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AbstractThis thesis examines a hybrid asymptotic-numerical method for treating two-dimensional sin-gular perturbation problems whose asymptotic solution involves reciprocal logarithms of thesmall perturbation parameter, ", in the formS(") � 1Xj=1 aj �� 1log "�j�1 ; "! 0:The purpose of this hybrid asymptotic-numerical method is to treat the slow convergence prob-lems of asymptotic expansions of this form. For the applications that we consider in this thesis,we believe there is su�cient evidence of convergence of these expansions for small enough ".The hybrid method uses the method of matched asymptotic expansions to exploit the asymp-totic structure to reduce the problem to one that is asymptotically related to the original. Ingeneral, one must solve this related problem numerically.The hybrid related problem contains the entire in�nite logarithmic expansion in its solution,thus removing the necessity of obtaining each coe�cient in successive terms individually, as onewould have to do using only the method of matched asymptotic expansions. The hybrid solutionessentially sums the in�nite expansion of reciprocal logarithms and in so doing, improves theaccuracy of the solution since the error of the approximation is smaller than any power of(�1= log "). An important feature of the hybrid related problem is that it is non-sti�. Thus, itdoes not su�er from the di�culty in solving the original problem numerically of resolving therapidly varying scale structure. Another advantage of the hybrid method solution is that theparameter dependence of the problem is reduced from that of the original. The reduction inparameter dependence means that the hybrid method solution is less computationally intensivethan a full numerical solution.We show that singular perturbation problems containing in�nite logarithmic expansions arise ina wide variety of contexts. Four chapters of this thesis are dedicated to the detailed applicationof the hybrid method to such singular perturbation problems occurring in uid ow in a straightpipe with a core, skeletal tissue oxygenation from capillary systems, heat transfer convectedfrom small cylindrical objects, and low Reynolds number uid ow past a cylinder that isasymmetric to the uniform free-stream. Following the detailed analysis of these four problems,we remark on possible extensions to the general framework of applicable problems. For example,we discuss applications in black body radiation, multi-body low Reynolds number uid ow,vibration of thin plates with small holes or concentrated masses, localized non-linear reactionson catalytic surfaces, low frequency scattering of light, di�usion of a chemical species out of analmost impervious container, and steady-state current ow from microelectrodes.
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Chapter 1Introduction and Background
This thesis explores applications of a method combining techniques of asymptotic analysis andnumerical analysis, which we call the hybrid asymptotic-numerical method, or simply,the hybrid method, to improve the accuracy of approximate solutions to certain singularperturbation problems in two dimensions.We construct mathematical problems that model certain physical processes, such as uid owor heat conduction, in an attempt to further our understanding of the world around us. Oftenthese mathematical problems are extremely di�cult (or even impossible) to solve exactly andin these circumstances, approximate solutions are necessary.In certain mathematical problems, the governing equations contain dimensionless parameters,such as the Reynolds number or the Peclet number, that can be either large or small. In theselimits of extreme values of the dimensionless parameters, one can obtain an approximate solutionthrough the use of perturbation methods. The basic idea of these methods is to begin withthe solution to a simpler problem (as a �rst approximation) and then to obtain systematicallybetter and better approximations. In this way, one �nds an asymptotic solution to the problemas an expansion of these successive approximations.A speci�c type of mathematical problem that one can solve using these approximation tech-niques is a singular perturbation problem. This is a problem for which no single expansion isvalid in the entire solution domain: it is necessary to construct more than one perturbationexpansion, each valid in a certain subregion of the whole solution region.The singular perturbation problems that we consider in this thesis are two-dimensional prob-lems with strongly localized perturbations whose solutions involve in�nite expansions in powersof (�1= log "), where " is the small perturbation parameter. (The negative sign is presentmerely for future notational convenience.) The removal of a small subdomain from a givensolution domain is an example of a strongly localized perturbation. These are unusual singularperturbation problems in the sense that the small parameter does not multiply the highestderivative in the governing equation. Thus, the non-uniformity is not due to a reduction inorder of the di�erential operator as in the more familiar singular perturbation problems. Thenon-uniformity of the singular perturbation problems considered in this thesis is due to a nearsingularity resulting from the removal of a small subdomain or from a region degenerating to apoint in one of the solution domains. In their text on multiple scale and singular perturbationmethods, Kevorkian & Cole [26] refer to this type of problem as a \singular boundary problem".An analytic technique available to treat singular perturbation problems is the method of1



Chapter 1. Introduction and Backgroundmatched asymptotic expansions: the asymