1 =
1

U q
0

L0bṽ
′
1 +

q

U0

w2

(1 + bw2)
(U q

0 Ñ0 − ũ′1) + λ̂w′, (3.66)
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3.3. Eigenvalues Associated with Φ0 Odd

where we have used that Φ0 = w′. We know Φ1 = w′ is a homogeneous solu-

tion to (3.66) and so we must satisfy the following compatibility condition:

1

U q
0

∫ ∞
−∞

w′L0bṽ
′
1 dρ+

q

U0

∫ ∞
−∞

w2

(1 + bw2)
(U q

0 Ñ0 − ũ′1)w′ dρ

+ λ̂

∫ ∞
−∞

w′2 dρ = 0. (3.67)

Now since L0b is self-adjoint and w′ a homogeneous solution then,

∫ ∞
−∞

w′L0bṽ
′
1 dρ =

∫ ∞
−∞

ṽ1L0bw
′ dρ = 0. (3.68)

In this way, (3.67) reduces to

− q

U0

∫ ∞
−∞

w2

(1 + bw2)
(U q

0 Ñ0 − ũ′1)w′ dρ = λ̂

∫ ∞
−∞

w′2 dρ. (3.69)

We now wish to understand the behaviour of the function F̃ defined by,

F̃0 ≡ U q
0 Ñ0 − ũ′1,

which is easier to obtain if we differentiate,

F̃ ′0 = U q
0 Ñ
′
0 − ũ′′1.

First from (3.62b) we have that

ũ′′1 = −U
β
0

D
wo,
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3.3. Eigenvalues Associated with Φ0 Odd

and for Ñ0 we turn to the expansion (3.5b) in inner coordinates:

ε4τÑT + ε2τÑω(ε)λ̂ =
D

(r0 + ερ)
((r0 + ερ)Ñ ′)′ − ε2 Dm2

(r0 + ερ)2
Ñ − ε2Ñ

+
oṽo−1

e

ũe
s Φ− ε sṽ

o
e

ũs+1
e

Ñ , (3.70)

which to leading order satisfies,

Ñ ′′0 = −oU
β−q
0

D
wo−1w′.

If we multiply this by U q
0 and integrate we have

U q
0 Ñ
′
0 = −U

β
0

D
wo,

and therefore F̃ ′0 = 0 so F̃0 is a constant. We already know that the derivative

of ue in the global region is discontinuous and therefore F̃0 being constant

implies that N̂ must be discontinuous as well but in such a way that the

appropriate sum is continuous and F̃0 is defined. Having F̃0 be constant

makes the integrand on the left-hand side of (3.69) an odd function and so

the integral vanishes. Therefore we conclude that ω(ε)� ε. Next we consider

ω(ε) = ε2 and by expanding (3.5a) to the proper order we get the problem

for Φ2:

L0bΦ2 =qU q−1
0

w2

(1 + bw2)
Ñ1 + ā2U

q
0 Ñ0 − a1Φ1 − a2w

′ − Φ′1
r0

+
ρw′′

r2
0

− dr01

dT
w′′ − dr00

dT
Φ′1 +

(
λ̂+

m2

r2
0

)
w′, (3.71)
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3.3. Eigenvalues Associated with Φ0 Odd

where we define a2 and ā2 by,

a2 ≡
2

U0(1 + bw2)2

(
(1− 3bw2)

U q−1
0 (1 + bw2)

ṽ2 − qwũ2

)
+
q(q + 1)

U2
0

w

(1 + bw2)2
ũ2

1

− 2q

U q+1
0

(1− 3bw2)

(1 + bw2)3
ũ1ṽ1 −

12bw

U2q
0

(1− bw2)

(1 + bw2)4
ṽ2

1 (3.72a)

ā2 ≡
2q

U q+1
0

w

(1 + bw2)2
ṽ1 −

q(q + 1)

U2
0

w2

(1 + bw2)
ũ1. (3.72b)

In (3.71) we replace r0 = r00 + εr01 where r00 is the value previously used

for r0 (i.e. it satisfies (2.43)) and r01 is added as a correction to satisfy an

orthogonality condition of the base-state at O(ε2). It may seem erroneous

to introduce a radial correction, r01, without any consideration to matching

conditions from previous quasi steady-state analysis. However, for the outer

problem, we are interested in the singular limit solution where all variables are

O(1) and matching terms generated by radial corrections furnish conditions

smaller than this order. Therefore, whenever global matching is concerned,

we will consider r0 + ερ ≈ r00 + ερ. As we did with the O(ε) problem, we

consider the problem for ṽ2 and ũ2 given by (2.15a) and (2.15b) respectively

which, in radial coordinates, is

L0bṽ2 =− ṽ′1
r00

+
ρU q

0

r2
00

w′ − dr00

dT
ṽ′1 −

dr01

dT
U q

0w
′ − U q−2

0 q(q + 1)

2

w2

(1 + bw2)
ũ2

1

+
2q

U0

w

(1 + bw2)2
ũ1ṽ1 −

1

U q
0

(1− 3bw2)

(1 + bw2)3
ṽ2

1 + U q−1
0 q

w2

(1 + bw2)
ũ2,

(3.73a)

ũ′′2 =
U0

D
− ũ′1
r00

+
1

D
Uβ−1

0 swoũ1 −
1

D
Uβ−q

0 owo−1ṽ1. (3.73b)
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3.3. Eigenvalues Associated with Φ0 Odd

As before, we differentiate (3.73a) and use (3.64) to get

a2w
′ = − 1

U q
0

L0bṽ
′
2 −

ṽ′′1
U q

0r00

+
w′

r2
00

+
ρw′′

r2
00

− 1

U q
0

dr00

dT
ṽ′′1

− dr01

dT
w′′ + ā2ũ

′
1 −

a1

U q
0

ṽ′1 +
q

U0

w2

(1 + bw2)
ũ′2. (3.74)

Upon substituting (3.74) into (3.71) and simplifying we get

L0bΦ2 =
q

U0

w2

(1 + bw2)
F̃1 + ā2F̃0 − a1Φ1 +

1

U q
0

L0bṽ
′
2 +

ṽ′′1
U q

0r00

− w′

r2
00

+
1

U q
0

dr00

dT
ṽ′′1 +

a1

U q
0

ṽ′1 −
Φ′1
r00

− dr00

dT
Φ′1 +

(
λ̂+

m2

r2
00

)
w′, (3.75)

where we define,

F̃1 = U q
0 Ñ1 − ũ′2. (3.76)

To simplify further we return to the problem for Φ1 given by (3.66), which

we can simplify as

L0b

(
Φ1 −

1

U q
0

ṽ′1

)
=
qF̃0

U0

w2

(1 + bw2)
. (3.77)

Now, considering the even eigenfunction problem discussed in section 3.2,

when µ = 0 there is a function ψ in (3.18) which satisfies

L0bψ =
w2

(1 + bw2)
, (3.78)
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and so we can write (3.77) as

L0b

(
Φ1 −

1

U q
0

ṽ′1 −
qF̃0

U0

ψ

)
= 0.

Therefore, the function being operated on must be some multiple of the null

eigenfunction w′ which we can take to be zero without loss of generality, and

we have that,

Φ1 =
1

U q
0

ṽ′1 +
qF̃0

U0

ψ. (3.79)

We can actually determine ψ analytically by first noticing that when b = 0,

we can directly verify that ψ = w. With this in mind, we consider how the

L0b operator acts on w even with saturation:

L0bw = w′′ − w + 2
w2

(1 + bw2)2
=

w2

(1 + bw2)2
− b w4

(1 + bw2)2
(3.80)

where we have used (2.22) to simplify the second derivative term. We can get

a better understanding of the last term in this expression by differentiating

the homoclinic orbit problem (2.22) with respect to the saturation parameter

b,

w′′b − wb + 2
wwb

(1 + bw2)2
− w4

(1 + bw2)2
= 0

which implies

L0bwb =
w4

(1 + bw2)2
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and this is precisely the last term in (3.80). With this in mind we attempt a

solution for ψ of the form,

ψ = w + cwb,

with c to be determined. Substituting this into (3.78) we have,

w2

(1 + bw2)
= L0b(w + cwb) =

w2

(1 + bw2)2
+ (c− b) w4

(1 + bw2)2

=
w2

(1 + bw2)

(1 + (c− b)w2)

(1 + bw2)

which will hold if c = 2b and thus we have

ψ = w + 2bwb. (3.81)

Substituting (3.79) into (3.75) we get

L0bΦ2 =
q

U0

w2

(1 + bw2)
F̃1 +

(
ā2 −

q

U0

(
a1ψ +

1

r00

ψ′ +
dr00

dT
ψ′
))
F̃0

+
1

U q
0

L0bṽ
′
2 −

w′

r2
00

+

(
λ̂+

m2

r2
00

)
w′.
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Once again, Φ2 = w′ is a homogeneous solution to this and so we need to

satisfy the solvability condition,

q

U0

∫ ∞
−∞

w2

(1 + bw2)
w′F̃1 dρ︸ ︷︷ ︸

I1

+ F̃0

∫ ∞
−∞

ā2w
′ − q

U0

(
a1ψw

′ +
1

r00

ψ′w′ +
dr00

dT
ψ′w′

)
dρ︸ ︷︷ ︸

I2

+

(
λ̂+

m2 − 1

r2
00

)∫ ∞
−∞

w′2 dρ = 0, (3.82)

where we have once again used (3.68) to remove the L0bṽ
′
2 term. First consider

the integral I2 in (3.82). We can use (3.65) to write,

∫ ∞
−∞

a1ψw
′ dρ =

∫ ∞
−∞
− 1

U q
0

ψL0bṽ
′
1 −

w′′ψ

r00

+
q

U0

ψũ′1
w2

(1 + bw2)
− dr00

dT
w′′ψ dρ

=

∫ ∞
−∞
− 1

U q
0

ψL0bṽ
′
1 +

w′ψ′

r00

+
q

U0

ψũ′1
w2

(1 + bw2)
+

dr00

dT
w′ψ′ dρ,

(3.83)

where we have integrated by parts on the second and last term. We also have

∫ ∞
−∞

ā2w
′ dρ =

2q

U q+1
0

∫ ∞
−∞

ww′

(1 + bw2)2
ṽ1 dρ− q(q + 1)

U2
0

∫ ∞
−∞

w2w′

(1 + bw2)
ũ1 dρ

=
q

U q+1
0

∫ ∞
−∞

ṽ1(L0bψ)′ dρ− q(q + 1)

U2
0

∫ ∞
−∞
W ′ũ1 dρ,
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where we have differentiated (3.18) to get the simplification in the first inte-

gral and W is given by (2.29). Integrating each term by parts

∫ ∞
−∞

ā2w
′ dρ = − q

U q+1
0

∫ ∞
−∞

ṽ′1L0bψ dρ+
q(q + 1)

2U2
0

Ĥ
〈

due
dr

〉
r00

∫ ∞
−∞

w′2 dρ

where the last term was simplified using (2.12), (2.18), and that

∫∞
0
W dρ∫∞

−∞w
′2 dρ

=
Ĥ
4
. (3.84)

Using the self-adjoint property of L0b we can finalize once more to obtain

∫ ∞
−∞

ā2w
′ dρ = − q

U q+1
0

∫ ∞
−∞

ψL0bṽ
′
1 dρ+

q(q + 1)

2U2
0

Ĥ
〈

due
dr

〉
r00

∫ ∞
−∞

w′2 dρ.

(3.85)

Combining (3.83) and (3.85) we can simplify I2 in (3.82) as

I2 =
q(q + 1)

2U2
0

Ĥ
〈

due
dr

〉
r00

∫ ∞
−∞

w′2 dρ− q2

U2
0

∫ ∞
−∞

ψũ′1
w2

(1 + bw2)
dρ

− 2q

U0

(
1

r00

+
dr00

dT

)∫ ∞
−∞

w′ψ′ dρ.

Using (2.34e) we can re-write the last term and we have

I2 =
q(q + 1)

2U2
0

Ĥ
〈

due
dr

〉
r00

∫ ∞
−∞

w′2 dρ− q2

U2
0

∫ ∞
−∞

ψũ′1
w2

(1 + bw2)
dρ

+
q2

U2
0

Ĥ
〈

due
dr

〉
r00

∫ ∞
−∞

w′ψ′ dρ.
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Finally we substitute ψ from (3.81) to get

I2 =
q

2U2
0

Ĥ
〈

due
dr

〉
r00

∫ ∞
−∞

w′2 dρ+
3q2

2U2
0

Ĥ
〈

due
dr

〉
r00

∫ ∞
−∞

w′2 dρ

+
q2

U2
0

2bĤ
〈

due
dr

〉∫ ∞
−∞

w′w′b dρ−
∫ ∞
−∞

w3

(1 + bw2)
ũ′1 dρ︸ ︷︷ ︸

I3

−2b

∫ ∞
−∞

w2wb
(1 + bw2)

ũ′1 dρ︸ ︷︷ ︸
I4

 .

Integrate I4 by parts to get

I4 = 2

∫ ∞
0

w2wb
(1 + bw2)

dρ

〈
due
dr

〉
r00

−
∫ ∞
−∞

(∫ ρ

0

w2wb
(1 + bw2)

dx

)
ũ′′1 dρ,

but the last integral vanishes since ũ′′1 is an even function. For the integral

I3, we also integrate by parts to split the integral,

I3 = −3

∫ ∞
−∞

w2w′

(1 + bw2)
ũ1 dρ+ 2b

∫ ∞
−∞

w4w′

(1 + bw2)2
ũ1 dρ,

but then integrate by parts on each separate integral again, twice, transfer-

ring the derivative back to the ũ1 term. After doing this, and once again

removing integrals involving ũ′′1, we get

I3 =

(
6

∫ ∞
0

W dρ− 4b

∫ ∞
0

∫ w

0

v4

(1 + bv2)2
dv dρ

)〈
due
dr

〉
r00

=

(
3

2
Ĥ
∫ ∞
−∞

w′2 dρ− 4b

∫ ∞
0

∫ w

0

v4

(1 + bv2)2
dv dρ

)〈
due
dr

〉
r00

,
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where we have used (3.84) to simplify. Transferring everything together back

into I2 we have

I2 =
q

2U2
0

Ĥ
〈

due
dr

〉
r00

∫ ∞
−∞

w′2 dρ− bq2

U2
0

〈
due
dr

〉
r00

(
4

∫ ∞
0

w2wb
(1 + bw2)

dρ

+4

∫ ∞
0

∫ w

0

v4

(1 + bv2)2
dv dρ− 2Ĥ

∫ ∞
−∞

w′w′b dρ

)
.

We can actually simplify this if we differentiate Ĥ in (3.84) with respect to b

and notice that this is exactly the last term in the expression. Therefore we

have,

I2 =
q

2U2
0

Ĥ
〈

due
dr

〉
r00

∫ ∞
−∞

w′2 dρ

(
1− 2bq

Ĥ
dĤ
db

)
. (3.86)

Finally, we consider I1 in (3.82) which we integrate by parts to get

I1 =− Ĥ
4

∫ ∞
−∞

w′2 dρ
(
F̃ ′1(∞) + F̃ ′1(−∞)

)
+

∫ ∞
−∞

∫ ρ

0

(W(x) dx) F̃ ′′1 dρ.

(3.87)

To simplify this we need to understand the behaviour of F̃1 given by (3.76)

and specifically, its second derivative,

F̃ ′′1 = U q
0 Ñ
′′
1 − ũ′′′2 .
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Therefore, we need to consider the problem for Ñ1 which we obtain by ex-

panding (3.70) to O(ε2),

Ñ ′′1 =− Ñ ′0
r00

+
sUβ−1

0

D
woÑ0 −

oUβ−q
0

D
wo−1

(
ṽ′1
U q

0

+
qF̃0

U0

ψ

)

+
osUβ−q−1

0

D
wo−1w′ũ1 −

o(o− 1)Uβ−2q
0

D
wo−2w′ṽ1. (3.88)

If we multiply this by U q
0 and subtract ũ′′′2 by differentiating (3.73b) we get

F̃ ′′1 =
Uβ−1

0

D
wo−1F̃0 (sw − oψ) (3.89)

which is even and so, sinceW is also even, the integrand in the second integral

in (3.87), is odd and hence, the integral vanishes. Rather than attempt and

use F̃ ′1 to simplify I1 we will instead consider the global F problem and relate

them via

F(r00 + ερ) ∼ F(r00) + ερ
dF
dr

∣∣∣∣
r00

+ · · · = F̃0 + εF̃1, (3.90)

where we note that sided limits apply when functions are not continuous.

Using (3.90), we can write (3.87) as

I1 =− Ĥ
2

∫ ∞
−∞

w′2 dρ

(
U q

0

〈
dN̂

dr

〉
r00

−
〈

d2ue
dr2

〉
r00

)
. (3.91)

Finally, returning to (3.82) and substituting I1 and I2, we see that everything

does not vanish, and so we require eigenvalues at this order to satisfy the

orthogonality condition. Hence ω(ε) = ε2 and the eigenvalues, to leading
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order, are given by

λ̂ =
1−m2

r2
00

− q

2U2
0

Ĥ
(

1− 2bq

Ĥ
dĤ
db

)〈
due
dr

〉
r00

F(r00)

+
qĤ
2U0

(
U q

0

〈
dN̂

dr

〉
r00

−
〈

d2ue
dr2

〉
r00

)
. (3.92)

The fact that the eigenvalues exist to leading order at O(ε2) is why we can

classify them as long-time instabilities because even positive values will only

begin to cause relative instability in (3.9) when T = O(1) which corresponds

to regular time t = O(ε−2). Since N̂ is not continuous, but F(r00) = F̃0

is, we will define F(r00) by the average value as we did when discussing the

perturbed circle problem in section (2.3.2) and therefore,

F(r00) = U q
0

〈
N̂
〉
r00
−
〈

due
dr

〉
r00

.

We now need to consider the global problem for N̂ .

3.3.1 Global Inhibitor Eigenvalue Problem

Substitute N = εN̂ into (3.6b) and simplify to get the base problem for N̂ is

1

r
(rN̂r)r −

m2

r2
N̂ − 1

D
N̂ +

1

ε2
o

D

vo−1
e

use
Φ

(
r − r0

ε

)
− 1

ε

s

D

voe
us+1
e

N̂︸ ︷︷ ︸
S1

= 0, (3.93)

where we do not use θλ here as we did for even eigenfunctions because λ =

O(ε2). Focusing solely on the singular terms S1 and expanding to all singular
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3.3. Eigenvalues Associated with Φ0 Odd

powers of ε, we have,

S1 =
oUβ−q

0

Dε2
wo−1(·)w′(·) +

oUβ−q
0

Dε
wo−1(·)Φ1(·)− osUβ−q−1

0

Dε
wo−1(·)ũ1(·)w′(·)

+
o(o− 1)Uβ−2q

0

Dε
wo−2(·)ṽ1(·)w′(·)− sUβ−1

0

Dε
wo(·)Ñ0(·), (3.94)

where the dot indicates evaluation at (r − r0)ε−1, i.e. the inner functions

evaluated in the outer region. In a manner similar to that as we discussed in

section 3.1, when deriving the singularity behaviour for the even eigenfunc-

tions functions, we have

wo
(
r−r0
ε

)
ε

=
ε→0
Aδ(r − r0),

where δ is the Dirac measure and A is again given by (2.33). Differentiating

this expression we get

o

ε2
wo−1

(
r − r0

ε

)
w′
(
r − r0

ε

)
= Aδ′(r − r0),

and the first term of S1 in (3.94) is precisely a multiple of this. If we associate

inverse powers of ε as leading to Dirac singularities then we expect this

behaviour for the remaining terms in (3.94) and so

S1 =
Uβ−q

0

D
Aδ′(r − r0) + Aδ(r − r0),
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3.3. Eigenvalues Associated with Φ0 Odd

where we can determine A by integrating all but the first term in (3.94) over

the entire inner domain. This yields that

A =

∫ ∞
−∞

oUβ−2q
0

D
wo−1ṽ1 +

oUβ−q−1
0

D
qF(r0)wo−1ψ − osUβ−q−1

0

D
wo−1ũ1w

′

+
o(o− 1)Uβ−2q

0

D
wo−2ṽ1w

′ − sUβ−1
0

D
woÑ0 dρ,

where we have substituted (3.79) for Φ1. We can integrate the third and

fourth term by parts and upon simplifying we have

A =
Uβ−q−1

0

D
F(r0)

∫ ∞
−∞

(
qowo−1ψ − swo

)
dρ.

Substituting ψ using (3.81) and recognizing that

dA
db

=

∫ ∞
−∞

owo−1wb dρ,

we finally have that

A =
Uβ−q−1

0

D
F(r0)β

(
A+ 2qb

dA
db

)
,

where β is given by (2.28b). Putting everything together we have,

S1 =
Uβ−q

0

D
Aδ′(r − r0) +

Uβ−q−1
0

D
F(r0)A

(
β +

2qb

A
dA
db

)
δ(r − r0), (3.95)
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and therefore the global problem for N̂ is (by once again taking r0 ≈ r00),

1

r
(rN̂r)r −

m2

r2
N̂ − 1

D
N̂ =− Uβ−q

0

D
Aδ′(r − r00)

− Uβ−q−1
0

D
F(r00)A

(
β +

2qb

A
dA
db

)
δ(r − r00),

which we can rewrite using constants Ā0 (given by (2.60)) and ¯̄A0 (given by

(2.59)) used in section 2.3.2 to get:

1

r
(rN̂r)r −

m2

r2
N̂ − 1

D
N̂ = − Ā0

U q
0

δ′(r − r00)− Ā0
¯̄A0

U q+1
0

F(r00)δ(r − r00). (3.96)

It is more convenient if we turn this into a problem with homogeneous sources

away from the interface r 6= r00 supplemented by jump conditions across

the interface. To do this we first multiply by r and integrate over a small

domain containing r00. Since the differential equation has a dipole source

term then N̂ will have jump discontinuities, but otherwise will be continuous

and therefore, by the integral mean value theorem, the second and third

terms on the left-side of (3.96) will vanish over the integral. Therefore we

have that[
dN̂

dr

]
r00

=
Ā0

U q
0r00

− Ā0
¯̄A0

U q+1
0

F(r00) =
Ā0

U q
0r00

− Ā0
¯̄A0

U q+1
0

U q
0

〈
N̂
〉
r00

+
Ā0

¯̄A0

U q+1
0

〈
due
dr

〉
r00

. (3.97a)
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To get the jump in the function itself, we first compute the indefinite integral

of (3.96), ignoring constants of integration,

rN̂r −m2

∫
1

r
N̂ dr − 1

D

∫
N̂ dr =− Ā0

U q
0

r00δ(r − r00) +
Ā0

U q
0

H(r − r00)

− Ā0
¯̄A0

U q+1
0

r00F(r00)H(r − r00)

with H the Heaviside function. We then divide by r, and integrate this

expression over a small domain centered around r00 to get

[N̂ ]r00 = − Ā0

U q
0

, (3.97b)

where once again appropriate continuous terms have been neglected as they

vanish over the region of integration. We could now solve the problem for N̂

subject to the jump conditions (3.97), but we have seen a similar problem

to this in section 2.3.2 when we looked at V1n, the perturbed circle steady-

state problem at O(ε), given by (2.63). In fact if we add the jump conditions

(2.63d) to (3.97a) and (2.63c) to (3.97b), letting n = m, and define a function

Z = HnU
q
0 N̂ + V1n,
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then we have the following problem for Z,

1

r
(rZr)r −

n2

r2
Z − 1

D
Z = 0, r 6= r00

dZ
dr

∣∣∣∣
r=r00

= 0,

[Z]r00 = 0,[
dZ
dr

]
r00

= −Ā0
¯̄A0

U0

Z(r00).

Solving this problem we have

Z(r) =
r00Ā0

¯̄A0

U0

Z(r00)G0;n(r; r00)

with G0,n given by (2.50). Evaluating at r = r00 leads to the conclusion

that Z(r00) = 0 is the only possibility for arbitrary r00 and therefore Z is

identically zero and thus,

N̂ = − 1

HnU
q
0

V1n. (3.98)

Therefore our perturbed inhibitor eigenfunction is already determined by the

solution to V1n. This allows us to write the small eigenvalues (3.92) as

λ̂ =
1−m2

r2
00

+
q

2HmU2
0

Ĥ
(

1− 2bq

Ĥ
dĤ
db

)〈
due
dr

〉
r00

(
〈V1m〉r00 +Hm

〈
due
dr

〉
r00

)

− qĤ
2HmU0

(〈
dV1m

dr

〉
r00

+Hm

〈
d2ue
dr2

〉
r00

)
. (3.99)
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It is rather unsurprising that there is such an intimate relationship between

the problem for N̂ and the perturbed circle since the odd eigenfunctions

displace the activator curve sinusoidally and thus exactly deform the circle

into a near-circle, at least initially. The problems are, in fact, even more

intimately related than just through the N̂ function. Recall that we define

the concentrated activator curve at r = r0 + ερ∗(θ) where ρ∗ is defined as the

location of the maximum of the activator and hence

ṽ(ρ∗)′ = ṽ′e(ρ
∗) + Φ′(ρ∗) exp

(
imθ +

∫ T

0

λ̂(s) ds

)
= 0. (3.100)

The radial velocity of the curve will be given by

dr

dT
=

dr0

dT
+ ε

dρ∗

dT

and differentiating (3.100) with respect to T , we have

0 =

(
ṽ′′e (ρ∗) + Φ′′(ρ∗) exp

(
imθ +

∫ T

0

λ̂(s) ds

))
dρ∗

dT

+ Φ′(ρ∗) exp

(
imθ +

∫ T

0

λ̂(s) ds

)
λ̂(T ).

Using (3.100) we can simplify and write

dρ∗

dT
=
ṽ′e(ρ

∗)

ṽ′′(ρ∗)
λ̂(T ) (3.101)

and therefore
dr

dT
=

dr0

dT
+ ε

ṽ′e(ρ
∗)

ṽ′′(ρ∗)
λ̂(T ).
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3.3. Eigenvalues Associated with Φ0 Odd

If we think of the coefficient on λ̂ playing to role of ε in the near circle

perturbation then −λ̂ should be the first velocity correction we obtained.

Indeed if we compare the negative of (3.99) with (2.77) then if we take

h(θ) = exp(imθ)

we see perfect agreement. Notice this required choice of h(θ) to balance

comes from the eigenfunction expansion of the linear stability problem (3.2).

The coefficients Hm in the Fourier expansion of h(θ) were arbitrary and, if

desired, could be extracted from the coefficient in front of λ̂.
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Chapter 4

Classification of Explicitly

Solvable Non-Local Eigenvalue

Problems

4.1 Explicit Non-Local Eigenvalue

Formulation

In Chapter, 3 we considered the stability of the Gierer-Meinhardt model on a

ring to breakup instabilities. This led to the derivation of a non-self-adjoint,

non-local eigenvalue problem (3.16) which we analyzed by recasting it as a

root-finding problem. This allowed us to determine regions of stability but

did not lend itself well to determining eigenvalues explicitly. In this chapter

we consider scenarios for which the explicit determination of these eigenvalues

can be obtained. A similar analysis in what follows was done in [57] for the

model,

vt = ε2vxx − v + a(u)v2r−3,

τut = uxx + (ub − u) +
1

ε
b(u)vr,
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4.1. Explicit Non-Local Eigenvalue Formulation

for certain conditions on the constants r, ub and the functions a(u) and b(u).

To setup the theory, we generally consider a class of problems for which linear

stability analysis produces a non-local eigenvalue problem of the form

L0Φ− χ(λ)h(w)

∫ ∞
−∞

g(w)Φ dy = λΦ, −∞ < y <∞;

Φ→ 0 as |y| → ∞, (4.1)

where ,

L0Φ = Φyy − Φ + f ′(w)Φ, (4.2)

with prime indicating differentiation with respect to w. χ(λ) is a transcenden-

tal function of the eigenvalue parameter λ and w(y) is the unique homoclinic

of

wyy − w + f(w) = 0, −∞ < y <∞;

w → 0 as |y| → ∞, wy(0) = 0, w(0) > 0. (4.3)

This homoclinic orbit exists for certain functions f(w) that satisfy Lemma

2.2.0.1 in section 2.2. For example, this criteria was used in section 2.3 to

help establish the critical saturation parameter b for the saturated Gierer-

Meinhardt model. Along with restrictions on f(w) we also require in (4.1)
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4.1. Explicit Non-Local Eigenvalue Formulation

that

g(0) = 0, g(w) > 0 for w > 0, g(w) is C1 as w → 0+;

h(0) = 0, h(w) is C1 as w → 0+. (4.4)

The conditions on g(w) and h(w) are such that the integral in (4.1) vanishes

as Φ→ 0 and that Φ has exponentially decaying solutions when y is asymp-

totically large and Re(λ) > 0. In order to form (4.1) in an explicitly solvable

way, we will exploit the eigenvalue structure of the L0 operator which we

discussed in 3.2.2 but will repeat here. Assuming f(w) holds such that a

homoclinic orbit solution to (4.3) exists then Lemma 3.1.0.1 provides the de-

tails of the eigenvalue spectrum to L0ψ = νψ. Specifically, it admits a simple

discrete eigenvalue ν0 with eigenfunction ψ0 of one sign and an eigenvalue

ν1 = 0 with ψ1 = w′. Consider a choice of g(w) in (4.1) which satisfies (4.4),

and is such that

L0g(w) = σg(w), (4.5)

for some σ > 0. Since there can only be one positive eigenvalue to L0, we

must have that σ = ν0 and g(w) = ψ0. If we multiply (4.1) by g(w) and

integrate over the entire domain then

∫ ∞
−∞

g(w)L0Φ dy − χ(λ)

∫ ∞
−∞

h(w)g(w) dy

∫ ∞
−∞

g(w)Φ dy = λ

∫ ∞
−∞

g(w)Φ dy.

(4.6)
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While the entire NLEP is not self adjoint, the operator L0 given by (4.2) is

and so we can integrate by parts the first term in (4.6) to simplify,

∫ ∞
−∞

g(w)Φ

(
σ − χ(λ)

∫ ∞
−∞

h(w)g(w) dy − λ
)

dy = 0,

where we have used (4.5) to simplify. Assuming that
∫∞
−∞ g(w)Φ dy 6= 0 then

we have an explicit relationship for λ,

λ = σ − χ(λ)

∫ ∞
−∞

h(w)g(w) dy, (4.7)

where this integral converges because of the decay behaviour on h(w) and

g(w). Before continuing, consider the case
∫∞
−∞ g(w)Φ dy = 0, where (4.1)

reduces to

L0Φ = λΦ,

i.e. Φ is an eigenfunction of the operator L0. The only positive solution to

this is for λ = ν0 but this would require Φ = g(w) and we would not be able

to satisfy
∫∞
−∞ g(w)Φ dy = 0. Therefore, any unstable eigenvalue to (4.1)

needs to satisfy (4.7).

We now need to consider the appropriate f(w) in (4.3) that produces a g(w)

for (4.5) and ultimately allow (4.7) to hold. If we recognize that

g(w)yy = g′′(w)w2
y + g′(w)wyy
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then we can write (4.5) as,

g′′(w)w2
y + g′(w)wyy + f ′(w)g(w) = (1 + σ)g(w). (4.8)

To remove wyy we can use (4.3) and to remove w2
y multiply that same equation

and integrate over the entire domain to get

w2
y − w2 + 2W = 0, W =

∫ w

0

f(s) ds.

Substituting into (4.8) we get,

g′′(w)w2 − 2g′′(w)W + g′(w)w − g′(w)f(w) + f ′(w)g(w) = (1 + σ)g(w).

If we integrate by parts and use that g(0) = f(0) = 0 we can simplify to get

(w2 − 2W)g′(w) = Σ(w)− f(w)g(w); (4.9a)

Σ(w) ≡
∫ w

0

ξ(s) ds, ξ(s) ≡ sg′(s) + (σ + 1)g(s). (4.9b)

If we differentiate (4.9a) with respect to w then

2(w − f(w))g′(w) + (w2 − 2W)g′′(w) = Σ′(w)− (f(w)g(w))′.

Using (4.9a) we can simplify to

2wg′(w)− 2f(w)g′(w) +
Σ(w)− f(w)g(w)

g′(w)
g′′(w) = Σ′(w)− (f(w)g(w))′.
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Dividing by g′(w) and rearranging this expression we have

f ′(w)g(w)

g′(w)
− f(w)g′(w)

g′(w)
− f(w)g′′(w)

g′(w)2
=

Σ′(w)

g′(w)
− Σ(w)g′′(w)

g′(w)2
− 2w. (4.10)

We can recognize the expression on the left of (4.10) as,

f ′(w)g(w)

g′(w)
− f(w)g′(w)

g′(w)
− f(w)g′′(w)

g′(w)2
= g2

(
f

gg′

)′
,

and the first two expressions on the right of (4.10) as,

Σ′(w)

g′(w)
− Σ(w)g′′(w)

g′(w)2
=

(
Σ(w)

g′(w)

)′
,

so that finally, for a given g(w), we can compute f(w) as the solution to

(
f(w)

g(w)g′(w)

)′
=

1

g(w)2

((
Σ(w)

g′(w)

)′
− 2w

)
. (4.11)

It is important to note that for a given g(w), while this formula provides

the necessary f(w), there is no guarantee that the resulting f(w) will sat-

isfy the homoclinic orbit criteria in Lemma 2.2.0.1. Many common NLEPs

from reaction diffusion problems (cf. [39], [40], [45], [46], [81], [57]) involve

g(w) with algebraic powers in w. As such we will present two general cases

g(w) = w and g(w) = wα for α > 1 for which this theory can easily be used

to determine f(w).

First consider g(w) = w so that from (4.9b),

ξ(w) = (σ + 2)w, Σ =
(σ + 2)w2

2
.
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From (4.11) we have

(
f(w)

w

)′
=

1

w2

((
(σ + 2)w2

2

)
− 2w

)
=
σ

w
,

and therefore,

f(w) = σw logw + Aw,

where we can set A = 0 without loss of generality. Next consider g(w) = wα

for α > 1. In this case,

ξ(w) = (σ + 1 + α)wα, Σ =
(σ + 1 + α)wα+1

α + 1
,

and hence from (4.11),

(
f(w)

αw2α−1

)′
=

1

w2α

((
(σ + 1 + α)w2

α(α + 1)

)′
− 2w

)
=

2(σ + 1 + α)

α(α + 1)
w1−2α.

Integrating this yields that

f(w) =
(σ + 1− α2)

(1− α2)
w + Aw2α−1,

for arbitrary A which we set to be one without loss of generality. Since this

holds for any σ, we can avoid the term that is linear in w by choosing,

σ = α2 − 1, (4.12)

so that f(w) = w2α−1. We will now focus the rest of this chapter on studying

the unsaturated Gierer-Meinhardt model as an example using the general

147



4.2. Explicit Stability Formulation for the Gierer-Meinhardt Model on a Stripe

explicit NLEP framework.

4.2 Explicit Stability Formulation for the

Gierer-Meinhardt Model on a Stripe

In contrast to Chapter 2, we will now focus solely on the unsaturated version

of the Gierer-Meinhardt model,

vt = ε2∆v − v +
vp

uq
, (4.13a)

τut = ∆u− u+
vo

εus
, (4.13b)

and for the time being consider a rectangular domain with homogeneous

Neumann conditions on the boundary. The rectangular domain Ω is defined

by

Ω ≡ {(x1, x2)| − l < x1 < l, 0 < x2 < d}

for some length l and width d. We have taken the diffusivity on (4.13b)

to be unity since, as per the discussion in section 2.3.1, the diffusivity can

be absorbed into the length scale. We want to use the explicitly solvable

framework with g(w) = wα, α > 1, and use the simplified condition on σ

given by (4.12). The f(w) in (4.3) is related to the exponent p in (4.13)

and since we need the exponent set (p, q, o, s) to be integers, in order to use

(4.12), we require p to be odd and specifically we take p = 3. Furthermore

as we saw for the ring derivation in 3.1, g(w) = wα is intimately tied to the

exponent set o via α = o − 1, and by choosing p = 3, this specifies that
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α = 2 and so we need o = 3. Therefore, by making our choice for p, we will

consider the specific variant of (4.13) to be:

vt = ε2∆v − v +
v3

uq
, (4.14a)

τut = ∆u− u+
v3

εus
, (4.14b)

with q > 0 and s ≥ 0. We consider the activator v localized on an O(ε)

region around the midpoint x1 = 0 for all x2 (hence the classification of a

stripe) and define an inner coordinate variable y = x/ε. The derivation of

this stripe solution is very similar in approach to that of the ring in section

2.3.1 and was presented in entirety in [39]. We therefore omit the details

here and summarize the results. The equilibrium activator denoted ve(x1)

and the equilibrium inhibitor denoted by ue(x1) are given by

ve(x1) ∼ Uγ
0w
(x1

ε

)
; ue(x1) ∼ U0

Gl(x1)

Gl(0)
, (4.15)

where w(y) =
√

2 sech y is the unique homoclinic orbit solution that satisfies

w′′ − w + w3 = 0, −∞ < y <∞;

w → 0 as |y| → ∞ , w(0) > 0, w′(0) = 0. (4.16)

We define the constants U0 and γ by

U ζ
0 ≡

1

b̃Gl(0)
; b̃ ≡

∫ ∞
−∞

w3 dy =
√

2π; ζ ≡ 3q

2
− (s+ 1) > 0; γ ≡ q

2
.

(4.17)
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The Green’s function Gl(x1) in (4.15) satisfies

Glx1x1 −Gl = −δ(x1), |x1| ≤ l; Glx1(±l) = 0,

with δ(·) the Dirac measure. This has solution

Gl(x1) =
cosh(l − |x1|)

2 sinh(l)
, (4.18)

and therefore Gl(0) = 1/2 coth(l).

We are now in a position to perform a linear stability analysis on this base

state. Since, unlike the ring solution in 2.3.1, the stripe always starts in its

equilibrium position, there are no long-time dynamics to consider and so we

can make the appropriate usual formulation

v = ve + φ(x1) exp(imx2 + λt), u = ue + η(x1) exp(imx2 + λt); m =
kπ

d
,

(4.19)

where k is an integer. The restriction on m comes from the homogeneous

Neumann conditions on x2 = 0 and x2 = d. These conditions also necessi-

tate that we need to take the true solution as only the real part of (4.19).

However, in what follows we treat m as a continuous variable and are just

mindful that true unstable modes must satisfy the discrete condition. Alter-

natively one can think of the operator eigenvalue problem having continuous

eigenvalues for which we only sample the discrete ones to capture the appro-

priate boundary conditions. Substituting (4.19) into (4.14), we obtain the
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eigenvalue problem

ε2φx1x1 − φ+
3v2

e

uqe
φ− qv3

e

uq+1
e

η = (λ+ ε2m2)φ, |x1| ≤ l; φx1(±l) = 0,

(4.20a)

ηx1x1 − (1 + τλ+m2)η = −3ve2

εuse
φ+

sv3
e

εus+1
e

η, |x1| ≤ l; ηx1(±l) = 0.

(4.20b)

Once again, as in 3.2, we do not ignore the terms ε2m2 in the event that

high frequency modes lead to instability behaviour. Like the base state,

ve, the activator perturbation φ will be entirely localized and so we take

φ(x1) ∼ Φ(ε−1x1). The leading order problem for Φ from (4.20a) is

Φyy − Φ + 3w2Φ− qU q/2−1
0 w3η(0) = (λ+ ε2m2)Φ, −∞ < y <∞,

Φ→ 0 as |y| → ∞. (4.21)

Here η(0) comes from the outer problem (4.20b) because it is not singularly

perturbed. The simplification of (4.20b) involves using Dirac measures for

terms of O(ε−1) (see 2.2.1) and therefore,

3v2
e

εuse
φ =3U2γ−s

0

∫ ∞
−∞

w2Φ dyδ(x1) =
3U1−γ

0

b̃Gl(0)

∫ ∞
−∞

w2Φ dyδ(x1),

sv3
e

εus+1
e

η =sU ζ
0 η(0)

∫ ∞
−∞

w3 dyδ(x1) =
sη(0)

Gl(0)
δ(x1),
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where we have simplified using (4.17). Therefore, η(x1) satisfies

ηx1x1 − θ2
λη =

(
s

Gl(0)
η(0)− 3U1−γ

0

b̃Gl(0)

∫ ∞
−∞

w2Φ dy

)
δ(x1),

|x1| ≤ l; ηx1(±l) = 0, (4.22)

where θλ ≡
√

1 +m2 + τλ is the principal value of the square root. By

this we mean the branch cut taken along the negative real axis such that

Re(λ) ≤ −1−m2

τ
which implies η(0) is analytic in Re(λ) ≥ 0. If we consider

the Green’s function problem

Gλx1x1 − θ2
λGλ = −δ(x1), |x1| ≤ l, Gλx1(±l) = 0,

which has solution,

Gλ(x1) =
cosh(θλ(l − |x1|))

2θλ sinh(θλl)
(4.23)

then we can write

η(x1) =

(
3U1−γ

0

b̃Gl(0)

∫ ∞
−∞

w2Φ dy − s

Gl(0)
η(0)

)
Gλ(x1).

Using (4.18) and (4.23) we can solve for η(0) to yield that

η(0) =
3U1−γ

0

b̃

∫ ∞
−∞

w2Φ dy

[
s+

θλ tanh(θλl)

tanh(l)

]−1

. (4.24)

This expression is non-zero as long as
∫∞
−∞w

2Φ dy 6= 0 which as per the

discussion in section 4.1 holds for any unstable eigenvalue Re(λ) > 0. This
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means that Φ is even and as with section 3.2, this corresponds to breakup

or amplitude instabilities. We substitute (4.24) into (4.21) to get our NLEP

for breakup instabilities of the stripe as

L0Φ− χw3

∫ ∞
−∞

w2Φ dy = (λ+ ε2m2)Φ, −∞ < y <∞;

Φ→ 0 as |y| → ∞, (4.25a)

χ ≡ 3q

b̃

[
s+

θλ tanh(θλl)

tanh(l)

]−1

, (4.25b)

with L0 defined by (4.2). In terms of the explicit formulation discussed in

section 4.1, by choosing p = o = 3 in (4.14), we prescribed α = 2 (g(w) = w2)

and σ = 3 so that

L0w
2 = 3w2.

By comparing (4.25a) to (4.7) we take

λ = λ+ ε2m2, h(w) = w3

to get that (4.25a) becomes

λ = 3− ε2m2 − 9q

2

[
s+

θλ tanh(θλl)

tanh(l)

]−1

, (4.26)

where we have simplified that ∫∞
−∞w

5 dy

b̃
=

3

2
.

We will now analyze (4.26) for τ = 0 and τ > 0.
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4.2.1 Explicit Stripe Eigenvalues, τ = 0

When τ = 0, we have that (4.26) becomes

λ = 3− ε2m2 − 9q

2

[
s+

√
1 +m2 tanh(

√
1 +m2l)

tanh(l)

]−1

. (4.27)

We begin by finding neutral stability points λ = 0. If m is O(1) then to

leading order the neutral stability point (4.27) becomes

0 = 3− 9q

2

[
3q

2
+ κ(z)

]−1

,

where

z =
√
m2 + 1, z ≥ 1; κ(z) =

z tanh(zl)

tanh(l)
− (ζ + 1),

with ζ from (4.17). This expression simplifies so that the neutral stability

point is a root of κ(z). Now κ(1) = −ζ < 0 and κ(z) → ∞ as z → ∞ so

there is at least one root to κ(z). Furthermore,

κ′(z) =
tanh(zl)

tanh(l)
+ zl

sech 2(zl)

tanh(l)
> 0

and so there is a unique root z− > 1 to κ(z) and hence a unique neutral

stability mode

mb− =
√
z2
− − 1. (4.28)
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If z < z− then λ < 0 and so there are no unstable eigenvalues on 0 < m <

mb− , and conversely, λ > 0 is z > z−. If we now consider m = O(ε) and

define m = ε−1m̃ then (4.27) becomes

λ = 3− m̃2 − ε9q

2

[
εs+

√
m̃2 + ε2 tanh(

√
m̃2 + ε2lε−1)

tanh(l)

]−1

. (4.29)

If we search for the neutral stability point m̃+
b and expand m̃+2

b ∼ m̃2
0 + εm̃2

1

then we get m̃0 =
√

3 and for m̃1 we have

m̃2
1 = −9q

2

tanh(l)

m̃0

,

and so the upper neutral stability point is

mb+ ∼
1

ε

√
m̃2

0 + εm̃2
1 =

√
3

ε
− 3q

4
tanh(l). (4.30)

If m > mb+ (m < mb+) then λ < 0 (λ > 0) and therefore unstable eigenvalues

exist on mb− < m < mb+ . Next we seek to estimate the dominant wave mode

mdom where λ achieves its maximum. When m is an O(1) or O(ε−1) number

we have that to leading order λ is monotonic and therefore the dominant

mode must occur at some intermediate scaling in ε. Therefore we let,

m = ε−am̂, 0 < a < 1,
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and substitute into (4.27),

λ = 3− ε2−2am̂2 − εa9q

2

[
εas+

√
m̂2 + ε2a tanh(

√
m̂2 + ε2aε−al)

tanh(l)

]−1

.

(4.31)

The only hope for non-monotonic λ is if there is balance in the second and

third term and so we take a = 2/3. Differentiating (4.31) with respect to m̂

and setting to zero we get

dλ

dm̂
=− 2m̂+

9q

2 tanh(l)

[
ε2/3s+

√
m̂2 + ε4/3 tanh(

√
m̂2 + ε4/3ε−2/3l)

tanh(l)

]−2

(
m̂ tanh(

√
m̂2 + ε4/3ε−2/3l)√
m̂2 + ε4/3

+ ε−2/3lm̂ sech 2(
√
m̂2 + ε4/3ε−2/3l)

)
= 0. (4.32)

Substituting m̂ = m̂0 + ε2/3m̂1 where the m̂1 correction comes from s intro-

ducing terms of O(ε2/3), we get that to leading order

−2m̂0 +
9q tanh(l)

2m̂2
0

= 0,

and so

m̂0 =

(
9q tanh(l)

4

)1/3

. (4.33)
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For the m̂1 problem, both tanh(ε−2/3) and sech (ε−2/3) terms will remain

their saturated values up to exponential order in ε and therefore

−2m̂1 −
9q tanh(l)m̂1

m̂0

− 9q tanh(l)2s

m̂3
0

≈ 0,

and using (4.33),

m̂1 ≈ −
2

3
s tanh(l).

Combining everything, we have,

mdom ∼ ε−2/3

(
9 tanh(l)

4q

)1/3

− 2s tanh(l)

3
. (4.34)

If one were to consider the effect of the walls negligible (taking l→∞) then

(4.27) becomes

λ = 3− ε2m2 − 9q

2(s+
√

1 +m2)
,

and we have that

mb− =
√
ζ2 + 2ζ, (4.35a)

mb+ =
√

3/ε− 3q/4, (4.35b)

mdom =ε−2/3(9q/4)1/3 − 2s/3. (4.35c)

This limit will allows us to obtain more tractable analytical results when we

consider τ > 0.

We now plot (4.27) in Figure 4.1 with ε = 0.05, and s = 0 for q = 1 and

q = 2. In each case we plot l = 0.5, l = 1, and l = ∞. In Table 4.1 we list
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the numeric evaluation (denoted n) of mb− , mb+ and mdom along with the

asymptotic approximations (denoted a) given by (4.28) for mb− , (4.30) for

mb+ , and (4.34) for mdom. The agreement for both q = 1 and q = 2 for all

values of l agrees favourably with the analytic results.

0 5 10 15 20 25 30 35
−0.5

0

0.5

1

1.5

2

2.5

3

m

λ

 

 

l = 0.5

l = 1

l = ∞

(a) q = 1

0 5 10 15 20 25 30 35
−0.5

0

0.5

1

1.5

2

2.5

3

m

λ

 

 

l = 0.5

l = 1

l = ∞

(b) q = 2

Figure 4.1: Eigenvalues for τ = 0 computed from (4.27) versus m for ε = 0.05,
and s = 0 for several values of l. The curves from highest maximum to
smallest maximum are l = 0, l = 0.5, and l =∞ respectively.
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q = 1
l mb−(n) mb−(a) mb+(n) mb+(a) mdom(n) mdom(a)

0.5 0.75 0.75 34.29 34.29 7.42 7.46
1 0.86 0.86 34.06 34.07 8.76 8.82
∞ 1.12 1.12 33.87 33.89 9.60 9.65

q = 2
l mb−(n) mb−(a) mb+(n) mb+(a) mdom(n) mdom(a)

0.5 1.60 1.60 33.93 33.95 9.36 9.40
1 2.11 2.10 33.44 33.50 11.07 11.11
∞ 2.85 2.83 33.03 33.14 12.13 12.16

Table 4.1: Asymptotic and numerical comparison of the neutral stability
points mb− , mb+ , and the dominant wave mode mdom. The numerical values
(n) are obtained from Figure 4.1 and the asymptotic approximations (a) are
obtained from (4.28) for mb− , (4.30) for mb+ , and (4.34) for mdom

Predicting mdom allows us to approximate the number of spots Nspots that

would occur in a breakup pattern where

Nspots =

⌊
mdomd

2π

⌋

where b·c is the floor function, rounding down to the nearest integer and d

is the rectangle width.

4.2.2 Explicit Stripe Eigenvalues, τ > 0

We now consider (4.26) for τ > 0, which becomes a transcendental equation

for λ because of the presence of θλ. For simplicity, we consider the scenario

discussed in section 4.2.1 where the sidewalls have no effect (l =∞). In this
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case (4.26) becomes

λ = 3− ε2m2 − 9q

2(s+
√

1 +m2
√

1 + τ̂λ)
, τ̂ ≡ τ

1 +m2
. (4.36)

While we can make little progress analytically on prescribing values for the

roots, we would like to understand the qualitative features of the roots as

well as how many exist. Therefore, we attempt to isolate λ separately from

(4.36) and write,

λ− 3 + ε2m2 = − 9q√
1 +m2

[
2s√

1 +m2
+ 2
√

1 + τ̂λ

]−1

.

If we define

d0 = − 2s√
1 +m2

≤ 0, (4.37a)

d1 = − 9q√
1 +m2

< 0, (4.37b)

β ≡ 3− ε2m2, (4.37c)

then we can write (4.36) as a root finding problem

F(λ) = 2
√

1 + τ̂λ− G(λ), G(λ) ≡ d0 −
d1

β − λ. (4.38)

We will look for the roots to (4.38) that satisfy Re(λ) > 0 by using the

argument principle around the same closed contour Γ = ΓI∪ΓK from section
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3.2.6 with

ΓK :
{
λ = K exp(it)|t ∈

[
−π

2
,
π

2

]}
ΓI : −Ki ≤ λ ≤ Ki

which we traverse counter-clockwise and take the limit as K tends to infinity.

When τ � 1, F(λ) ∼ 2
√
τ̂λ and so on ΓK when t = −π/2, argF = −π/4

and when t = π/2, argF = π/4. Therefore, the change in argument of F(λ)

over ΓK is π/2. When β < 0 (m >
√

3/ε) then for all Re(λ) > 0, G(λ) is

analytic but when β > 0 (0 < m <
√

3/ε) then there is a simple pole at

λ = β. Finally, since F is analytic (aside from λ = β) and real valued when

λ is real-valued then F(λ) = F(λ̄). Combining all of this together with the

argument principle in a way similar to section 3.2.6, we have that the number

of roots J to F(λ) are given by

J =
1

4
+ h(β) +

1

π
[argF ]Γ+

I
, where h(β) =

1, β > 0,

0, β < 0

, (4.39)

and Γ+
I is the positive imaginary axis iλI with 0 < λI <∞ traversed down-

wards and [argF ] indicates the change in argument of F over the contour.

When λ = iλI , λI > 0 we have

G(iλI) = d0 −
βd1

β2 + λ2
I

− i λId1

β2 + λ2
I

and

2
√

1 + iτ̂λI = 2(1 + τ̂ 2λ2
I)

1/4 exp

(
i
arctan(τ̂λI)

2

)
.
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Using the trig identities

cos2 θ =
1 + cos θ

2
, sin2 θ =

1− cos θ

2
,

we can write

2
√

1 + iτ̂λI = K+(τ̂λI) + iK−(τ̂λI), K±(z) =
√

2
(√

1 + z2 ± 1
)1/2

,

and therefore we can decompose F(iλI) = FR(λI) + iFI(λI) with

FR(λI) ≡ K+(τ̂λI)− d0 +
βd1

β2 + λ2
I

, FI(λI) ≡ K−(τ̂λI) +
λId1

β2 + λ2
I

.

(4.40)

For λI � 1 then since τ > 0, FR ∼ FI ∼
√

2τ̂λI and therefore arg(F(iλI))→
π/4 as λI → ∞. At λI = 0, we have that FR(0) = 2− G(0) and FI(0) = 0,

so when λ = 0 is a root of F(λ) = 0 which occurs at mb− and mb+ defined

by (4.35a) and (4.35b) respectively then G(0) = 2. When m is O(1),

G(0) =
ζ + 1

2
√

1 +m2

and so dG(0)/dm < 0. When m is O(ε−1) then

dG(0)

dm

∣∣∣∣
m=mb+

= − 2mb+√
1 +mb+

2
+

18qε2mb+√
1 +mb+

2(3− ε2mb+
2)
∼ 8

3q
> 0.
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Finally, if m >
√

3/ε, G(0) < 0. Combining everything together we have

that

G(0) < 2, mb− < m < mb+ ∪m >

√
3

ε
(4.41a)

G(0) > 2, 0 < m < mb− ∪mb+ < m <

√
3

ε
. (4.41b)

We are now in a position to classify the roots J to F(λ). If m >
√

3/ε then

β < 0 and since d0 ≤ 0 and d1 < 0 then by (4.40), FR(λI) > 0 for all λI .

Furthermore FR(0) > 0 and so the argument along Γ+
I changes from π/4 to

0. Since FR(λI) > 0 always then it cannot enter the negative real plane so

we must have [arg(F)]Γ+
I

= −π/4. From (4.39) this means that J = 0 on this

region. Next consider mb+ < m <
√

3/ε. On this interval β > 0 and from

(4.41), FR(0) < 0 so the argument changes from π/4 to π. We can calculate

that

dFR
dλI

= τ̂K′(τ̂λI)−
2λIβd1

(β2 + λ2
I)

2
, (4.42)

which for mb+ < m <
√

3/ε is positive and therefore since FR(λI) → ∞
as λI → ∞ then there is a unique root λ∗I to FR. We can find this root

asymptotically by letting m =
√

3/ε+m1 with−3q/4 < m1 < 0 and therefore

β = 3 − ε2m2 ∼ −2
√

3m1ε. Substituting into (4.40) we get that to leading

order FR(λ∗I) = K+(τ̂λ∗I) = 0 for which there is no solution. Therefore we

let λ∗I = ελ∗I0 and repeat the asymptotic expansion in (4.40) to get that to

leading order,

2 +
18qm1

12m2
1 + λ∗2I0

= 0,
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and so we get λ∗I0 =
√
−3m1(4m1 + 3q) which exists for all m1 since m1 >

−3q/4. Using this root in FI from (4.40) we have that,

FI(ελ∗I0) = K−(ετ̂λ∗I0) +
εd1λ

∗
I0

β2 + ε2λ∗2I0
∼ − 9qλ∗I0√

3(12m2
1 + λ2

I0)
< 0.

Since FI(λ∗I) < 0 then [argF ]Γ+
I

= −5π/4 and from (4.39), J = 0. Next we

consider mb− < m < mb+ where from (4.41), FR(0) > 0 and since β > 0

and d1 < 0 then by (4.42), dFR/dλI > 0. Therefore [argF ]Γ+
I

= −π/4 and

from (4.39) J = 1. This root is actually on the positive real axis and satisfies

0 < λ < β. To see this we consider (4.38) with 0 < F(0) < 2 and F → −∞
as λ→ β and therefore F has at least one root on 0 < λ < β. If λ > β then

G(λ) < 0 and F > 0 for all λ. We have that
√

1 + τλ is an increasing concave

function as well as G ′(λ) > 0 and G ′′(λ) > 0 so that F ′′(λ) < 0. Therefore

F(λ) can have at most one critical point and regardless of the sign of F ′(0),

this can only be satisfied if F has exactly one root. Therefore there is exactly

one real root on mb− < m < mb+ . Finally we consider 0 < m < mb− , where

FR(0) < 0 and so the argument goes from π/4 to π. Once again dFR/dλI > 0

and FR →∞ as λI →∞ so there is exactly one root to FR on this interval.

Therefore either [argF ]Γ+
I

= −5π/4 and J = 0 or [argF ]Γ+
I

= 3π/4 and

J = 2. If τ̂ = 0 then from (4.38), F(0) < 0 and F ′(λ) = −G ′(λ) < 0 so

there are no roots with positive real part. This should continue to be true

for τ̂ � 1 and therefore J = 0 for τ̂ � 1 on 0 < m < mb− . If τ̂ � 1 then

F(0) < 0 and F → −∞ as λ → β− but for λ � O(τ̂−1), F ≈ 2
√
τ̂λ � 1

and since F ′′(λ) < 0 there are exactly two roots with real positive part for

τ̂ � 1. Notice that eigenvalues cannot enter the real plane through λ = 0
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since λ = 0 is an eigenvalue for all τ̂ and therefore this shows that there must

exist a Hopf bifurcation at some τ̂ = τ̂Hm when 0 < m < mb− . We summarize

the eigenvalue conclusions as follows:

Principal Result 4.2.2.1 Let J denote the number of roots in Re(λ) > 0

of F(λ) = 0 in (4.38). Then, for any τ̂ > 0,

J =0, m > mb+

J =1, mb− < m < mb+

J =0 or J = 2, 0 < m < mb− .

On mb− < m < mb+ the root is on the positive real axis in the interval

0 < λ < β and for 0 < m < mb−, there are no roots with positive real

part for τ̂ � 1 and two roots with positive real part when τ � 1. This last

condition proves the existence of a Hopf bifurcation at some τ̂ = τ̂Hm .

Explicit Representation for Hopf Bifurcation

We now turn our attention to evaluating τ̂ = τ̂Hm and showing it is unique.

If a Hopf bifurcation occurs then iλI is a root to (4.38) and so from (4.40)

we need to set FR = FI = 0. If we do this we get

√
2(
√
a+ 1)1/2 = d0 −

d1β

θ
,

√
2(
√
a− 1)1/2 = −d1λI

θ
;

a ≡ 1 + τ̂ 2λ2
I , θ ≡ β2 + λ2

I . (4.43)
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By dividing these expressions we get

(
√
a+ 1)1/2

(
√
a− 1)1/2

= − d0θ

d1λI
+
β

λI
,

which we can simplify to get

√
a+ 1√
a− 1

=
1

λI
A, A = β − d0θ

d1

. (4.44)

Using
√
a− 1 = τ̂λI and the first expression in (4.43) we have,

τ̂ =
d2

1

2θ2
A. (4.45)

Next we determine an equation for θ. To do this we square and subtract the

first two expressions of (4.43),

2
√
a+ 2− 2

√
a+ 2 = 4 =

(
d0 −

d1β

θ

2)2

− d2
1λ

2
I

θ2
. (4.46)

We can use that λ2
I = θ−β2 in (4.46) to get that θ is the root to the quadratic

equation M(θ) given by

M(θ) = (d2
0 − 4)θ2 − (2βd0d1 + d2

1)θ + 2d2
1β

2 = 0. (4.47)

In order for a solution λI =
√
θ − β2 to exist we require θ > β2. A Hopf

bifurcation only occurs on 0 < m < mb− and we will only consider this

interval for M(θ). First we notice that,

M(β2) = β4

(
d2

0 −
2d0d1

β
+
d2

1

β2
− 4

)
= β4(G(0)2 − 4) > 0,
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since by (4.41), G(0) > 2 on this interval. If d0 = −2 then the roots degen-

erate and we get

θ1 =
2β2d1

d1 − 4β
(4.48)

as the unique root to (4.47). At this root we have from (4.44) that

A = β +
4β2

d1 − 4β
=

βd1

d1 − 4β
> 0

since d1 < 0 and therefore in this case there is a unique τ̂ = τ̂Hm > 0 and

unique Hopf-bifurcation eigenvalue
√
θ1 − β2. We next consider the two

remaining cases −2 < d0 < 0 and d0 < −2. If −2 < d0 < 0 then M(θ) from

(4.47) tends to negative infinity as θ → ±∞ and therefore since M(β2) > 0,

by the intermediate value theorem, there are two roots to (4.47), one root

θ2− in β2 < θ2− < ∞ and another root θ2+ in −∞ < θ2+ < β2. Only θ2−

given by

θ2− =
2βd0d1 + d2

1

2(d2
0 − 4)

+

√
(2βd0d1 + d2

1)2 − 8d2
1β

2(d2
0 − 4)

2(4− d2
0)

, (4.49)

is a valid solution to M(θ) that satisfies θ > β2 and so we discount the second

root. We now need to make sure that for this root, A > 0 so that τ̂Hm = τ̂ > 0.

First, define θc = d1β/d0 as the unique root to (4.44) when A = 0. Since

d0 < 0 and d1 < 0 then dA/dθ < 0 and so all we need to show to have A > 0

when θ = θ2− is that θ2− < θc. If we evaluate M(θc) we get

M(θc) =
d2

1β
2

d0

(
d0 −

d1

β

)
− 4d2

1β
2

d2
0

=
d2

1β
2

d0

(
G(0)− 4

d0

)
< 0, (4.50)
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since G(0) > 2. This inequality on G also implies that

d1

d0

> β

(
1− 2

d0

)
> β

and therefore that θc > β2. This means that θc ∈ (β2,∞) and since θ2− is

the unique root to M(θ) in this interval then M(θc) < 0 implies θ2− < θc and

therefore A > 0 and τ̂Hm > 0 when θ = θ2−. Finally we consider the interval

d0 < −2. On this interval we still have M(β2) > 0 but now M(θ) → +∞
as θ → ±∞. We still have from (4.50) that M(θc) < 0 and so for d0 < −2

both roots to M(θ), θ3± exist on θ ∈ (β2,∞). In order to satisfy A > 0 we

take the smaller root θ3− < θc also given by (4.49) which leads to the unique

Hopf bifurcation τ̂ = τ̂Hm > 0.

We now briefly consider the case when s = 0 and d0 = 0 identically. In

this scenario, the roots to (4.47) simplify to

θ0 = c0 +
√
c1; c0 = −d

2
1

8
, c1 =

d4
1

64
+
d2

1β
2

2
.

We also have that when d0 = 0 that A = β and so we can write

τ̂ =
d2

1β

2

(
1

c0 +
√
c1

)2

=
d2

1β

2

c2
0 − 2c0

√
c1 + c1

(c2
0 − c1)2

.

We can compute that,

(c2
0 − c1)2 =

d4
1β

4

4
,
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and so

τ̂ =
d2

1

16β3
+

1

2β3

√
d4

1

64
+
d2

1β
2

2
+

1

β

=
1

β

(
1 +

c2

2
+ c

√
1 +

c2

4

)
, c =

d1√
8β

= − 9q

2
√

2(1 +m2)(3− ε2m2)
.

(4.51)

We now summarize the results for the Hopf bifurcation.

Principal Result 4.2.2.2 For 0 < m < mb−, there exists a unique value

τHm = (1 + m2)τ̂Hm > 0 for which λ = λI is a root of F(iλI) given by (4.38).

The Hopf bifurcation point τ̂Hm and λIH are given by

τ̂Hm =
d2

1

2θ2
A, λIH =

√
θ − β2, A ≡ β − d0θ

d1

. (4.52)

Here, θ > β2 is the smallest root of (4.47) given by (4.48) if d0 = −2 and

(4.49) if d0 6= −2. When s = 0 we can explicitly compute τ̂Hm via (4.51).

As with τ = 0, we plot the eigenvalues of largest real part for τ 6= 0 in Figure

4.2 for l = ∞, ε = 0.05, τ = 2, and s = 0 for q = 1 and q = 2. Comparing

Figure 4.2 to Figure 4.1, we have that for m � 1 the curves have similar

behaviour when τ = 0 and τ 6= 0. This is because θλ =
√

1 +m2 + τλ ≈
√

1 +m2 for m � 1 and τ = O(1) like in the case τ = 2 chosen here.

Therefore changing τ should only have a noticeable affect near the lower

threshold m = mb− given by (4.35a).
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Figure 4.2: Plot of λ versus m for q = 1 (solid curve) and q = 2 (dashed
curve). The parameters here are s = 0, l =∞, and τ = 2.

For q = 2 in Figure 4.2 we have that λ → 0 as m → mb− but this is not so

for q = 1. We can understand this behaviour if we plot τHm and λIH from

(4.52) which is in Figure 4.3.
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Figure 4.3: Plot of τHm and λIH from (4.52) for m in 0 < m < mb− and
l = ∞. The parameter values are s = 0 and ε = 0.05 while the solid and
dashed curves are for q = 1 and q = 2 respectively.

For q = 2, τHm > 2 = τ in Figure 4.3a and so no Hopf bifurcation occurs for

0 < m < mb− . Furthermore, since the eigenvalues enter from the Re(λ) < 0

complex plane then all of the eigenvalues are stable as evidenced in Figure

4.2. For q = 1 however, τ > τHm for all m in 0 < m < mb− and so the eigen-

values should have all transitioned through a Hopf bifurcation and entered
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the Re(λ) > 0 complex plane. As such, all of the eigenvalues are unstable as

evidenced in Figure 4.2.

Finite l

We now briefly consider the case where l is finite. In this case, we use (4.26)

to replace (4.38) with Fl(λ) and Gl(λ) defined by

Fl ≡ 2
√

1 + τ̂λ

(
tanh(l

√
1 +m2

√
1 + τ̂λ)

tanh(l
√

1 +m2)

)
− Gl(λ), Gl(λ) ≡ d0l −

d1l

β − λ,

(4.53)

with d0l ≤ 0, d1l < 0 defined by

d0l = − 2s√
1 +m2

tanh l

tanh(l
√

1 +m2)
, d10 = − 9q√

1 +m2

tanh l

tanh(l
√

1 +m2)
,

and β still by (4.37c). We have that m = mb− defined by (4.28) and m = mb+

defined by (4.30) are the two values of m for which λ = 0 is a root to Fl
and as such these are the two values for which Gl(0) = 2. Therefore, we can

easily extend (4.41) for Gl(0) with the new values of mb− and mb+ . To find

the roots we can still use (4.39) since Fl still has a pole at λ = β and still

changes argument by π/2 over ΓK . We define FRl(λI) ≡ Re(Fl(iλi)) by

FRl = CRl(λI)− d0l +
d1lβ

β2 + λ2
I

,

CRl(λI) ≡ Re

(
2
√

1 + iτ̂λI
tanh(l

√
1 +m2

√
1 + iτ̂λI)

tanh(l
√

1 +m2)

)
,
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and similarly,

FIl = CIl(λI) +
d1lλI
β2 + λ2

I

,

CIl(λI) ≡ Im

(
2
√

1 + iτ̂λI
tanh(l

√
1 +m2

√
1 + iτ̂λI)

tanh(l
√

1 +m2)

)
.

It was shown in section 3 of [79] that CRl(λI) is a monotonic increasing

function of λ and therefore, since d1l < 0, dFRl(λI)/dλI > 0. We can

therefore easily retrieve the argument change for each case of m and make

the same conclusion for J in (4.39) as we did for l = ∞. Because of this

we have that Principal Result 4.2.2.1 holds for any l in 0 < l < ∞. We

can compute roots to (4.26) for any l using Newton’s method. We plot an

example of this for for q = 1 and τ = 2 in Figure 4.4.
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Figure 4.4: Plot of eigenvalues λ versus m for l = 0.1 (solid curve) and l = 0.8
(dashed curve). The parameter values are q = 1, s = 0, ε = 0.05, and τ = 2.

It is worth mentioning that while Principal Result 4.2.2.1 holds, we cannot

guarantee that the Hopf bifurcation for m on 0 < m < mb− is unique and as

such that Principal Result 4.2.2.2 holds.

4.3 Explicit Stability Formulation for the

Gierer-Meinhardt Model on a Ring

We now consider the unsaturated Gierer-Meinhardt model (4.13) in a radial

domain

Ω ≡ {(r, θ)|0 ≤ r ≤ l, 0 ≤ θ < 2π}, r = |x|
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with the activator concentrated on a ring radius r = r0. The solution to this

was constructed for p = 2 in 2.3.1 and the extension to p = 3 is straightfor-

ward so the details are omitted here. We have that

v = Uγ
0w

(
r − r0

ε

)
, u = U0

Gl(r; r0)

Gl(r0; r0)
, γ ≡ q/2,

where w is still given by (4.16). Here the Green’s function Gl(r; r0) is given

by (2.38) where R is replaced by l and the constant U0 satisfies

U ζ
0 =

(
1

r0

√
2πJ0,1(r0)J0,2(r0)

)
, ζ ≡ 3

2
q − (s+ 1),

with J0,i defined by (2.39). We have the dynamic condition for r0 given by

(2.43) where

Ĥ =

∫∞
−∞w

2 dy∫∞
−∞w

2
y dy

− 1 = 2, y = ε−1(r − r0),

and therefore

dr0

dT
= − 1

r0

− q

2

(J ′0,1(r0)

J0,1(r0)
+
J ′0,2(r0)

J0,2(r0)

)
, T ≡ ε−2t. (4.54)

For the purposes of this section, we will consider the stability around true

equilibrium dr0/dT = 0 and like section 2.3.1, equilibrium radii will not exist

for all values of l and there is a saddle node bifurcation. Figure 4.5 shows

the bifurcation diagram for p = 3 and q = 2.
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Figure 4.5: Bifurcation diagram for (4.54) for q = 2. A saddle-node bifurca-
tion occurs when l = 3.622. The larger of the equilibrium r0 values belong
to the stable branch.

Now, unlike Figure 2.6, when p = 3 there are no roots to (4.54) when q = 2

as evidenced in Figure 4.6 and therefore we will not consider this case.
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Figure 4.6: Plot of (4.54) for q = 1 and various values of l. We always
have that dr0/dT < 0 and therefore there are no equilibrium ring radii when
q = 1.

We now turn our attention to the linear stability problem,

v = ve+Φ

(
r − r0

ε

)
exp(imθ+λt), u = ue+η(r) exp(imθ+λt), m ∈ N

where we note that since we are considering true equilibrium positions r0

then we do not have a slow time dependence on the steady-state. As with

the stripe we will only consider Φ even for which Re(λ) > 0. The details of

the derivation of the NLEP for p = 3 are similar to the p = 2 case in 3.1 and

as such we omit the details here. The nonlocal eigenvalue problem (3.16)

177



4.3. Explicit Stability Formulation for the Gierer-Meinhardt Model on a Ring

becomes

L0Φ− χw3

∫∞
−∞w

2Φ dy∫∞
−∞w

3 dy
=

(
λ+

ε2m2

r2
0

)
Φ;

χ ≡ 3q

(
s+

J0,1(r0)J0,2(r0)

J̄m,1(θλr0)J̄m,2(θλr0)

)−1

, θλ =
√

1 + τλ, (4.55)

where J0,i is given by (2.39) and J̄m,i by (3.13). The operator L0 is given by

(4.2) with f(w) = w3. Since the explicitly solveable criteria from section 4.1

is not geometry specific, we still have L0w
2 = 3w2 and therefore comparing

to (4.7), (4.55) becomes

λ = 3− ε2m2

r2
0

− 9q

2

(
s+

J0,1(r0)J0,2(r0)

J̄m,1(θλr0)J̄m,2(θλr0)

)−1

, (4.56)

where we have used that
∫∞
−∞w

5 dy = 3/2
∫∞
−∞w

3 dy. Once again when

τ = 0, we have that (4.56) becomes an explicit expression for λ. We start by

finding neutral stability points λ = 0. When m O(1) then for λ = 0 (4.56)

becomes

M = ζ + 1− J0,1(r0)J0,2(r0)

J̄m,1(r0)J̄m,2(r0)
= 0. (4.57)

M(0) = ζ > 0 and when m � 1 we can use (3.31) for larger order asymp-

totics to the modified Bessel functions to get that

J̄1,m(r0)J̄2,m(r0) ∼ 1

2m
(1 + (r0/l)

2m) ≈ 1

2m
, r0 > 1 (4.58)

and soM→−∞ asm→∞. Furthermore, from section 3.2, J̄m,1(r0)J̄m,2(r0)

is a monotonic decreasing function of m and so therefore M is a monotonic
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decreasing function as well. All of this combines to prove there is a unique

root m = mb− to (4.57) such that λ = 0 when τ = 0. If τ = 0 then we can

rewrite (4.56) as

λ = −3M
(
s+

J0,1(r0)J0,2(r0)

J̄m,1(r0)J̄m,2(r0)

)−1

and if m < mb− ,M > 0 and hence λ < 0 for m in 0 < m < mb− . Conversely,

λ > 0 if m = O(1) in m > mb− . When m = ε−1m̃ with m̃ = O(1) then using

(4.58) we have that (4.56) becomes

0 ≈ 3− m̃2

r2
0

− 9q

2

(
s+

2m̃J0,1(r0)J0,2(r0)

ε

)−1

∼ 3− m̃2

r2
0

− ε 9q

4m̃J0,1(r0)J0,2(r0)
(4.59)

and so if we expand m̃ = m̃0 + εm̃1 then m̃0 =
√

3r0 and

2m̃0m̃1

r2
0

= − 9q

4m̃0J0,1(r0)J0,2(r0)

and so

m̃1 = − 3q

8J0,1(r0)J0,2(r0)
.

Therefore there exists m = mb+ given by

mb+ ∼
1

ε

√
3r0 −

3q

8J0,1(r0)J0,2(r0)
,

such that λ = 0 in (4.56). When τ = 0, if m > mb+ then λ < 0 and if

m = O(ε−1) m < mb+ then λ > 0. Combining this with what we concluded
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in m = O(1), for m in mb− < m < mb+ , Re(λ) > 0. We plot the eigenvalues

in Figure 4.7 for τ = 0 using (4.56) for q = 2 and l = 5. We plot the

eigenvalues for the two equilibrium radii r0 ≈ 1.08 and r0 ≈ 2.56 from Figure

4.5.
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Figure 4.7: Eigenvalues λ versus m for q = 2, s = 0, ε = 0.05, l = 5, and
τ = 0 using (4.56). The solid curve is for r0 = 1.08 while the dashed curve
is for r0 = 2.56.

When τ 6= 0 then similar to section 4.2.2 we can define

R(λ) ≡ Cm(λ)− f(µ), µ = λ+
ε2m2

r2
0

,

Cm(λ) =
1

3q

(
s+

J0,1(r0)J0,2(r0)

J̄m,1(θλr0)J̄m,2(θλr0)

)
, f(µ) = − 3

2(µ− 3)
, (4.60)

and then eigenvalues of (4.56) become roots to (4.60). We make the split in

this way because then Cm(λ) is exactly that given by (3.19a) in section 3.2.
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We see then the effect of the explicit formulation is to make f(µ) an explicit

function in terms of λ. From (4.60) we can show directly that

f ′(µ) > 0, µ ∈ [0, 3)

f ′′(µ) > 0, µ ∈ [0, 3)

f(µ) < 0, µ ∈ (3,∞)

and therefore all of the analysis of section (3.2) holds and we can immediately

conclude Principal Result 3.2.9.1 holds, i.e. that there exists a range of

unstable real eigenvalues for m in mb− < m < mb+ and that on 0 < m < mb− ,

there exists a Hopf bifurcation as τ is increased from zero. To compute the

eigenvalues for τ > 0 we can use the algorithm outlined in section 3.2.10. As

an example we plot the eigenvalues for q = 2, s = 0, l = 5, ε = 0.05 and

r0 = 1.08 and r0 = 2.56 in Figure 4.8 for τ = 6.
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Figure 4.8: Eigenvalues λ versus m for q = 2, s = 0, ε = 0.05, l = 5, and
τ = 6. The lighter curve is for r0 = 1.08 while the heavy curve is for r = 2.56.
We plot both for 0 < m < 40 since large m behaviour is not very impacted by
increasing τ and will be represented by Figure 4.7. The positive eigenvalues
are in dash while the negative eigenvalues are in solid.
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Chapter 5

Full Numerical Simulations of

the Gierer-Meinhardt Model

We now wish to verify some of the analysis we predicted by computing full

numerical simulations of

vt = ε20∆v − v +
vp

uqg(v)
, (5.1a)

τut = D0∆u− u+
vo

us
(5.1b)

on some domain Ω, where g(v) = 1 if saturation is not considered and g(v) =

1+σv2 with σ the saturation parameter if p = 2 and saturation is considered.

We want to perform computations on both a stripe and a ring. If we perform

computations on a stripe then the domain is

Ωstripe ≡ {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ d0}

subject to Neumann conditions on ∂Ω. If we perform computations on a ring

then the domain is

Ωring ≡ {(r, θ)|0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}
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subject to periodicity in θ, Neumann conditions at r = 1 and a compatibility

condition ∂v/∂r = ∂u/∂r = 0 at r = 0. For analysis purposes, in other

chapters, we often rescaled the diffusion coefficient into the length scale but

this is impractical for computations where it is more natural to compute

on fixed-length domains. Therefore, for comparison between numerical and

analytic work for the stripe we take

D = 1, ε =
ε0√
D0

, d =
d0√
D0

, l =
1

2
√
D0

, (5.2a)

where these quantities are used in section 4.2. Similarly for the ring we take

D = 1, ε =
ε0√
D0

, R = l =
1√
D0

, (5.2b)

where these quantities are used in Chapter 2, 3, and section 4.3.

For the Laplace operator in each scenario we use a cell-centered discretization

on a uniformly spaced 400×400 rectangular grid in both space variables. One

of the main advantages of this discretization over a node based discretization

in this context is that we avoid evaluating at the singularity r = 0 directly.

For derivative conditions at the endpoints we use a ghost point formulation

[73]. The time-stepping is done via the adaptive step method ode15s in

Matlab with the Jacobian supplied. For the case of radial coordinates, af-

ter computing on an (r, θ) grid we conformal map to the circle via Matlab’s

pol2cart function.

In order to stimulate breakup instabilities we will consider random perturba-
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tions sampled uniformly from [−δ, δ] with δ = 0.001 from a base homoclinic

orbit. In all of the numerical experiments in which we predict spot breakup

patterns, we expect that the most dominant Fourier mode will dictate the

number of spots that appears in the pattern. However, in both geometries,

we concluded that there were neutral stability points at modes m = mb− and

m = mb+ such that there is a range of real unstable eigenvalues (in the ab-

sence of saturation) for which Re(λ) > 0 on mb− < m < mb+ . Therefore, due

to the random nature of the perturbations, modes other than the maximal

mode may dominate the stability pattern. On a long enough time-scale, we

would still expect the dominant mode to be observed but all of the analysis

is based upon linear stability and once a breakup occurs, secondary dynam-

ics may initiate. Furthermore, since random amplitude perturbations do not

favour positive or negative amplitudes, this will induce a phase correction.

To alleviate these issues, when looking for spot breakup, we will perform a

full discrete Fourier transform on the solution and then isolate modes that

are within 95% of the maximal mode (which we call dominant modes). This

is designed to represent the most dominant wavemode interference. We will

also plot the maximal mode and compare that to the predicted number of

spots. Since we are not concerned with translational effects, we will filter the

m = 0 mode.

5.1 Stripe Numerical Experiments

We begin by presenting some numerical experiments to coincide with the

explicit stripe formulation in 4.2. In this scenario Fourier perturbations are
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of the form exp(ix2kπ/d) with k ∈ N. We initialize the code with the steady-

state (4.15) from section 4.2 subject to the random amplitude perturbation

previously discussed. For the first experiment, we consider exponent set

(3, 1, 3, 0), ε0 = 0.05, D0 = 1, τ = 0.1, and d0 = 2 which correspond to

ε = 0.05 l = 1/2 in (4.27). We note that this is meant to represent the

τ = 0 case but we take τ small and finite to allow full dynamics to occur. We

considered this case analytically in Figure 4.1 and in Table 4.1, we computed

that mdom = 7.42, which corresponds to kdom = 4, where we have rounded

down to the nearest integer. The number of spots is given by

Nspot =
mdomd

2π
=
kdom

2
, (5.3)

which leads to N = 2 spots in this case. Note that the extra factor of 2 comes

from the fact that minima do not produce spots. The numerical results of

experiment 1 are in Figure 5.1 for times t = 0 (a), t = 2.64 (b), t = 3.16

(c), and t = 5 (d). As time progresses it does indeed appear that a two spot

pattern is dominant. However we can see this more clearly by looking at

the Fourier transform in Figure 5.2 where indeed the most dominant mode

produces a two spot pattern.
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(a) t = 0 (b) t = 2.64

(c) t = 3.16 (d) t = 5

Figure 5.1: Experiment 1: Contour plot of the solution v to (5.1a) with stripe
geometry at four times with with exponent set (3, 1, 3, 0). The parameter
values are ε0 = 0.05, D0 = 1, τ = 0.1, and d0 = 2. This corresponds to
ε = 0.05, l = 1/2, τ = 0.1, and d = 2 in (4.27) of Chapter 4.
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Figure 5.2: Experiment 1: Discrete Fourier transform of the solution v to
(5.1a) with stripe geometry at four times with with exponent set (3, 1, 3, 0).
The parameter values are ε0 = 0.05, D0 = 1, τ = 0.1, and d0 = 2. The
upper left plot shows the amplitudes from the Fourier transform while the
upper right plot displays the phase. Dominant modes are defined as any
modes that have an amplitude within 95% of the largest amplitude mode.
The bottom graphic in each panel shows an inverse Fourier transform of a
solution comprised of only the most dominant mode.

For experiment 2 we consider the same parameters as experiment 1 but with

d0 = 3. This produces the same dominant mode mdom = 7.42 as this is

independent of the width of the rectangle but it does affect the number of

spots (5.3), where now we predict N = 3. The numerical results are in Figure

5.3 for times t = 0 (a), t = 2.42 (b), t = 2.64 (c), and t = 5 (d).
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(a) t = 0 (b) t = 2.42

(c) t = 2.64 (d) t = 5

Figure 5.3: Experiment 2: Contour plot of the solution v to (5.1a) with stripe
geometry at four times with with exponent set (3, 1, 3, 0). The parameter
values are ε0 = 0.05, D0 = 1, τ = 0.1, and d0 = 3. This corresponds to
ε = 0.05, l = 1/2, τ = 0.1, and d = 3 in (4.27) of Chapter 4.

In Figure 5.4 we plot the Fourier transform results of experiment 2 where

in fact it is a 4 spot pattern that emerges which is not surprising since in

actuality we expect N = 3.54 and so anything between a three and four

spot pattern matches well. If we compare Figures 5.2 and 5.4 then we see

that the dominant modes competing for instability are more spread out in

experiment 2 which is a side effect of taking d0 larger. From Figure 4.1 in

4.2.1, the dominant modes within 95% of the maximum satisfy 5 < m < 14
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5.1. Stripe Numerical Experiments

which hold for all d but this results in 3 < k < 8 for experiment 1 and

4 < k < 13 for experiment 2. Therefore, the clustering of competitive modes

is more spread out as d0 increases and the most dominant mode has a better

chance of surviving through most random perturbations.
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Figure 5.4: Experiment 2: Discrete Fourier transform of the solution v to
(5.1a) with stripe geometry at four times with with exponent set (3, 1, 3, 0).
The parameter values are ε0 = 0.05, D0 = 1, τ = 0.1, and d0 = 3. The
upper left plot shows the amplitudes from the Fourier transform while the
upper right plot displays the phase. Dominant modes are defined as any
modes that have an amplitude within 95% of the largest amplitude mode.
The bottom graphic in each panel shows an inverse Fourier transform of a
solution comprised of only the most dominant mode.

For experiment 3 we repeat experiment 1 but with D0 = 0.1 which affects
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l d, and ε via (5.2a). We plot the numerical results of this experiment in

Figure 5.5 for times t = 0 (a), t = 2.64 (b), t = 4.34 (c), and t = 5 (d).

If we compute the eigenvalues using (4.27) from 4.2.1 then we have that

mdom ≈ 4.24 and therefore from (5.3) with d = 2
√

10, we predict N = 4

spots. If we were to plot the eigenvalues for this case, the instability band

forms on 1.01 < m < 10.19 which is much narrower than the band for l = 1/2.

This narrowed clustering means that the dominant mode should emerge more

prominently as there are fewer modes to compete with. Furthermore, as we

saw from Figure 4.1 as l increases the magnitude of the largest eigenvalue

decreases. This means that for this value of l, the breakup instability should

take longer to form compared to experiments 1 and 2. Indeed by looking

at Figure 5.6 all of these predictions are verified as the four spot pattern

emerges quite distinctly without much competition and the prominence of

the pattern is not noticed until t = 4.34 which is in contrast to t = 3.16 and

t = 2.64 for experiments 1 and 2 respectively.
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(a) t = 0 (b) t = 2.64

(c) t = 4.34 (d) t = 5

Figure 5.5: Experiment 3: Contour plot of the solution v to (5.1a) with stripe
geometry at four times with with exponent set (3, 1, 3, 0). The parameter
values are ε0 = 0.05, D0 = 0.1, τ = 0.1, and d0 = 2. This corresponds to
ε = 0.05

√
10 ≈ 0.1581, l =

√
10/2 ≈ 1.58, τ = 0.1, and d = 2

√
10 ≈ 6.32 in

(4.27) of Chapter 4.
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Figure 5.6: Experiment 3: Discrete Fourier transform of the solution v to
(5.1a) with stripe geometry at four times with with exponent set (3, 1, 3, 0).
The parameter values are ε0 = 0.05, D0 = 0.1, τ = 0.1, and d0 = 2. The
upper left plot shows the amplitudes from the Fourier transform while the
upper right plot displays the phase. Dominant modes are defined as any
modes that have an amplitude within 95% of the largest amplitude mode.
The bottom graphic in each panel shows an inverse Fourier transform of a
solution comprised of only the most dominant mode.

5.2 Ring Numerical Experiments

We will now consider numerical experiments for the ring geometry. With

this geometry, Fourier perturbations are of the form exp(imθ) for m ∈ Z but
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we only consider the positive integers keeping in mind the complex conjugate

modes also exist. In this case, unlike (5.3), the number of spots Nspot = mdom

exactly.

5.2.1 Explicit Formulation

We will begin by considering the explicit formulation as in section 4.2. Recall

from 4.3 that steady-states only exist for q = 2 and so we will consider the

exponent set (3, 2, 3, 0). We will consider an experiment that corresponds to

Figure 4.7 in 4.3 and therefore, we will take l = 5, ε = 0.05, and τ = 0.1.

This corresponds to taking D0 = 0.04 and ε0 = 0.01. We will take r0 to be

the equilibrium values at l = 5 which are r0 = 1.08 and r0 = 2.56. When

scaled to be on r ∈ [0, 1], this corresponds to r0 = 0.216 and r0 = 0.512

respectively. Using (4.56) from 4.3, for r0 = 0.216, we expect an instability

band on 2 < m < 35 with a dominant mode mdom = 12, and hence 12

spots. For r0 = 0.512 we expect an instability band 7 < m < 84 with a

dominant mode mdom = 30, and hence 30 spots. The numerical results and

discrete Fourier transforms are shown in Figure 5.7 where the computations

terminate once the breakup pattern has emerged. For r0 = 0.216 a 14 spot

pattern emerges and for r0 = 0.512 a 28 spot pattern emerges. Both results

are very close to the predicted dominant spot pattern but are not perfect

again owing to the wide range of unstable bands. To ensure the accuracy of

the mode prediction we ran several random seed perturbations and saw that

the average unstable modes were indeed 12 and 30 spots respectively.
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(a) r0 = 0.216
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Figure 5.7: Experiment 4: Contour and Fourier transform plot of the solution
v to (5.1a) with ring geometry with exponent set (3, 2, 3, 0). The parameter
values are ε0 = 0.01, D0 = 0.04, and τ = 0.1. This corresponds to ε = 0.05,
and l = 5 in (4.56) of Chapter 4.

5.2.2 Non-Explicit Formulation

We now consider numerical experiments for the non-explicit ring geometry

considered in Chapter 2 and Chapter 3. For simplicity we will consider the

exponent set (2, 1, 2, 0) moving forward but emphasize that unlike the explicit

case, general exponents q, o, and s could be taken and, in fact, we only require

p = 2 when considering saturation. For these experiments, we will also begin

at a radius that is not necessarily the equilibrium radius and as such the ring
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radius could change dynamically. We numerically compute the ring radius

as the r position which produces the largest value of v when θ = 0. We note

that this definition may not be correct for a breakup pattern if the spots

separate in non-radially symmetric ways. We will begin by demonstrating

the breakup pattern expected in Figure 3.5a of 3.2.10. Here we take D0 = 1

and ε0 = 0.025, which corresponds to ε = 0.025 and R = 1. We also take

r0 = 0.5, which is not the equilibrium radius. However, since we anticipate

breakup on an O(1) timescale versus motion on a O(ε−2) timescale the radius

should stay fairly static. Indeed in Figure 5.8 we plot the numerical results

for this experiment for times t = 0 (a), t = 5.32 (b), t = 6.32 (c), and t = 10

(d) and the numeric ring radius stays essentially static. From Figure 3.5a

we predict mdom = 4.80 and hence a four spot breakup pattern which is

evidenced in Figure 5.8. Although the m = 6 mode is most dominant in the

Fourier transform Figure 5.9, it is very balanced with the m = 4 mode. In

Figure 3.5a, the magnitude of the positive eigenvalues are near and below

λ = 1 which explains the slow breakup instability in Figure 5.8.
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(a) t = 0, r0 = 0.5 (b) t = 5.32, r0 = 0.495

(c) t = 6.32, r0 = 0.493 (d) t = 10, r0 = 0.493

Figure 5.8: Experiment 5: Contour plot of the solution v to (5.1a) with ring
geometry at four times with with exponent set (2, 1, 2, 0). The parameter
values are ε0 = 0.025, D0 = 1, and τ = 0.1. This corresponds to ε = 0.025,
R = 1, and τ = 0.1 in the numerical computation of (3.16) of Chapter 3.
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Figure 5.9: Experiment 5: Discrete Fourier transform of the solution v to
(5.1a) with ring geometry at four times with exponent set (2, 1, 2, 0). The
parameter values are ε0 = 0.05, D0 = 1, and τ = 0.1. The upper left plot
shows the amplitudes from the Fourier transform while the upper right plot
displays the phase. Dominant modes are defined as any modes that have an
amplitude within 95% of the largest amplitude mode. The bottom graphic
in each panel shows an inverse Fourier transform of a solution comprised of
only the most dominant mode.

Adding Saturation

We will now consider the numerical simulations where saturation is included.

This has the most significant impact on the dynamics because as we con-

cluded in section 3.2.12, adding saturation can stabilize breakup patterns.
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Adding saturation affects the steady-state activator profile but for initial-

izing the code, we still use the steady-state with saturation equal to zero.

Therefore, in our simulations where saturation is added, we expect that there

will be a transient period where the homoclinic fattens (see Figure 2.2 from

section 2.3) before any secondary dynamics occurs. For all numerical exper-

iments unless otherwise stated we are considering D0 = 1, ε0 = ε = 0.025,

R = 1 and r0 = 0.5. We begin by taking the saturation σ = 25. From (2.41),

this corresponds to b = 0.1356 which from Figure 3.10 in section 3.2.12 does

not stabilize the pattern. However, it does significantly shrink the instability

band and the magnitude of the eigenvalues satisfying Re(λ) > 0. We there-

fore expect that in this scenario, the instability should take longer to form

and the dominant mode (mdom = 4.68) should be more pronounced when

compared to Figure 5.8 which uses the same parameters but σ = 0. The

results for this experiment are in Figure 5.10 with the Fourier Transform in

Figure 5.11 for times t = 10 (a), t = 26.2 (b), t = 37.3 (c), and t = 50 (d). In

contrast to Figure 5.8 at t = 10 when the curve had not only dissociated into

spots, but secondary instabilities had reduced it to a single spot, for Figure

5.10, instabilities have not even begun to form at this time. However,the ring

is thicker when compared to the zero saturation case, and since the breakup

pattern takes longer to occur we see the dynamics of the ring structure since,

at t = 10, it has shrunk from its original position of r0 = 0.5 to r0 = 0.47.

From Figure 2.9, this shrinking behaviour is predicted since r0 is greater than

the equilibrium value.
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(a) t = 10, r0 = 0.478 (b) t = 26.2, r0 = 0.438

(c) t = 37.3, r0 = 0.358 (d) t = 50, r0 = 0.243

Figure 5.10: Experiment 6: Contour plot of the solution v to (5.1a) with ring
geometry at four times with with exponent set (2, 1, 2, 0). The parameter
values are ε0 = 0.025, D0 = 1, τ = 0.1, and σ = 25. This corresponds to
ε = 0.025, R = 1, and τ = 0.1 in the numerical computation of (3.16) of
Chapter 3.
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Figure 5.11: Experiment 6: Discrete Fourier transform of the solution v to
(5.1a) with ring geometry at four times with exponent set (2, 1, 2, 0). The
parameter values are ε0 = 0.025, D0 = 1, τ = 0.1, and σ = 25. The upper left
plot shows the amplitudes from the Fourier transform while the upper right
plot displays the phase. Dominant modes are defined as any modes that have
an amplitude within 95% of the largest amplitude mode. The bottom graphic
in each panel shows an inverse Fourier transform of a solution comprised of
only the most dominant mode.

As time goes on, eventually the dominant four spot pattern emerges and

then the spot structure continues to shrink as a ring. This spot collocation

dynamic behaviour was previously observed and analyzed for the Schnaken-

burg model in [44].
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Next we consider the same parameter set but for σ = 950. For this sat-

uration value and r0 = 0.5 we have that b = 0.2010 which by Figure 3.10

does stabilize all of the breakup instability modes. Therefore we expect there

to be an initial transient period where the ring fattens from the effect of sat-

uration but where the radius remains relatively static. Afterwards, the ring

should remain stable and shrink according to (2.43). During this dynamic

process, the width of the ring should also increase because the value of b,

even for fixed σ, is intimately tied to r0 and increases as r0 decreases. Indeed

all of this behaviour is noted in Figure 5.12 for times t = 0 (a), t = 3.48 (b),

t = 12.2 (c), and t = 20 (d) where the ring does not breakup. By looking at

the Fourier transform plot in Figure 5.13 we see that while m = 4 remains

the dominant integer mode, the amplitudes are decreasing over time and we

do truly have a stabilizing pattern. By the end of the simulation, while still

stable, the m = 1 mode has become dominant and if we look at Figure 5.14

this is exactly what we see is the dominant mode for r0 = 0.213 and σ = 950

computed using the techniques of section 3.2.10.
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(a) t = 0, r0 = 0.5 (b) t = 3.48, r0 = 0.478

(c) t = 12.2, r0 = 0.365 (d) t = 20, r0 = 0.213

Figure 5.12: Experiment 7: Contour plot of the solution v to (5.1a) with ring
geometry at four times with with exponent set (2, 1, 2, 0). The parameter
values are ε0 = 0.025, D0 = 1, τ = 0.1, and σ = 950. This corresponds to
ε = 0.025, R = 1, and τ = 0.1 in the numerical computation of (3.16) of
Chapter 3.
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Figure 5.13: Experiment 7: Discrete Fourier transform of the solution v to
(5.1a) with ring geometry at four times with exponent set (2, 1, 2, 0). The
parameter values are ε0 = 0.05, D0 = 1, τ = 0.1, and σ = 950. The upper left
plot shows the amplitudes from the Fourier transform while the upper right
plot displays the phase. Dominant modes are defined as any modes that have
an amplitude within 95% of the largest amplitude mode. The bottom graphic
in each panel shows an inverse Fourier transform of a solution comprised of
only the most dominant mode.
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Figure 5.14: Eigenvalues of (3.16) for exponent set (2, 1, 2, 0), ε = 0.05, τ = 0,
and R = 1 with r0 = 0.213 and σ = 950.

We now consider the perturbations that lead to zig-zag instabilities. In sec-

tion 2.3.2, we determined that the velocity corrections for a near circular per-

turbation are in phase with the perturbation itself when r0 is small enough.

Therefore, we expect that given an initial near circular perturbation with

D = O(1), this curve should either grow or shrink by (2.43) and slowly cir-

cularize via (2.77). In Figure 5.15, taken at times t = 0 (a), t = 4.92 (b),

t = 15.76 (c), and t = 20 (d) we take all of the previous parameters except we

start with an initial curve radius r0 = 0.5+0.02 cos(6θ). We still initialize the

curve with a homoclinic orbit as if there were no saturation. The homoclinic

initially fattens due to the presence of saturation, but as the curve continues

to evolve it indeed circularizes.
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(a) t = 0 (b) t = 4.92

(c) t = 15.76 (d) t = 20

Figure 5.15: Experiment 8: Contour plot of the solution v to (5.1a) with ring
geometry at four times with with exponent set (2, 1, 2, 0). The parameter
values are ε0 = 0.025, D0 = 1, τ = 0.1, and σ = 950. This corresponds
to ε = 0.025, R = 1, and τ = 0.1. We take as an initial radius r0 =
0.5 + 0.02 cos(6θ).

Conversely, if r0 � 1 then we could no longer guarantee that near circular

perturbations would circularize. To demonstrate this, we compute a simula-

tion for R = 10 and r0 = 5 in physical space which translates to parameters

D0 = 0.01, and r0 = 0.5 in computational space. Furthermore, we take

ε0 = 0.01 (ε = 0.1) to avoid the weak interaction regime where D = O(ε2)

and different analysis is required (cf. [39]). While the rescaling in (5.2b)

is equivarient in the spatial scales of the problem, it does impact the value
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of U0 on the curve and hence the saturation required to achieve a given b

value by (2.41). We wish to use the same b value as in Figure 5.12 and

5.15 which was b = 0.210. To achieve this level of saturation for the current

parameter set we need to take σ = 5910. As in Figure 5.15, we initialize

the curve with a perturbed radius r0 = 0.5 + 0.02 cos(6θ). Figure 5.16 shows

the results of this simulation at times t = 0 (a), t = 15 (b), t = 31 (c), and

t = 50 (d) . We have that the curve initially fattens due to the presence of

saturation and then begins to accentuate the small angular perturbations,

overall lengthening the curve by the end of the simulation. Even though this

curve destabilizes the circular solution it does not itself undergo any breakup

instabilities as it evolves.
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(a) t = 0 (b) t = 15

(c) t = 31 (d) t = 50

Figure 5.16: Experiment 9: Contour plot of the solution v to (5.1a) with ring
geometry at four times with with exponent set (2, 1, 2, 0). The parameter
values are ε0 = 0.01, D0 = 0.01, τ = 0.1, and σ = 5910. This corresponds
to ε = 0.1, R = 10, and τ = 0.1. We take as an initial radius r0 = 0.5 +
0.02 cos(6θ).

The delicacy of manipulating ε0 in correspondence with D0 to avoid the

weak interaction regime and the affect of σ increasing for a desired b when

the domain length increases, is the side-effect of computing on a fixed domain

length. Therefore, it can be difficult to capture some of the rich dynamics

that occur on an O(ε−2) timescale for large curves or domains. Fortunately,

the techniques developed in Chapter 6 for solving dynamics on arbitrary

curves are designed specifically to capture this behaviour and the issues that
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arise from full numerical simulations underscores the need for this specialized

computational infrastructure.
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Chapter 6

Solving the Gierer-Meinhardt

Problem for Arbitrary Curves

in Two Dimensions

We consider the singular interface limit inhibitor problem (2.19) derived in

2.2.1,

D∆u− u = 0, x ∈ Ω

∂u

∂n
= 0, x ∈ ∂Ω

u = U0(s), x ∈ Γ[
∂u

∂n

]
Γ

= − 1

D

∫ ∞
−∞

f(U0, ṽ0) dη̂, x ∈ Γ

subject to

V0 = κ0 +H
(
∂u

∂n

∣∣∣∣
η=0+

+
∂u

∂n

∣∣∣∣
η=0−

)
,

with H given by (2.20).
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6.1. Layer Potential Formulation

6.1 Layer Potential Formulation

Before considering the dynamic portion of the curve, we will first look at

solving the problem of a static closed curve and then incorporate the veloc-

ity condition into the calculation. For either case, we will use the method

of Layer potentials [34], which originates in the field of electrostatics. The

motivation comes from solving Laplace’s equation subject to closed curves

and surfaces at fixed potentials or electric fluxes. The electric potential at

any point in space is written as an integral of the charge potential differ-

ence between a set of delta sources on the curve and the desired point in

space. Mathematically, the method is similar to the Green’s function formu-

lation. Typically, when solving these problems on non-standard geometries,

the method of images is used to modify the Green’s function and use the

curve data as a source. The method of layer potentials does the opposite of

this by using the original free space Green’s function (or its derivative) and,

instead, considers the source density to be unknown. In order to proceed

then, we need the free space Green’s function or fundamental solution to the

modified Helmholtz equation:

D∆qΨ−Ψ = −δ(p− q), p, q ∈ R2

where the subscript indicates differentiation with respect to q variables. Im-

posing that the solution decay at infinity allow us to write the fundamental

solution as

Ψ(p, q) =
1

2πD
K0

( |p− q|√
D

)
, (6.1)
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6.1. Layer Potential Formulation

with K0 the second modified Bessel function of zeroth order. Using the layer

potential formulation we need to find the continuous source density φ on Γ

such that at any point x in space,

u(x) =

∫
Γ

Ψ(x, q)φ(q) dqs. (6.2)

With the integral in this form, it is often called the single, or monopole,

layer potential (as opposed to the double, or dipole, layer potential that

uses the derivative of Ψ [34]). The subscript s indicates that the integral is

with respect to the arclength of Γ in the q variables. The method of layer

potentials, having been created for electrostatic problems, has a rich history

of investigation for the Laplace operator (cf. [34], [36], [18]) and so it is useful

to exploit those results. The fundamental solution to Laplace’s equation,

∆qΦ = −δ(p− q)

is

Φ = − 1

2π
log |p− q|. (6.3)

The following property holds for the Laplace single layer potential with source

density φ for some curve Γ with Dirichlet boundary conditions u = f(x), x ∈
Γ:

f(x) =

∫
Γ

Φ(x, q)φ(q) dqs. x ∈ Γ.
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Furthermore, the limiting values of the normal derivative with the positive

normal on Γ taken as the interior normal of a single curve are

lim
α→0+

∂u

∂nx
(x+ αn̂xi) =

∫
Γ

∂Φ

∂nx
(x, q)φ(q) dqs −

φ(x)

2
, (6.4a)

lim
α→0+

∂u

∂nx
(x− αn̂xi) =

∫
Γ

∂Φ

∂nx
(x, q)φ(q) dqs +

φ(x)

2
, (6.4b)

where we define normal derivatives with respect to a coordinate system a as,

∂u

∂na
= ∇au · n̂a.

Subtracting (6.4b) from (6.4a) we get

[
∂u

∂n

]
= − (n̂ · n̂i)φ(x), x ∈ Γ.

The subscript i on the normal in (6.4) indicates that we are explicitly con-

sidering α > 0 to be traversing the inner normal. It is important to make

this distinction if Γ has multiple curves since n̂ = ±n̂i, depending on curve

orientation. For a derivation of the properties of the Laplace operator, see

Appendix A. The Dirichlet and Neumann jump properties are inherently

tied to the logarithmic singularity as p→ q in Φ(p, q). If we look at the same

limit for the fundamental solution Ψ(p, q) we have [1],

Ψ(p, q) ∼
p→q

1

D
Φ(p, q) +R(|p− q|)

with R a differentiable function. Therefore the singularity structure between

the two problems is the same and we can immediately write down the prop-
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6.1. Layer Potential Formulation

erties for the modified Helmholtz problem (2.19):

U0 =

∫
Γ

Ψ(x, q)φ(q) dqs, x ∈ Γ (6.5a)[
∂u

∂n

]∣∣∣∣
Γ

= −(n̂ · n̂i)
φ(x)

D
, x ∈ Γ (6.5b)

where the extra factor of D comes from the singularity relationship between

Φ and Ψ.

6.1.1 Incorporating Neumann Boundary Conditions

We have thus far considered how to solve the problem (2.19) for a closed curve

Γ on an unbounded domain. However, the problem we want to ultimately

solve has a closed domain with Neumann boundary conditions. This is an

easy feature to include in the layer potential formulation since the curve Γ

does not have to be a single closed curve, and as such, we can define ∂Ω to be

one of these curves. We can therefore write the new layer potential problem

as

u(x) =

∫
Γ

Ψ(x, q)φ(q) dqs +

∫
∂Ω

Ψ(x, q)φb(q) dqs. (6.6)

We introduce a new density φb here for the integral on the domain boundary

and split the integral in this way so that φb belongs to the, always static,

curve ∂Ω and any dynamic curves belong to the set Γ. By replacing (6.2)
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6.1. Layer Potential Formulation

with (6.6), we can define the new jump in normal derivative for x ∈ Γ:

lim
α→0+

∂u

∂nx
(x+ αn̂xi) =

∫
Γ

∂Ψ

∂nx
(x, q)φ(q) dqs −

φ(x)

2D

+

∫
∂Ω

∂Ψ

∂nx
(x, q)φb(q) dqs (6.7a)

lim
α→0+

∂u

∂nx
(x− αn̂xi) =

∫
Γ

∂Ψ

∂nx
(x, q)φ(q) dqs +

φ(x)

2D

+

∫
∂Ω

∂Ψ

∂nx
(x, q)φb(q) dqs (6.7b)

where we note that substitution is applicable in the last integral for x ∈ Γ

and q ∈ ∂Ω since then, Ψ(p, q) is no where singular. It is now straightforward

to see that (6.5) becomes

U0 =

∫
Γ

Ψ(x, q)φ(q) dqs +

∫
∂Ω

Ψ(x, q)φb(q) dqs, x ∈ Γ (6.8a)[
∂u

∂n

]∣∣∣∣
Γ

= −(n̂ · n̂i)
φ(x)

D
, x ∈ Γ. (6.8b)

To incorporate the condition ∂u
∂n

= 0 on ∂Ω, we once again look at the

normal jump formula. This boundary condition states that as we approach

the boundary from exterior to Ω, the flux must vanish and therefore

lim
α→0+

∂u

∂n
(x+ αn̂Ωe) = 0, x ∈ ∂Ω,

215



6.1. Layer Potential Formulation

where n̂Ωe is the normal from ∂Ω pointing to the exterior of Ω. Since we are

considering the exterior normal and n̂Ωe = −n̂Ωi then we use (6.4b) and get

0 =

∫
Γ

∂Ψ

∂nΩ

(x, q)φ(q) dqs +
φb(x)

2D
+

∫
∂Ω

∂Ψ

∂nΩ

(x, q)φb(q) dqs, x ∈ ∂Ω.

(6.9)

6.1.2 Scaled Arclength parametrization

In order to compute the integrals, we will use a scaled arclength parametriza-

tion. First consider that Γ is composed of M distinct closed curves,

Γ =
M⋃
j=1

Γj,

and write (6.6) as

u(x) =
M∑
j=1

∫
Γj

Ψ(x, qj)φ(qj) dqjs +

∫
∂Ω

Ψ(x, q)φb(q) dqs, x ∈ Ω ∪ Γ.

(6.10)

Define the scaled arclength coordinate as σ = sj/Lj, where Lj is the length

of curve j. In order to not confuse this with the saturation parameter σ from

the previous chapters, we will now reserve σ̂ for the saturation parameter.

Let the parametrization of Γj be written as

zj(σ) = 〈z1j(σ), z2j(σ)〉,
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and the parametrization of ∂Ω as

zb(σ) = 〈z1b(σ), z2b(σ)〉.

With this in mind, we can write (6.10) for x ∈ Ω ∪ Γ as

u(x) =
M∑
j=1

Lj

∫ 1

0

Ψ(x, zj(σ))φj(σ) dσ + L∂Ω

∫ 1

0

Ψ(x, zb(σ))φb(σ) dσ, (6.11)

where φj = φ(zj(σ)). We can write the Dirichlet condition (6.8a) as

U0(σ∗) =Lm

∫ 1

0

Ψ(zm(σ∗), zm(σ))φm(σ) dσ

+
M∑
j=1
j 6=m

Lj

∫ 1

0

Ψ(zm(σ∗), zj(σ))φj(σ) dσ

+ L∂Ω

∫ 1

0

Ψ(zm(σ∗), zb(σ))φb(σ) dσ, (6.12)

where we have isolated the integral with the singularity separately from the

sum. We can write the jump condition (6.8b) as

φm(σ∗) = (n̂ · n̂i)
∫ ∞
−∞

f(U0(σ∗), ṽ0) dη̂ (6.13)
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where we have simplified the jump in the normal derivative using (2.19d).

Finally, we can write the Neumann boundary condition (6.9) as

M∑
j=1

Lj

∫ 1

0

∂Ψ

∂nΩ

(zb(σ
∗), zj(σ))φj(σ) dσ +

φb(σ
∗)

2D

+ L∂Ω

∫ 1

0

∂Ψ

∂nΩ

(zb(σ
∗), zb(σ))φb(σ) dσ = 0. (6.14)

A Note on Uniqueness

We briefly comment on the uniqueness of the boundary value problem. When

the Dirichlet condition U0 is prescribed then it can be shown that the solution

to (6.12) is unique [68]. However, since the Dirichlet value on the curve is

an unknown in the system, the guarantee of uniqueness no longer applies

and solution bifurcations may occur. We will demonstrate an example of

non-unique solutions when we consider the GMS model in section 6.3.

6.1.3 Curve Dynamics

The motion for the curve will be dictated by the normal velocity condition

given by (2.19e). However, in using the scaled arclength formulation, if a

solution exists then the same solution would exist for any rotation of the

curve. To remedy this, we will introduce a tangential velocity but give it

zero mean to prevent a rotation from an initial configuration. With these

considerations in mind for each σ∗ ∈ [0, 1), we have that the motion on curve

m is given by

dzm
dt

= V n̂ + Vtt̂, (6.15)
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and that

∫ 1

0

Vt dσ =

∫ 1

0

dzm
dt
· t̂ dσ = 0. (6.16)

By prescribing the normal velocity and enforcing equal arclength (|zmσ | = L)

for all time then the mean value condition is sufficient to implicitly impose a

tangential velocity [64]. Note that this is in contrast to imposing a tangential

velocity that guarantees a given parametrization is equal arclength [84].

6.1.4 Normal Velocity Condition

We now want to incorporate the velocity condition given by (2.19e) into the

layer potential formulation. This turns out to be extremely straightforward

by using the jump conditions (6.7),

lim
α→0+

∂u

∂nx
(x+ αn̂xi) + lim

α→0+

∂u

∂nx
(x− αn̂xi)

= 2

∫
Γ

∂Ψ

∂nx
(x, q)φ(q) dqs + 2

∫
∂Ω

∂Ψ

∂nx
(x, q)φb(q) dqs.

In (2.19e) we need to add the derivative contributions of x+αn̂ with n̂ = ±n̂i.

However, this only affects the sign on the non-integral term in (6.7) and will
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always vanish when added. Therefore, we have that

V (σ∗) = κ+ 2H(U0)

(
Lm

∫ 1

0

∂Ψ

∂nz∗m
(zm(σ∗), zm(σ))φm(σ) dσ +

M∑
j=1
j 6=m

Lj

∫ 1

0

∂Ψ

∂nz∗m
(zm(σ∗), zj(σ))φj(σ) dσ

+L∂Ω

∫ 1

0

∂Ψ

∂nz∗m
(zm(σ∗), zb(σ))φb(σ) dσ

)
, (6.17)

where we have defined, z∗m = zm(σ∗).

6.1.5 Singular Integration

If we attempt to solve (6.12), (6.13), (6.14), and (6.17) using standard numer-

ical techniques, there will be an issue when some of the integrands become

singular. First consider the integral

∫ 1

0

Ψ(z(σ∗), z(σ))φ(σ) dσ =
1

2πD

∫ 1

0

K0

(∣∣∣∣z(σ)− z(σ∗)√
D

∣∣∣∣)φ(σ) dσ, (6.18)

which is singular when σ = σ∗. To determine the nature of the singularity,

we perform an asymptotic expansion as σ ≈ σ∗,

z(σ) ∼ z(σ∗) + L(σ − σ∗)t̂z∗ +
L2κ

2
(σ − σ∗)2n̂z∗ +O(σ − σ∗)3 (6.19)
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with t̂z∗ and n̂z∗ , the tangent and normal vectors at z(σ∗) respectively. Here

we have used that ∣∣∣∣ dzdσ

∣∣∣∣ = L,

∣∣∣∣∣ d2z

dσ2

∣∣∣∣∣ = L2κ,

with κ the curvature at z(σ∗) and L the length. We can compute that the

asymptotic norm is

|z(σ)− z(σ∗)| = L|σ − σ∗|+O(σ − σ∗)3, (6.20)

and therefore have that the Bessel function for σ − σ∗ � 1 has the form [1],

K0

(∣∣∣∣z(σ)− z(σ∗)√
D

∣∣∣∣) ∼ log

(
2
√
D

L

)
− γ − log |σ − σ∗|+O(σ − σ∗)2,

where γ is the Euler-Mascheroni constant. To alleviate the logarithmic sin-

gularity, we will add and subtract the log term to (6.18), to get

∫ 1

0

Ψ(z(σ∗), z(σ))φ(σ) dσ

=
1

2πD

(∫ 1

0

K0

(∣∣∣∣z(σ)− z(σ∗)√
D

∣∣∣∣)+ log |σ − σ∗|
)
φ(σ) dσ

− 1

2πD

∫ 1

0

log |σ − σ∗|φ(σ) dσ, (6.21)

where the integral with the Bessel function is now non-singular ∀σ ∈ [0, 1].

Due to the periodicity of the curve, there is a slight issue with this formulation

and that is that σ∗ = 0 also induces a singularity at σ = 1. Furthermore, as

σ∗ gets close to zero, it begins to notice the effects of a singularity at σ = −1

221



6.1. Layer Potential Formulation

as well, though we classify this as a weak singularity since it is outside of the

domain of σ. Since σ∗ ∈ [0, 1), there is no effect from the weak singularity

at σ = 1. To remedy the effects of the periodicity inducing singularities, we

will remove the singularities that are a full period from σ∗ on either side and

write (6.21) as

∫ 1

0

Ψ(z(σ∗), z(σ))φ(σ) dσ =

1

2πD

(∫ 1

0

K0

(∣∣∣∣z(σ)− z(σ∗)√
D

∣∣∣∣)+ L(σ, σ∗)

)
φ(σ) dσ

− 1

2πD

∫ 1

0

log |σ − σ∗|φ(σ) dσ − 1

2πD

∫ 1

0

log |σ − (σ∗ + 1)|φ(σ) dσ

− 1

2πD

∫ 1

0

log |σ − (σ∗ − 1)|φ(σ) dσ, (6.22)

where

L(σ, σ∗) = log |σ − σ∗|+ log |σ − (σ∗ + 1)|+ log |σ − (σ∗ − 1)|. (6.23)

Considering the singularity properties of the Bessel functions we will avoid

evaluating at the singularity directly by defining a function K0 as

K0(z(σ), z(σ∗)) =


K0

(∣∣∣ z(σ)−z(σ∗)√
D

∣∣∣)+ L(σ, σ∗), σ 6= σ∗

log
∣∣∣2√D(σ−(σ∗+1))(σ−(σ∗−1))

L

∣∣∣− γ, σ = σ∗ 6= 0

log
∣∣∣2√D(σ+1)

L

∣∣∣− γ, σ∗ = 0, σ = 0, 1

.

(6.24)
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Notice that using the asymptotic form is valid at σ = σ∗ because the error

terms vanish exactly. Finally, also define

S =

∫ 1

0

log |σ − σ∗|φ(σ) dσ +

∫ 1

0

log |σ − (σ∗ + 1)|φ(σ) dσ

+

∫ 1

0

log |σ − (σ∗ − 1)|φ(σ) dσ, (6.25)

so that (6.22) becomes

∫ 1

0

Ψ(z(σ∗), z(σ))φ(σ) dσ =
1

2πD

(∫ 1

0

K0(z(σ), z(σ∗))φ(σ) dσ − S
)
.

(6.26)

Next consider the integral,

∫ 1

0

∂Ψ

∂nz∗
(z(σ∗), z(σ))φ(σ) dσ =

1

2πD3/2

∫ 1

0

K1

(∣∣∣∣z(σ)− z(σ∗)√
D

∣∣∣∣) (z(σ)− z(σ∗)) · n̂z∗
|z(σ)− z(σ∗)| φ(σ) dσ, (6.27)

where K1 is the second order modified Bessel function of the second kind.

Using the expansion for z(σ) near σ∗ from (6.19) we get,

K1

(∣∣∣∣z(σ)− z(σ∗)√
D

∣∣∣∣) ∼
√
D

L

1

|σ − σ∗| +O(σ − σ∗)

(z(σ)− z(σ∗)) · n̂z∗ ∼
L2κ

2
(σ − σ∗)2 +O(σ − σ∗)4,

and along with the expansion of the norm (6.20) we have

K1

(∣∣∣∣z(σ)− z(σ∗)√
D

∣∣∣∣) (z(σ)− z(σ∗)) · n̂z∗
|z(σ)− z(σ∗)| ∼

√
D
κ

2
+O(σ − σ∗).
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6.2. Numerical Formulation of Curve Motion Problem

Therefore, we see that unlike the integral involving the zeroth order Bessel

function, K1 is not singular at σ = σ∗ and so we do not have to alter the

integral by removing any singularities. However, to avoid the numerical

difficulties of evaluating directly at σ = σ∗, we define the following function

K1(z(σ), z(σ∗)) =


1√
D
K1

(∣∣∣ z(σ)−z(σ∗)√
D

∣∣∣) (z(σ)−z(σ∗))·n̂z∗
|z(σ)−z(σ∗)| , σ 6= σ∗

κ
2
, σ = σ∗

, (6.28)

where we note that if σ∗ = 0 then due to the periodicity we evaluate the

second branch if σ = 0 or σ = 1. With (6.28) we have that (6.27) becomes

∫ 1

0

∂Ψ

∂nz∗
(z(σ∗), z(σ))φ(σ) dσ =

1

2πD

∫ 1

0

K1(z(σ), z(σ∗))φ(σ) dσ. (6.29)

We are now ready to discuss the numerical solution of this problem.

6.2 Numerical Formulation of Curve Motion

Problem

Consider a uniform discretization of σ, σi = i∆σ with ∆σ = 1
N

where N are

the chosen number of grid points. Define zij = zj(σi) as the discretized curve

positions. Using a standard centered difference discretization we have

dzj
dσ

∣∣∣∣
σ=σi

=
zi+1,j − zi−1,j

2∆σ
+O(∆σ2),

d2zj
dσ2

∣∣∣∣∣
σ=σi

=
zi+1,j − 2zi,j + zi−1,j

∆σ2
+O(∆σ2),
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which we can use to define the unit tangent, normal vectors, and curvature

up to O(∆σ2)

t̂i,j =
zjσ(σi)

Lj
=
zi+1,j − zi−1,j

2Lj∆σ
, (6.30)

n̂i,j = 〈−t̂i,jy , t̂i,jx〉, (6.31)

κi,j =
zjσσ(σi) · n̂i,j

L2
j

=
1

2∆σ3L3
j

(zi+1,j − 2zi,j + zi−1,j) · 〈−t̂i,jy , t̂i,jx〉. (6.32)

Here the x and y subscripts indicate the first and second components of the

vector respectively. For the time discretization with a time step ∆t, we will

consider the implicit Backward Euler method so that for each curve m, (6.15)

becomes

(zk+1
m − zkm) · n̂k+1 = ∆tV k+1,

for the normal component where the subscript k indicates t = k∆t and

∫ 1

0

(zk+1
m − zkm) · t̂k+1 dσ = 0,

for the tangential component where we have used the zero mean condition

(6.16). This is closed by prescribing the equal arclength parametrization,∣∣∣∣dzk+1
m

dσ

∣∣∣∣ = Lm, (6.33)

which we can discretize using (6.20) to get

|zk+1
i+1,m − zk+1

i,m | = Lm∆σ. (6.34)

225



6.2. Numerical Formulation of Curve Motion Problem

6.2.1 Discretizing Integrals

By doing the integral splitting in section 6.1.5 we are left to discretize regular

and singular integrals. The regular integrals can be discretized using any of

the standard interpolating methods which will all be of the form,

∫ 1

0

f(σ) dσ =
N∑
i=0

αifi∆σ,

where fi = f(σi) and αi are the quadrature weights. Unless otherwise spec-

ified, since our scheme is accurate to O(∆σ2) from the finite difference dis-

cretization, we will consider the quadrature weights to be those that come

from the trapezoid rule [6],

αi =


1
2
, i = 0, i = N

1, else

.

Generally due to periodicity in z, the integral can be written as a sum over

N points however, we generalize because some of the integrals (such as those

in (6.24)) depend on σ explicitly and are not periodic.

Discretizing Singular Integrals

It is a slightly more delicate issue to consider the discretization of singular

integrals. Fortunately, due to the integral splitting in section 6.1.5, we only

have to consider integrals of the form,

∫ 1

0

f(σ) log |σ − (σ∗ + a)| dσ, (6.35)
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6.2. Numerical Formulation of Curve Motion Problem

where σ∗ ∈ [0, 1) is one of the discretized gridpoints (σ∗ = j∆σ) and a =

−1, 0, 1 is the shifted singularity being removed. The goal is to develop a

discretization so that we can write (6.35) as

∫ 1

0

f(σ) log |σ − (σ∗ + a)| dσ =
N∑
i=0

wifi (6.36)

for some weights wi. High order quadrature techniques have been devel-

oped to handle singularities of logarithmic type [5]. They rely on a weighted

trapezoid rule method that adds gridpoints near the singularity as necessary

to counterbalance the singular behaviour. This technique will not be em-

ployed here and instead we consider product integration [6] which allows us

to continue to use our uniform spatial discretization. It is worth noting that

the singular integral decomposition means that the singular integrals depend

only on σ and not on the specific curves themselves, and therefore higher or-

der quadrature methods could easily be supplemented here if desired without

impacting the rest of the formulation significantly. The idea of the product

integration is to locally interpolate on f(σ) using Lagrange interpolation and

analytically perform the polynomial-logarithmic integration that results. We

start by writing,

∫ 1

0

f(σ) log |σ − σ∗| dσ =
N∑
k=1

∫ k∆σ

(k−1)∆σ

f(σ) log |σ − j∆σ| dσ,

where we are explicitly considering the case a = 0 which we will generalize

later. In what follows we consider the case of f(σ) having a linear interpo-

lation but the mechanism easily extends for higher order interpolants. The
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local linear Lagrange interpolation of f(σ) on [(k − 1)∆σ, k∆σ] is

f ∼ (σ − (k − 1)∆σ)fk − (σ − k∆σ)fk−1

∆σ
,

and so,

∫ 1

0

f(σ) log |σ − σ∗| dσ =
N∑
k=1

fk
∆σ

∫ k∆σ

(k−1)∆σ

(σ − (k − 1)∆σ) log |σ − j∆σ| dσ

+
fk−1

∆σ

∫ k∆σ

(k−1)∆σ

(k∆σ − σ) log |σ − j∆σ| dσ. (6.37)

Consider evaluating the first integral in this expression by letting u = (σ −
(k − 1)∆σ)/∆σ,

1

∆σ

∫ k∆σ

(k−1)∆σ

(σ − (k − 1)∆σ) log |σ − j∆σ| dσ

= ∆σ

(
log ∆σ

∫ 1

0

u du+

∫ 1

0

u log |u+ (k − 1)− j| du
)

=
∆σ log ∆σ

2
+ ∆σψ1,j(k − 1),

where

ψ1,j(y) =

∫ 1

0

u log |u+ y − j| du,

is computed analytically for any y and j. Using the same transformation on

the second integral in (6.37) we get

1

∆σ

∫ k∆σ

(k−1)∆σ

(k∆σ − σ) log |σ − j∆σ| dσ =
∆σ log ∆σ

2
+ ∆σψ2,j(k − 1),
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where

ψ2,j(y) =

∫ 1

0

(1− u) log |u+ y − j| du.

Using these functions we can define the following weights:

w0,j =
∆σ log ∆σ

2
+ ∆σψ2,j(0),

wN,j =
∆σ log ∆σ

2
+ ∆σψ1,j(N − 1),

wi,j = ∆σ log ∆σ + ∆σ(ψ1,j(i− 1) + ψ2,j(i)), i 6= 0, N

and can evaluate the discretized integral as a sum using (6.36). Notice that

the computational cost for computing (6.35) in this way is not of great sig-

nificance because the weights can be precomputed and thus, the method has

the same local computational cost as integrating a non-singular function.

The errors for product integration are of the same order as the equivalent

methods for non-singular integrals [6], i.e. the product integration rule using

linear interpolation here is O(∆σ2) in line with the Trapezoid rule for regular

integrals. If instead of a = 0, we have a = 1 (a = −1) in (6.35) we define the

positive (negative) complementary functions:

ψc±1,j(y) =

∫ 1

0

u log |u+ y − j ∓N | du,

ψc±2,j(y) =

∫ 1

0

(1− u) log |u+ y − j ∓N | du,
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and the positive (negative) complementary weights:

wc±0,j =
∆σ log ∆σ

2
+ ∆σψc±2,j(0),

wc±N,j =
∆σ log ∆σ

2
+ ∆σψc±1,j(N − 1),

wc±i,j = ∆σ log ∆σ + ∆σ(ψc±1,j(k − 1) + ψc±2,j(k)), i 6= 0, N.

To demonstrate the error accuracy of the method we will consider the case∫ 1

0
cos(σ) log |σ| dσ. Analytically we can integrate by parts to get that

∫ 1

0

cos(σ) log |σ| dσ = −
∫ 1

0

sin(σ)

σ
dσ = −Si(1).

From [1] we can write this as a series,

−
∞∑
k=0

(−1)k−1

(2k − 1)(2k − 1)!
≈ −0.94608307036718301494

where we obtained the approximation using 100 terms. We will use this as

the numerical value for comparison in our integrals. Table 6.1 shows the

results for various values of ∆σ along with the error ratio demonstrating the

∆σ2 convergence.

∆σ Error Ratio

0.1 7.73× 10−4 —
0.05 1.95× 10−4 3.96
0.025 4.90× 10−5 3.98
0.0125 1.22× 10−5 3.99
0.00625 3.08× 10−6 4.00

Table 6.1: Numerical-analytic comparison of integrating
∫ 1

0
cos(σ) log |σ|dσ

using the product integration method with linear interpolation.
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Without going through the details of defining the functions, we perform

the same integration as in Table 6.1 using quadratic interpolation instead

of linear interpolation with the errors and ratios in Table 6.2. Notice that

the ratio shows an O(∆σ4) reduction as would be expected with a standard

Simpsons integration rule [6].

∆σ Error Ratio

0.1 1.70× 10−6 —
0.05 1.02× 10−7 16.57
0.025 6.27× 10−9 16.30
0.0125 3.89× 10−10 16.15
0.00625 2.42× 10−11 16.04

Table 6.2: Numerical-analytic comparison of integrating
∫ 1

0
cos(σ) log |σ|dσ

using the product integration method with quadratic interpolation.

Finally, to demonstrate the importance of multiple singularity removal in the

integral splitting (6.26), consider a unit circle,

z = 〈cos(2πσ), sin(2πσ)〉,

and integrate

∫ 1

0

K0 (|z(σ)− z(σ∗)|) dσ (6.38)

for a range of σ∗ ∈ [0, 1). Though analytic results are not available, the

symmetry of the circle indicates that the value of this integral should be the

same for any of the singularities. Figure 6.1 shows the value of integrating

(6.38) for every σ∗ = k∆σ, k ∈ [0, N − 1], ∆σ = 0.02. The solid line is

the result where both of the singularities, a full period away on either side,
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are removed and the dashed line is the value when only the actual singular

value is removed. While the results are fairly constant in the middle, for

the dashed-line, there are errors greater than the quadrature error near the

endpoints because the other singularities are being felt due to the periodicity.

These artifacts are nearly removed for the solid curve.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.533

0.5332

0.5334

0.5336

0.5338

0.534

0.5342

0.5344

0.5346

0.5348

0.535
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gr
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Figure 6.1: This shows the value of integrating (6.38) with ∆σ = 0.02 for
all the possible discrete values of σ∗ ∈ [0, 1). The blue solid curve represents
the technique used in the integral splitting (6.26) where singularities within
a full period on either side of the true singularity are removed while the red
dashed curve represents removing only the true singular value.

It may seem suspicious that we do not recover a constant exactly for the solid

curve since splitting the integral should not change its periodicity and, indeed

that is the case. However, the sole logarithmic integrals are handled exactly

while the logarithmic terms that couple with the Bessel functions are handled
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through the trapezoid rule (or some other quadrature rule) and hence will

have numeric error. This error is the source of breaking the periodicity in

the result. If we look at the asymptotic error expansion for the trapezoid

rule through the Euler-Maclaurin formula [6] we have,

E∆σ(σ∗) =

∫ 1

0

K0(z(σ), z(σ∗)) dσ − T∆σ(σ∗) ∼ ∆σ2

12
F (σ∗) +O(∆σ4),

where K0(z(σ), z(σ∗)) is given by (6.24), T∆σ is the trapezoid approximation

to the integral, and

F (σ∗) = K0σ(z(0), z(σ∗))−K0σ(z(1), z(σ∗)). (6.39)

F (σ∗) has an absolute maximum at σ∗ = 1
2

and absolute minimum at σ∗ = 0

by recalling that 0 ≤ σ∗ < 1 (see Figure 6.2).
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F
(σ

* )

Figure 6.2: The plot of F (σ∗) as defined in (6.39). The function has an
absolute maximum at σ∗ = 0.5 and and absolute minimum at σ∗ = 0.

If we consider the difference in F (σ∗) at its maximum and minimum values

we have

Fmax − Fmin =
1

6
,

and therefore,

∆maxE∆σ =
∆σ2

12
(Fmax − Fmin) =

∆σ2

72
� ∆σ2.

The error introduced by losing the periodicity is smaller than the quadrature

error and therefore of little significance. This procedure could be extended

using Richardson extrapolation to account for non-periodic errors in higher

order quadrature schemes as well.

234



6.2. Numerical Formulation of Curve Motion Problem

6.2.2 Numerical Equations

Having discretized the integrals, we can now write the full system of equa-

tions that we need to solve numerically. The normal and tangential velocity

equations and the equal arclength parametrization are

zk+1
i,m · n̂k+1

i = zki,m · n̂k+1
i + ∆tV k+1

i,m , (6.40a)

N∑
i=0

αi(z
k+1
i,m − zki,m) · t̂k+1

i ∆σ = 0, (6.40b)

|zk+1
i+1,m − zk+1

i,m | = Lm∆σ. (6.40c)

The equations that prescribe the density φ and the value U0 become,

Uk+1
0i,m

=
Lm

2πD

N∑
l=0

(
αlK0(zk+1

l,m , zk+1
i,m )φk+1

l,m ∆σ −Wl,iφ
k+1
l,m

)
+

M∑
j=1
j 6=m

Lj
2πD

N∑
l=0

αlK0

(∣∣∣∣∣zk+1
l,j − zk+1

i,m√
D

∣∣∣∣∣
)
φk+1
l,j ∆σ

+
L∂Ω

2πD

N∑
l=0

αlK0

(∣∣∣∣∣zbl − zk+1
i,m√

D

∣∣∣∣∣
)
φk+1
bl

∆σ, (6.40d)

φk+1
i,m = (n̂0 · n̂0

i )

∫ ∞
−∞

f(Uk+1
0i,m

, ṽ0) dη̂, (6.40e)

where Wi,j = wi,j + wc+i,j + wc−i,j . The superscript 0 on the normal vector

is used because the relative orientation of curves does not change and so

the direction of the normals is set by the initial configuration. Notice that

separating the boundary component is convenient here because the boundary

curve does not change in time, hence there is no k+ 1 on the zbl term. Also,
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we leave the integral in (6.40e) undiscretized because it is an integration over

η̂ and not over the curve where the unknown values are specified. Finally,

we can write the Neumann boundary and velocity condition as

0 =
M∑
j=1

Lj
2πD

N∑
l=0

αlK1(zk+1
l,j , zbl)φ

k+1
l,j ∆σ +

φk+1
bi

2

+
L∂Ω

2πD

N∑
l=0

αlK1(zbl , zbi)φ
k+1
bl

∆σ, (6.40f)

V k+1
i,m = κk+1

i,m + 2H(Uk+1
0i,m

)

(
M∑
j=1

Lj
2πD

N∑
l=0

αlK1(zk+1
l,j , zk+1

i,m )φk+1
l,j ∆σ

+
L∂Ω

2πD

N∑
l=0

αlK1(zbl , z
k+1
i,m )φk+1

bl
∆σ

)
. (6.40g)

While we will consider integrals accurate up to O(∆σ2), one can easily ex-

tend this to higher order methods by using the appropriate weights α and

W . Given an initial curve we can compute the solution at the next time step

using Newton’s method. When forming the Jacobian for Newton’s method,

notice that we indeed have enough equations (the system (6.40)) to solve for

the unknown vector u = [z,V,L,U0, φ, φb], where the components are the

discrete values on the curve. Due to the possibility of non-uniqueness of the

U0 problem, we cannot guarantee that solution bifurcations will not occur

(i.e. we cannot guarantee the Jacobian to have full rank).

To initialize a curve, we need a parametrization of some curve in R2, z0 =
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〈x(θ), y(θ)〉 with θ ∈ [0,Θ]. Write the unit arclength parametrization as

σ =

∫ θ
0

√
dx
dv

2
+ dy

dv

2
dv∫ Θ

0

√
dx
dθ

2
+ dy

dθ

2
dθ
,

which we can interpolate for discrete values of σ ∈ [0, 1]. We can pre-compute

values to arbitrary accuracy by refining in θ along with higher order quadra-

ture and interpolation. Having an initial unit arclength curve, we can de-

termine the initial values of U0 and φ for the static curve by using New-

ton’s method to solve (6.40d) and (6.40e). Again, due to the possible non-

uniqueness of solutions, it can be difficult to find an initial guess which will

allow Newton’s method to converge. Assuming this problem converges an

initial vector u0 can be used in the dynamic Newton’s method for the full

problem.

Validating Numerical Formulation with the Mullins Sekerka

Problem

Before solving the problem using the GMS model, we will validate our code

with a different curve motion problem, the Mullins-Sekerka (MS) problem

formulated in [55]. This problem is a singular perturbation limit of the Cahn-

Hilliard problem [4] and it (along with similar problems) has been studied

analytically (cf. [65], [78], [60], [3]) and numerically (cf. [84], [77], [2]). The

differential equation for motion is still (6.15) with the tangential velocity

condition (6.16) and equal arclength (6.33) as this is problem independent.
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However, the Dirichlet (6.5a), and jump conditions (6.5b) get replaced with

κ =

∫
Γ

Φ(x, q)V (q) dqs + C(t), (6.41a)[
∂u

∂n

]
= −V, (6.41b)

where here the fundamental solution for Laplace’s problem is used because

the MS problem solves Laplace’s equation away form the interface instead

of the modified Helmholtz equation. Notice in these new boundary condi-

tions that the integral density so happens to be the normal velocity exactly,

and so there is no secondary velocity expression required. Furthermore, the

Neumann boundary conditions do not apply to this problem since the only

requirement is that the solution is bounded in the far-field. This bounded-

ness requirement is the reason for C(t) appearing in (6.41a) as otherwise the

solution will be logarithmic there (cf. [34],[84]). However, introducing this

unknown, time dependent, constant also requires a closure condition which

is ([34]), ∫
Γ

V (q) dqs = 0.

This condition is analogous to the zero net-flux Fredholm condition required

for Neumann problems of the Laplace operator on bounded domains. We

omit the details for the numerical formulation as they are nearly identical to

the equations for the reaction diffusion models in section 6.2.2. For compari-

son reference we note that if Γ is a multiconnected domain of two concentric

circles in free-space with radius R1 and R2 (R2 > R1) then we can find a

238



6.2. Numerical Formulation of Curve Motion Problem

radially symmetric exact solution [84],

u(r) =


− 1
R1
, 0 ≤ r ≤ R1

− 1
R1

+
(

1
R1

+ 1
R2

)
log

(
r
R1

)
log

(
R2
R1

) , R1 ≤ r ≤ R2

1
R2
, r ≥ R2

, (6.42)

with equations for the radii given by,

dR1

dt
= − 1

R1

(
1
R1

+ 1
R2

)
log
(
R2

R1

) ,

dR2

dt
= − 1

R2

(
1
R1

+ 1
R2

)
log
(
R2

R1

) .

Notice that
d

dt
(R2

1 +R2
2) = 0,

and so,

R2 =
√
A2 +R2

1,

where A2 = R2
10 + R2

20 is the sum of the initial values for each radius. We

can therefore write the problem for R1(t) as,

t = −1

2

∫ R1(t)

R10

x2
√
x2 + A2

x+
√
x2 + A2

log

(
x2 + A2

x2

)
dx. (6.43)

We can solve this numerically and invert to get R1(t) (and hence R2(t))

for any time t and thus have the analytic solution. Figure 6.3 shows the

analytic solution (6.42) as well as the numerical solution from the integral
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equation technique for two times t = 0 and t = 0.2. The outer radius is

taken to be R2 = 2 while the inner radius is R1 = 1. The lines represent the

numeric solution while the circles represent the analytic solution. Here we

chose N = 50 points on each curve with a time step of ∆t = 1× 10−3. The

figure shows an excellent agreement between the numerical formulation and

the analytic solution.
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Figure 6.3: The solution to the Mullins-Sekerka problem for concentric circles
with an outer radius R2 = 2 and inner radius R1 = 1. The solid blue curve
is the numeric solution at t = 0 and the red dashed curve is the numeric
solution at t = 0.2. The hollow circles are the analytic solution as computed
with (6.42) and (6.43)

,

In a more technical comparison, we consider the global truncation errors for

the same concentric circles with R1 = 1 and R2 = 2 compared to the analytic
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solution (6.42). Standard backward Euler global truncation analysis would

predict an error on the order of ∆t but since the source term for the equation

of motion has a spatial error ∆σ2 log ∆σ then we actually predict a global

error of O(∆σ2 log ∆σ+ ∆t). In Table 6.3 we take ∆t = ∆σ2 for a variety of

N values so that the overall convergence should be ∆σ2 log ∆σ and indeed

that is observed.

N xerr xrat Verr Vrat Lerr Lrat CPU Time
8 2.90E-03 — 1.45E-01 — 1.61E-01 — 0.189
16 7.96E-04 3.64 3.42E-02 3.93 4.11E-02 3.93 0.520
32 2.12E-04 3.75 8.22E-03 3.96 1.04E-02 3.96 2.43
64 5.49E-05 3.87 2.01E-03 3.98 2.61E-03 3.98 21.4
128 1.40E-05 3.93 4.98E-04 3.99 6.53E-04 3.99 352

N xerr xrat Verr Vrat Lerr Lrat CPU Time
8 5.38E-04 — 7.00E-02 — 3.16E-01 — 0.189
16 1.76E-04 3.05 1.66E-02 4.21 7.97E-02 3.96 0.520
32 5.10E-05 3.45 4.01E-03 4.14 2.00E-02 3.99 2.43
64 1.36E-05 3.74 9.86E-04 4.07 5.01E-03 3.99 21.4
128 3.52E-06 3.88 2.44E-04 4.04 1.25E-03 4.00 352

Table 6.3: The global truncation error for solving the MS problem with
concentric circles R1 = 1 (top table), R2 = 2 (bottom table) solving to
T = 0.0469. We define xerr as the error in the x-component of the curve
position. The error in the y-component is the same and omitted. Verr and
Lerr are the errors in the normal velocity and curve length respectively. The
rat suffix for each indicates the ratio of successive errors to the previous one.
The convergence is O(∆σ2 log ∆σ) as expected. The CPU timings reflect
the computation of both curves and does not included anything that can be
precomputed such as the singular scalar logarithmic integrals.

Next, we demonstrate some of the other qualitative results of the MS problem

obtained in [84], such as non-concentric circles favouring growth of the larger

circle at the expense of the smaller one (Figure 6.4) and the tendency of
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non-circular curves to become circular (Figure 6.5).
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Figure 6.4: Evolution of non concentric circles with MS. The first circle is
centered at (−1, 0) with radius R1 = 1 and the second circle is centered at
(6, 6) with radius R2 = 2. The initial curve is in a blue solid line while the
final curve at time t = 1.5 (∆t = 1 × 10−2) is in a red dashed line. As
time evolves, an effect known as Ostwald ripening occurs [62] which favours
growth of larger objects at the expense of shrinking small objects.
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Figure 6.5: Evolution of an ellipse to MS with major axis 3 and minor axis
1. The initial curve is in a blue solid line while the final curve at time t = 2
(∆t = 1 × 10−2) is in a red dashed line. The curve becomes more circular
as time evolves which is a consequence of the area preserving and length
shrinking property of the MS model [84].

We emphasize that our aim in comparing results is not to demonstrate the

superiority of our technique over the proposed method in [84]. However, we

indicate a few significant comparisons between our two methods. Firstly, the

formulation of solving (6.15) in [84] is based on looking at the tangent angle

and does an implicit-explicit (IMEX) splitting so that only stiff terms are

solved implicitly resulting in a diagonal Jacobian of the discretization of the

differential equation. However, ultimately they are still forced into solving

integral equations to update the velocity which results in the same dense

Jacobian that we have implemented. While not using the same splitting
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technique for (6.15), we will have a sparse Jacobian for the differential equa-

tion. Furthermore, by using an IMEX splitting, the scheme in [84] requires a

lower bound that the time step not be larger than 2.5× 10−3. However, our

method, being fully implicit allows us to take larger time steps due to the

general stronger stability of fully implicit schemes (as noted in Figures 6.4

and 6.5). Finally, by not using the tangent angle formulation, we do not have

to consider curve reconstruction and the full curve update happens within

the Newton method solver.

6.3 Solving the GMS Model

We will now solve the saturated Gierer-Meinhardt model with saturation

parameter σ̂, (2.32) discussed in 2.3, which introduced the saturation criteria

for which homoclinic orbit solutions w existed. We will now discuss how to

incorporate the limiting saturation into solving the full model.

6.3.1 Including Saturation and Computing

Homoclinic Orbits

Having chosen the GMS model we can write (6.13) as

φm(σ∗) = (n̂ · n̂i)Uβ
0

∫ ∞
−∞

wo dη̂, β = qo− s.

We can also write (2.20) as H = − q
4U0
Ĥ with Ĥ defined in (2.31). As

we iterate a solution using Newton’s method, the value of b is not being

controlled but rather is subject to an update on U0. Therefore, it is possible
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that U0 could be computed such that b > bc which is invalid. To remedy

the possibility of exceeding the critical b value, we consider a mapping of a

variable c ∈ (−∞,∞) to b ∈ [0, bc] via,

b =
bc
2

(cos(c) + 1).

This form is chosen since there are not any steep gradients in the function

for Newton’s method to overshoot and diverge like there are for exponential

functions. If the critical b value is reached exactly, the tangent is horizontal

but a homoclinic cannot exist precisely at this value so this case can be

ignored. Similarly there is a horizontal tangent issue at b = 0 but this will

not be a problem for σ̂ > 0 as long as we do not initialize near b = 0. If σ̂ = 0

then b = 0 is a solution for all vectors u and time t. One notorious issue with

a trigonometric function in Newton’s method is the convergence to a single

root, however since any period maps to the set of b values we are interested,

we are not concerned with the particular value of c that converges. We will

supplement the addition of a new variable to the system via the equation

(2.23),

b− U2q
0 σ̂ = 0.

Another advantage of considering b as a separate variable is that the homo-

clinic only depends on b and can therefore be precomputed. Otherwise, we

would have to consider the dependence of the homoclinic on U0 and thus

there would need to be an ODE computation at each iteration significantly

slowing down the formulation. In the current form, the time required for a

Newton solve is equivalent whether b = 0 or b 6= 0. While computing deriva-
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tives for the Newton solve, almost all of the terms appear algebraically except

for b (or c) which has a dependence in the numerically computed homoclinic

solution. Computing the c derivatives we get

dφm
dc

= (n̂ · n̂i)Uβ
0

∫ ∞
−∞

rwo−1wb dη̂

(
−bc

2
sin(c)

)
,

dH
dc

= − q

4U0

∫∞−∞ 2wwb dη̂∫∞
−∞w

2
η̂ dη̂

−
∫∞
−∞w

2 dη̂
∫∞
−∞ 2wη̂wbη̂ dη̂(∫∞

−∞w
2
η̂ dη̂

)2

(−bc
2

sin(c)

)
.

In this expression we consider the c derivative using chain rule since the b

dependence on the homoclinic is more natural. To actually compute the

homoclinic we consider (2.22) along with the same expression differentiated

with respect to b,

wbη̂η̂ − wb +
2wwb

(1 + bw2)2
− w4

(1 + bw2)2
= 0.

We then write these two second order differential equations as a first or-

der system and solve them using a standard boundary value solver such as

bvp4c in MATLAB. We supplement this system with the boundary condi-

tions wη̂(0) = 0 and wbη̂ = 0 and to appropriately capture the exponential

decay in the far-field, we prescribe a mixed boundary condition

wη̂(L̂) = −w(L̂),

where L̂� 1 is chosen to sufficiently represent infinity. Note that since w is

even (see Lemma 2.2.0.1), we only solve the system on the domain η̂ ≥ 0 and

recast the necessary integrals, which are also of even functions, to be on the
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same interval. Plots of various homoclinic orbits are in Figure 2.2 in section

2.3.

6.3.2 GMS Results

We are now in a position to solve (6.40) subject to the choice of f and H
in section 6.3.1. We will start by comparing to analytic results for radially

symmetric solutions on a circular domain of radius R. For this problem, it is

easier to consider a polar coordinate system (r ∈ [0, R] and θ ∈ [0, 2π]) with

a localization on some circle r = r0. In this case then, the normal coordinate

η would be η = r0 − r. When b = 0 and p = 2 we have that the homoclinic

orbit that solves (2.22) is

w(ρ) =
3

2
sech 2

(ρ
2

)
,

where ρ = r−r0
ε

is the inner region radial coordinate (i.e. ρ = −η̂). Using

this homoclinic orbit we can write the problem (2.19) as

∆u− u

D
= 0, 0 ≤ r ≤ R \ r0 (6.44a)

du

dr
= 0, r = R (6.44b)

u = U0, r = r0 (6.44c)[
du

dr

]
= − 1

D
Uβ

0

∫ ∞
−∞

wo dρ, r = r0, (6.44d)

where we are seeking radially symmetric solutions and so we take the Laplace

operator to have only a radial dependence. This is subject to the velocity
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condition (2.43,

dr0

dt
= − 1

r0

− q

U0

(
du

dr

∣∣∣∣
r=r+0

+
du

dr

∣∣∣∣
r=r−0

)

where we have computed H explicitly since the homoclinic orbit is known

analytically. The solution to this is given by (2.42),

u(r) = U0
G0(r; r0)

G0(r0; r0)
,

with U0 given by (2.40) and G0 by (2.38). Figure 6.6 shows a comparison with

this analytic solution and the numerical scheme for exponent set (2, q, o, s) =

(2, 1, 2, 0) and for parameters R = 1, r0 = 1/2 and D = 1. Figure 6.7 shows

the value of U0 computed numerically and analytically using (2.42) for t = 0

and t = 0.119.
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Figure 6.6: Circle evolution under the GMS model with σ̂ = 0, R = 1,
r0 = 1/2, D = 1, exponent set (2, 1, 2, 0) and time step 1 × 10−3. The
lines represent the numerical solution while the circles represent the analytic
solution computed using (2.42). The outer black line represents the boundary
curve r = R = 1.
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(a) t = 0, exact value U0 = 0.1525
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(b) t = 0.119, exact value U0 = 0.2336

Figure 6.7: U0 values computed numerically (solid line) and analytically
(dashed-line) using (2.40) for the GMS model with σ̂ = 0, R = 1, r0 = 1/2,
D = 1, and exponent set (2, 1, 2, 0).

We can also showcase the existence of equilibrium discussed in 2.3.1 which

we can verify analytically using the velocity expression (2.43). One such plot

of (2.43), for the exponent set (2, 2, 2, 0), R = 4, and D = 1 is in Figure 6.8

which shows a stable equilibrium at r0 ≈ 2.76. We demonstrate this is found

qualitatively in Figure 6.9 where an initial circle with radius r0 < 2.76 grows

(Figure 6.9a) while one with initial radius r0 > 2.76 shrinks (Figure 6.9b).
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Figure 6.8: Slope-field for circle evolution using the GMS model with R = 4,
D = 1, exponent set (2, 2, 2, 0) and σ̂ = 0. There is an unstable equilibrium
at r0/R ≈ 0.044 (r0 ≈ 0.176) and a stable equilibrium at r0/R ≈ 0.69
(r0 ≈ 2.76).
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(a) Circle with radius r0 = 2.
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(b) Circle with radius r0 = 3.

Figure 6.9: Circle evolution using the GMS model with R = 4, D = 1,
exponent set (2, 2, 2, 0), and σ̂ = 0. The boundary curve at R = 4 has been
omitted.
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When b 6= 0, the equations (2.42) still hold for the radially symmetric solu-

tion except now (2.40) is a nonlinear equation since the homoclinic orbit w

depends on b which ultimately depends on U0 via (2.23). We therefore call

the radially symmetric results for the b 6= 0 case pseudo-analytic because

we require a Newton’s method solver for U0. The results for this case are

presented in Figure 6.10 with the same parameter regime as for Figure 6.6

but with the addition of saturation σ̂ = 10. Figure 6.11 shows the value of U0

computed numerically and using (2.40). Notice the effect of the saturation

drastically alters the curve inhibitor U0 value and that the values without

saturation in Figure 6.7 would lead to b > bc with σ̂ = 10.
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Figure 6.10: Circle evolution under the GMS model with σ̂ = 10, R = 1,
r0 = 1/2, D = 1, exponent set (2, 1, 2, 0) and time step 1 × 10−3. The
lines represent the numerical solution while the circles represent the analytic
solution computed using (2.42). The outer black line represents the boundary
curve r = R = 1.
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(a) t = 0, exact value U0 = 0.0977.
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Figure 6.11: U0 values computed numerically (solid line) and analytically
(dashed-line) using (2.40) for the GMS model with σ̂ = 10, R = 1, r0 = 1/2,
D = 1, and exponent set (2, 1, 2, 0). Since σ̂ 6= 0 a Newton’s method was
used to solve the analytic value.

To see the effect on the motion and U0 values as σ̂ is varied, we plot the

curves in Figure 6.12a and U0 values in Figure 6.12b at t = 0.1 for different

values of the saturation parameter. The effect is such that the velocity and

U0 decreases for increasing saturation.
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(a) Circle curves.
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Figure 6.12: Circle evolution under the GMS model with R = 1, r0 = 1/2,
D = 1, exponent set (2, 1, 2, 0) and time step 1 × 10−2. The lines represent
the numerical solution for different values of the saturation parameter σ̂
(0,10,30,50) at t = 0.1. The boundary curve R = 1 has been omitted to
more clearly show the separate curves.
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We now showcase the correct convergence behaviour as in section 6.2.2. Table

6.4 takes ∆t = ∆σ2 for a variety of N values with the GMS model for a

circle of radius r0 = 0.5 with parameters R = 1, r0 = 1/2, D = 1, exponent

set (2, 1, 2, 0) and saturation σ̂ = 10. We see once again that the predicted

O(∆σ2 log ∆σ) error appears. While omitted, the errors for U0, and φ also

converge to the appropriate order.

N xerr xrat Verr Vrat Lerr Lrat CPU Time
8 3.66E-03 — 2.40E-01 — 4.53E-02 — 0.8
16 1.04E-03 3.51 6.45E-02 3.73 1.05E-02 4.31 3.1
32 2.58E-04 4.04 1.63E-02 3.97 2.64E-03 3.98 14.1
64 6.30E-05 4.10 4.06E-03 4.00 6.71E-04 3.94 125.5
128 1.45E-05 4.34 1.01E-03 4.01 1.75E-04 3.82 1572

Table 6.4: The global truncation error for solving the GMS problem on a
circle of radius r0 = 0.5 with R = 1, r0 = 1/2, D = 1, exponent set (2, 1, 2, 0)
and saturation σ̂ = 10 solving to T = 0.0469. We define xerr as the error
in the x-component of the curve position. The error in the y-component is
the same and omitted. Verr and Lerr are the errors in the normal velocity
and curve length respectively. The rat suffix for each indicates the ratio of
successive errors to the previous one. The convergence is O(∆σ2 log ∆σ) as
expected. The CPU timings reflect the computation of both curves and does
not included anything that can be precomputed such as the singular scalar
logarithmic integrals.

Non-radially Symmetric Solutions and Non-Uniqueness

It was mentioned in section 6.3.2 that the standard uniqueness theorems for

the modified Helmholtz equation with Dirichlet or Neumann conditions fail

for this problem because the boundary conditions are unknowns in the prob-

lem. Furthermore in section 2.3.1, we constructed non-radially symmetric

solutions (2.51) using Fourier techniques. We also noted that computing so-
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lutions to (2.51) for arbitrary initial data converged quite consistently to the

radially symmetric case. We will instead use these solutions as a verification

that non-radially symmetric solutions found from the numerical curve motion

problem indeed satisfy the analytic problem. For example, if we attempt to

compute U0 using the numerical curve formulation for an initial U0 configura-

tion U00(σ) = cos(3σ) then we converge to a non radially symmetric solution

(solid curve in Figure 6.13). If we use this computed U0 solution as an initial

guess for the non-radially symmetric Newton’s method on (2.51) then it is

also a solution to this problem (dashed curve in Figure 6.13). The agreement

shows that indeed the non-radially symmetric solution found is a true one

and not an artifact of the system such as by numerical discretization.
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Figure 6.13: Initial circle U0 formulation under the GMS model with R = 4,
r0 = 2, D = 1, and exponent set (2, 1, 2, 0). The blue solid curve is the
computed U0 solution from the numerical interface problem with an initial
guess of cos(3σ) while the red dashed curve is the convergent solution to
(2.51) by using the computed solution as an initial guess.

Having demonstrated the existence of multiple solutions to this geometry, we

are clearly able to violate the uniqueness which can not only lead to different

initial U0 and velocity configurations but also to solution bifurcations in the

dynamic problem. This is currently beyond the scope of this work but is

something of interest to pursue in further analysis.

Other Examples

We will now showcase examples beyond circular solutions concentric with the

origin of which analytic work is limited or has not been considered. Figure
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6.14 shows a angular dependent radius in a “flower-pedal” pattern. Very

quickly it can be seen that the dynamic tendency is to circularize and then

shrink. Since we start with an initial unperturbed radius that is quite small,

we predicted this circularization in section 2.3.2. However, this behaviour

generally is in stark contrast to what has been observed in weak diffusion

limits of a stripe [39] and in energy minimizing space filling curves [22].

Figure 6.15 also has an angular perturbation in the radius forming a lobe

structure, but the dynamic effect is to become an ellipse before shrinking.

As the curve shrinks, the ratio of major and minor axes of the ellipse tend

to 1 but it is not clear if the curve ever fully circularizes. It is interesting

to note that typically this perturbation leads to splitting into two distinct

structures [39] as opposed to the behaviour here.
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Figure 6.14: Perturbation of a circle with perturbed radius r = 1/2 +
0.1 cos(6θ) using the GMS model with R = 1, D = 1, exponent set (2, 1, 2, 0),
and σ̂ = 10. The boundary curve at R = 1 has been omitted.
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Figure 6.15: Perturbation of a circle with perturbed radius r = 1/2 +
0.3 cos(2θ) using the GMS model with R = 1, D = 1, exponent set (2, 1, 2, 0),
and σ̂ = 10. The boundary curve at R = 1 has been omitted.

Figure 6.16 shows the evolution under the GMS model starting from an

elliptical configuration. As with the perturbation in Figure 6.15 it is not

immediately clear if the curve completely circularizes as it shrinks to the

origin or if the ratio of the major and minor axes just tends to 1.
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Figure 6.16: Ellipse with major axis a = 1/2 and minor axis b = 1/4 using
the GMS model with R = 1, D = 1, exponent set (2, 1, 2, 0), and σ̂ = 10.
The boundary curve at R = 1 has been omitted.

Next, we consider non-concentric circles such as in Figure 6.17. Figure 6.17a

shows a non-concentric initial circle placed on the x-axis at [1, 0] with radius

r0 = 1/2 while Figure 6.17b shows the same initial circle but placed at the

origin. The dynamics of the two models look very similar.
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(a) Circle with centre (−1, 0) and ra-
dius r0 = 1/2.
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(b) Circle with centre (0, 0) and ra-
dius r0 = 1/2.

Figure 6.17: Circle evolution using the GMS model with R = 4, D = 1,
exponent set (2, 1, 2, 0), and σ̂ = 10.

However, in Figure 6.18a, we place a circle of radius r0 = 1/2 off the axes

entirely and centre it at [−1, 2] with saturation σ̂ = 10. The interesting phe-

nomena here is that, as the curve grows, the circle becomes elliptical and the

major axis rotates in the counter-clockwise direction. When the saturation

is set to zero (Figure 6.18b), the curve remains a circle and furthermore ac-

tually shrinks instead of grows. This demonstrates the effect the saturation

can have on the qualitative curve structure.
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(a) Circle with saturation σ̂ = 10.
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Figure 6.18: Non-concentric circle evolution with centre [−1, 2] and radius
r0 = 1/2 using the GMS model with R = 4, D = 1, and exponent set
(2, 1, 2, 0). The boundary curve at R = 4 has been omitted.

Finally, we consider the case of curve buckling. In Figure 5.16 of section

5.2.2 we saw a scenario where a perturbed circle elongated into a buckling

type pattern. Furthermore, we discussed in section 2.3.2 that if this type of

phenomenon were to occur it must be such that r0 is not small as otherwise

the curvature was a stabilizing mechanism. Therefore, we consider a case

with a perturbed circle r = 5+0.2 cos(6θ) in a larger circular domain R = 10

with exponent set (2, 1, 2, 0) and saturation σ̂ = 5. As can be seen in Figure

6.19, indeed a buckling pattern forms in this instance. However, it is worth

noting that it is unclear if this curve pattern is stable to breakup. In Figure

5.16, the parameter regime was approaching the weak interaction regime

where curve buckling and curve splitting is known to occur for stripes. As

such, it is an open problem to investigate stable curve buckling in the semi-

strong regime.
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Figure 6.19: Perturbation of a circle with perturbed radius r = 5+0.2 cos(6θ)
using the GMS model with R = 10, D = 1, exponent set (2, 1, 2, 0), and
σ̂ = 5. The boundary curve at R = 10 has been omitted.

Not only have we demonstrated agreement with analytically obtained results

in the GMS, we have shown that our numerical method can easily extend

to curves for which analytical work is limited or unavailable. Furthermore,

the generality of the method can easily be extended to other models with

different reaction terms f(u, v) and g(u, v). As was stated in Chapter 5, the

computations using this method have already been scaled to the O(ε−2) time-

scale and therefore avoids the long computation time required for full model

simulations. Since there is a limiting value of b for the GMS model, one

could expect that curve rupturing may occur. However, in our computations

it seems that U0 always compensates with the saturation parameter σ̂ in
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such a way to prevent this rupturing. We therefore conjecture that, in the

semi-strong regime, as long as U0(s) is defined at t = 0 it will continue to be

defined for all points along the curve and therefore curve rupturing cannot

happen.
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Chapter 7

Conclusions

We have presented a variety of techniques and results to better understand

general reaction diffusion equations of the form

vt = ε2∆v − v + g(u, v)

τut = D∆u− u+
1

ε
f(u, v)

localized on closed curves in R2. Particularly we have focused our attention

on the saturated Gierer-Meinhardt model,

g(u, v) =
v2

uq(1 + σv2)
, f(u, v) =

vo

us
.

Firstly, in Chapter 2, we derived a singular limit problem for the inhibitor

u given by (2.19) for arbitrary curves using a boundary fitted coordinate

system. This involved asymptotically translating information from the lo-

calized activator v as jump and normal velocity conditions. Taking this

formulation, we derived results in 2.3.1 for a ring where the saturation pa-

rameter σ was zero and concluded that a saddle-node bifurcation occurred in

terms of the outer domain radius R for which two equilibrium ring solutions

existed. These results were similar to those derived in [45] but when we in-

cluded saturation, there was not an equivalent analysis in the same work. As
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soon as σ > 0, at least one equilibrium solution existed for all R and instead

a hysteresis bifurcation occurred. This is demonstrated best in Figure 2.11

where we see that as R increases from zero there are regions where there

are one, two, and three equilibrium radii r0. This demonstrates hysteresis

because if one were to start on the lower branch of solutions where r0 has

the smallest equilibrium value and increase R then eventually the steady-

state solution transitions to the branch where r0 is the largest. If R is then

decreased, the equilibrium will transition back to the lower r0 branch but

at a different value of R than the first upper branch transition. Hysteresis

has a potentially significant impact on the biological aspect of pattern for-

mation. Recall that with scaling, R can change by physically altering the

circular domain radius or by altering the diffusion coefficient. Both of these

could have biological applications where patterns on an organism change as

a result of maturity (domain growth) of the organism or in the presence of

chemicals which could affect the diffusion coefficient. Specifically in [67], it

is noted that patterns on a freshwater snail, Theodoxus fluviatilis, change

because of concentrations of salt in the water they are exposed to. While

the specific pattern transitions for this snail are more complex than growing

or shrinking ring structures, a diffusion dependent steady-state bifurcation

could help generally explain environmental impact on pattern formation. In

[66], it was noted that the size and shape of patterns on a variety of fish

can change in a matter of seconds and spots can have drastically different

diameters. This qualitative change over a fast time scale can be described

with a hysteresis like feedback loop. The saturation parameter appears to

play an important role in biological self-regulation, something that previous
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models which excluded the effect could not sufficiently explain.

Next we showed that since the boundary data for the inhibitor is not pre-

scribed a priori, but rather is an unknown of the curve, standard uniqueness

results do not apply. As such, we showed the existence of ring solutions where

the inhibitor is not radially symmetric. These solutions were verified to exist

numerically in Chapter 6. While the ring solutions provided interesting re-

sults, they did not rely on the general boundary coordinate model derivation

as they could easily be constructed using polar coordinates. Therefore, we

next considered a problem of a near circle r = r0 +εh(θ) where ε� 1. While

this could also be studied using a polar coordinate formulation, it would re-

quire carefully tracking the asymptotic consistency of both ε and ε, where as

the singular boundary coordinate framework is valid on any curve. One of the

key requirements in the near-circle formulation was that when saturation was

considered, the effective saturation parameter b given by (2.23) is perturbed

by the changing geometry and was a function of the arclength of the curve.

After resolving the continuity, jump, and normal velocity conditions we solve

the problem up to O(ε2). It was necessary to consider the expansion up to

this order because as was evidenced in section 2.3.2, the first order correction

only accounted for introducing sinusoidal perturbations from the Fourier se-

ries of h(θ). However, polynomial representations h(θ)α for α > 1 occurred

at O(ε2) and introduced n = 0 Fourier modes which overall caused a shift in

each of the boundary inhibitor value, U0, modified saturation parameter, b,

and normal velocity V respectively. This was evidenced in Figures 2.12 and

2.13. By analyzing the normal velocity correction we saw that when r0 was
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small enough, the velocity was dominated entirely by the curvature which

circularized the curve. However, for r0 large (or equivalently, D small), this

could not be guaranteed to be satisfied and indeed we saw growing curves in

Chapter 5.

Following the formulation of various solutions, we returned to the radially

symmetric ring solution in Chapter 3 and performed a linear stability anal-

ysis. When formulating the stability problem, we could not use standard

exp(λt) eigenfunctions since the steady-state was slowly evolving with time-

scale T = ε−2t. Because of this, we needed to use a WKB formulation (3.4)

which resulted in the eigenfunction being the evolution of the eigenvalue over

time given by (3.9). The form of the operator used with the activator eigen-

functions admitted even and odd solutions which we analyzed separately. For

the even solutions, in Lemma 3.1.0.1, we saw that only solutions which were

of a single sign could lead to instabilities and in section 3.2, using the global

inhibitor problem we derived a non-local eigenvalue problem for the activa-

tor eigenfunctions (3.16). Splitting this eigenvalue problem using functions

Cm(λ) and f(µ) defined by (3.19), we were able to transform this into a root

finding problem (3.20). We then studied the roots of this problem on the

real axis and in the complex plane after setting saturation b = 0. This lead

to Principal Result 3.2.9.1 which has two very key conclusions. Firstly, there

exist neutral stability Fourier modes m = mb− and m = mb+ such that a real

unstable eigenvalue always exists on mb− < m < mb+ . This is an important

result because it states that ring solutions will always go unstable to breakup

instabilities for some range of modes when b = 0. A second interesting result
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was that on 0 < m < mb− there were no unstable eigenvalues for τ small

enough which, as τ increased, transitioned via a Hopf bifurcation to become

unstable.

In order to verify the conclusions from Principal Result 3.2.9.1, we derived

an algorithm for computing eigenvalues in 3.2.10. In Figures 3.5 and 3.6, we

confirmed the range of unstable eigenvalues existed. In Table 3.1 we per-

formed a series of comparisons to the asymptotic and numerically computed

neutral stability points which showed excellent agreement with one another.

Next we added saturation and showed via Figure 3.9 that the largest eigen-

value tended to zero as b tended to its critical value. This had the effect of

stabilizing the ring solution as was seen in Figures 3.10 and 3.11. Full numer-

ical simulations in Chapter 5 confirmed the stabilizing effect of saturation to

breakup instabilities.

In section 3.3, we showed the odd eigenfunctions produced eigenvalues of

O(ε2), called small eigenvalues, which means they would only become rele-

vant on the long time-scale T = O(ε−2). Unlike previous work, such as [39],

we were not able to classify these eigenvalues using the outer region away

from the curve since the derivative did not commute through the operator,

having extra terms due to r−1. Therefore, we approached the small eigenval-

ues via the inner region only. We concluded that the small eigenvalues given

by (3.99) turned out to precisely be the normal velocity condition for a near

circle from section 2.3.2. We showed via (3.101) how this conclusion could

be predicted a priori. This is significant because it means that assuming ring
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solutions are stable to breakup then the full dynamics are captured by the

near circular problems discussed in section 2.3.2.

In Chapter 4 we considered a general framework for which the non-local

eigenvalue analysis of section 3.2 could be made explicit. Indeed we showed

that under a special class of eigenfunctions g(w) to the linearized operator

of the homoclinic orbit defined in Lemma 3.1.0.1, we could formulate the

NLEP explicitly via (4.7). Assuming a form for g(w), we derived a condition

(4.11) relating g(w) to f(w) in the problem wyy−w+ f(w) = 0. If this f(w)

was such that a homoclinic orbit existed then we could obtain the explicit

formulation (4.7). This allowed us to gain analytic insight into the stability

of stripe solutions (section 4.2) and circle solutions (section 4.3). The sig-

nificance of the explicit formulation for these geometries was that we were

able to derive Principal Result 4.2.2.1 which allowed us to extend stability

results for parameter regimes not previously explored. Furthermore, in an

infinite stripe domain, we were able to analytically obtain the unique value of

τ = τHm for which a Hopf bifurcation occurred and presented this in Principal

Result 4.2.2.2. Such an analytic treatment of the Hopf bifurcation had never

previously been considered. We validated the Hopf bifurcation analysis in

Figures 4.2 and 4.3 where we showed that for a fixed value of τ , and two

exponent values q that complex eigenvalues with positive real part did or

did not exist based on the comparison with the analytically determined Hopf

bifurcation value τHm . The results generalized for finite and infinite domains

but for finite domains we could not classify the unique Hopf bifurcation value.
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Full numerical simulations in Chapter 5 verified breakup instability patterns

for both the stripe and ring in the explicit and implicit formulations. This

was done by randomly adding data to steady-state solutions and looking at

the discrete Fourier transform during the curve evolution. In all instances

the predicted instability modes or bands persisted until secondary insta-

bilities of spot dynamics occurred. We define secondary instabilities to be

anything which that occurs after the breakup pattern has emerged. Some

types of observed secondary instabilities were spot collocation motion where

spots continued to move as a ring and spot annihilation where spots were

destroyed until a single spot remained. We tested stability to zig-zag modes

by giving a perturbed circle as initial data and allowing it to evolve. We

demonstrated parameter regimes for which the curve was both stable and

unstable to zig-zag modes.

Finally in Chapter 6 we derived a general numerical framework for solv-

ing quasi-steady solutions in R2. We used a layer potential formulation for

solving any problem of the form (2.19) subject to general conditions,

[
du

dn

]
Γ

= F (U0, V ),〈
du

dn

〉
Γ

= G(U0, V )

where U0 was the inhibitor value on the curve and V , the normal velocity. We

showed the universality of this formulation by verifying our numerical method

with the Mullins-Sekerka problem in 6.2.2. One of the intricate details about

a layer potential formulation is that it involves the evaluation of singular
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integrals with logarithmic strength. We extract the logarithmic integrals

and evaluate them analytically using a Lagrange polynomial interpolation

for any density functions. Since we are dealing with closed curves, in order to

avoid the effects of near-singularities arising from periodicity we also remove

logarithmic singularities that are within one period from the true singularity.

In 6.2.1 we show that this introduces an error that has the same order as

the overall numerical quadrature error. We treat the curve evolution entirely

implicitly which allows us to take relatively large time steps. This is in

contrast to work such as [84] where an implicit-explicit splitting technique is

used. In 6.3 we use the numerical method for solving the saturated Gierer-

Meinhardt model and verify many of the analytically determined conclusions

such as the r0 equilibrium radii and the circularization of near circular curves

with r0 � 1. However, we then extend results beyond what is currently

understood analytically in 6.3.2. We use an elliptical geometry and show

that it also tends to a circular curve. We also consider the evolution of

non-concentric circles and interesting behaviour such as that which occurs in

Figure 6.18 happens whereby a curve that is an initial circle evolves into a

rotating ellipse.

7.1 Future Work and Open Problems

The completion of this work has stimulated some new key results in the

pattern formation community, specifically attributed to the introduction of

the saturation parameter in the Gierer-Meinhardt model. As such, there are

several open problems that have arisen which warrant some future investi-
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gation. Firstly, the general curve tracking framework developed in Chapter

6 will hopefully stimulate analytic investigation into other geometries that

have not been previously considered. Of specific interest is the non-concentric

circle problem which dynamically transitioned to an ellipse. Since this dy-

namic event can occur with a single non-concentric circle, then perhaps this

could be recast, using a conformal mapping argument, to a concentric geom-

etry which is more available to analysis. In terms of the numerical tracking

method itself, the dynamic transition of non-concentric circles may demon-

strate the existence of solution bifurcations and we are interested in using

techniques such as pseudo-arclength continuation to search for these bifurca-

tion diagrams as a function of the saturation parameter. Another interesting

case study would be the further investigation of buckling states such as those

evidence in Figure 6.19 and whether the saturation can be chosen such that

both a buckling pattern forms and that it is stable to breakup.

One of the limitations of the curve tracking method implementation is that

if disjoint curves approach each other, there are convergence issues due to

near singular integration of neighbouring logarithmic functions. As such, we

are interested in adapting the method to handle near singular integration. A

method outlined in [68] presents some promising ideas for how we could im-

plement this feature. We are also interested in finding a level set formulation

for this problem to compare and contrast the advantages of each method. In

section 2.3.1 we commented that non-radially symmetric inhibitor solutions

exist on a ring but that they are difficult to compute using a standard New-

ton algorithm because of the persistence of the constant solution. We are
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therefore interested in using a regularized optimization approach where we

penalize the constant solution to find non-radially symmetric solutions.

For the explicit eigenvalue formulation in Chapter 4, we discussed that Prin-

cipal Result 4.2.2.2 proves the existence of a unique Hopf bifurcation value

τ = τHm for stripe solutions in an infinite domain. However, no such result

exists for stripe solutions in a finite domain and as such, this remains an open

problem. For the implicit formulation in Chapters 2 and 3, we showed that

including saturation not only changes the bifurcation curve from saddle-node

to one producing hysteresis but also that saturation can stabilize breakup in-

stability modes. It is likely that the bifurcation diagram transformation and

stability analysis are related and it is an open problem to determine the effect

of introducing a second set of stable solutions in Figure 2.11 to the overall

linear stability to breakup modes. In terms of saturation, we have considered

the exponent set p = 2, but there would be an equivalent saturated solution

for other values of p and it is an open problem to investigate these under the

homoclinic existence criteria of Lemma 2.2.0.1.

On the topic of stability, throughout this thesis we have only considered

pattern formation problems in the semi-strong regime where Dv = ε2 � 1

and Du = D = O(1). In contrast to this, there is also a weak interaction

regime where Du = O(ε2) as well. In this regime we expect that stability

results for the Gierer-Meinhardt model without saturation as computed for

stripes in [39] generalize to arbitrary curves since the underlying differential

equations are identical. One of the insights of [39] is that there exists a fold
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point of a saddle-node bifurcation Du = Dc such that solutions do not exist

for Du < Dc. It has been shown (cf. [45], [42], [56]) that this saddle-node

bifurcation fold point transitions to solutions which admit spot or stripe

splitting. In the presence of saturation, one can show using full numerical

simulations such as those in Chapter 5 that the saturation parameter itself

can cause curve splitting even when Du > Dc, i.e. well within the existence

range. It is currently an open problem to classify the conditions for such

curve splitting.
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Appendix A

Derivation of Boundary

Properties for Single Layered

Potentials

The properties of layered potentials for Laplace’s equation have appeared

in a variety of manners and texts (cf. [18], [34], [36]). In this appendix,

we will derive the Dirichlet and Neumann jump conditions for the single

layer potential of Laplace’s problem with the fundamental solution (6.3) in

a more systematic way. The connection to the fundamental solution of the

Helmholtz problem (6.1) is described in section 6.1. Consider solving the

following Dirichlet Laplace problem

∆u = 0, x ∈ R2 \ Γ

u = f(x), x ∈ Γ

with Γ a closed curve in R2. The single layer potential for some continuous

density φ is then

u(x) =

∫
Γ

Φ(x, q)φ(q) dq,
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for all x. To evaluate the Dirichlet condition, we need to understand what

happens as x approaches x0 along its normal direction. Consider some point

x0 on Γ and define the portion of the curve Γε,

Γε : {q ∈ Γ||x0 − q| < ε}, ε� 1.

Let, x = x0 + αn̂i, where the subscript indicates that α > 0 traverses the

inward pointing normal. As we near Γ,

lim
α→0+

u(x0 + αn̂i)

= lim
α→0

(∫
Γ\Γε

Φ(x0 + αn̂i, q)φ(q) dq +

∫
Γε

Φ(x0 + αn̂i, q)φ(q) dq

)
= f(x+

0 ),

where we have used the Dirichlet condition. Now, since the fundamental

solution is not singular on Γ \ Γε then we have that

f(x+
0 ) =

∫
Γ\Γε

Φ(x0, q)φ(q) dq +

∫
Γε

lim
α→0+

Φ(x0 + αn̂i, q)φ(q) dq, (A.1)

where we have carried the limit inside the integral since we are not directly

evaluating at the singularity. On Γε, we have that q = x0 + βt̂ with −ε <
β < ε and so on this portion of the curve,

Φ(x0 + αn̂i, q) = − 1

2π
log
∣∣∣√α2 + β2

∣∣∣ ∼
α�1
− 1

2π
log |β|+O(α2),

and

φ(q) ≈ φ(x0),
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since it is continuous. The second integral in (A.1) then becomes,

∫
Γε

lim
α→0+

Φ(x0 + αn̂i, q)φ(q) dq = −φ(x0)

2π

∫ ε

−ε
lim
α→0+

(
log |β|+O(α2)

)
dβ

= −φ(x0)

π
(ε log ε− ε)

=
ε→0

0,

and therefore the singularity contributes nothing to the integral and as ε→ 0,

f(x+
0 ) =

∫
Γ

Φ(x+
0 , q)φ(q) dq.

Similarly, if we approach from below the curve, we have

f(x−0 ) =

∫
Γ

Φ(x−0 , q)φ(q) dq

and so we have that [u] = 0 and the Dirichlet condition is

f(x) =

∫
Γ

Φ(x, q)φ(q) dq, x ∈ Γ. (A.2)

Now consider what happens to the normal derivative of u as we approach

the curve from above,

lim
α→0+

∂u

∂nx
(x0 + αn̂i) =

∫
Γ\Γε

∂Φ

∂nx
(x0, q)φ(q) dq

+

∫
Γε

lim
α→0+

∂Φ

∂nx
(x0 + αn̂i, q)φ(q) dq, (A.3)
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where once again we have interchanged derivatives, limits, and integrals by

avoiding evaluating the singularity directly. Now,

∂Φ

∂nx
(x, q) = − 1

2π

x− q
|x− q|2 · n̂x, (A.4)

where n̂x is the positively oriented normal at x0. Note that n̂x = ±n̂i de-

pending on the orientation and we will proceed with n̂x = n̂i noting that

there is a minus sign difference if n̂x is the external norm. Substituting x

and q on Γε into (A.4),

∂Φ

∂nx
(x0 + αn̂i, x0 + βt̂) = − 1

2π

α

α2 + β2
.

Now if β 6= 0 then for α� 1,

α

α2 + β2
∼ α

β2
→ 0.

However, if β = 0 then

α

α2 + β2
=

1

α
→
α�1

sgn(α)∞.

Therefore,

− 1

2π

α

α2 + β2
= Aδ(β).

To find A we integrate around β = 0,

∫ 0+

0−

α

α2 + β2
dβ = −2πA.
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To track the singularity at β = 0, take β = αb and let α → 0. Since α > 0,

the integral becomes

∫ ∞
−∞

1

1 + b2
db = π = −2πA. (A.5)

Therefore we have that

∂Φ

∂nx
(x0 + αn̂i, x0 + βt̂) = −1

2
δ(β).

Substituting this into (A.3) we get

lim
α→0+

∂u

∂nx
(x0 + αn̂i) =

∫
Γ\Γε

∂Φ

∂nx
(x0, q)φ(q) dq − φ(x0)

∫ ε

−ε

1

2
δ(β) dβ

=
ε→0

∫
Γ

∂Φ

∂nx
(x0, q)φ(q) dq − φ(x0)

2
.

Now if we instead approach the curve from below then the only difference is

that the scaling in (A.5) satisfies α < 0 and so the integral becomes

∫ −∞
∞

1

1 + b2
db = −π = −2πA,

and instead we get

lim
α→0−

∂u

∂nx
(x0 + αn̂i) =

∫
Γ

∂Φ

∂nx
(x0, q)φ(q) dq +

φ(x0)

2
.
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Therefore we have the jump condition

lim
α→0+

∂u

∂nx
(x+ αn̂i) =

∫
Γ

∂Φ

∂nx
(x, q)φ(q) dq − φ(x)

2
x ∈ Γ, (A.6a)

lim
α→0−

∂u

∂nx
(x+ αn̂i) =

∫
Γ

∂Φ

∂nx
(x, q)φ(q) dq +

φ(x)

2
x ∈ Γ. (A.6b)

Notice that indeed as was stated in section 6.1,

[
∂u

∂n

]
Γ

= lim
α→0+

∂u

∂nx
(x0 + αn̂x)− lim

α→0−

∂u

∂nx
(x0 + αn̂x),

=


lim
α→0+

∂u
∂nx

(x0 + αn̂i)− lim
α→0−

∂u
∂nx

(x0 + αn̂i) = −φ(x), n̂x = n̂i

lim
α→0+

∂u
∂nx

(x0 − αn̂i)− lim
α→0−

∂u
∂nx

(x0 − αn̂i) = φ(x), n̂x = −n̂i

,

= −(n̂x · n̂i)φ(x).

We will now finish off by looking at the tangential derivative for completeness,

lim
α→0+

∂u

∂tx
(x0 + αn̂i) =

∫
Γ\Γε

∂Φ

∂tx
(x0, q)φ(q) dq

+

∫
Γε

lim
α→0+

∂Φ

∂tx
(x0 + αn̂i, q)φ(q) dq. (A.7)

Looking at the derivative on Γε,

∂Φ

∂tx
(x0 + αn̂i, x0 + βt̂) = − 1

2π

β

α2 + β2
∼
α�1
− 1

2πβ
.

Using the Cauchy Principal Value for the integration,

∫ ε

−ε

1

β
dβ = 0
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and there is no contribution on Γε. Therefore,

lim
α→0+

∂u

∂tx
(x+ αn̂i) =

∫
Γ

∂Φ

∂nx
(x, q)φ(q) dq x ∈ Γ, (A.8a)

lim
α→0−

∂u

∂nx
(x+ αn̂i) =

∫
Γ

∂Φ

∂nx
(x, q)φ(q) dq x ∈ Γ, (A.8b)

and we get [
∂u

∂tx

]
Γ

= 0,

showing that the tangential derivative is continuous.
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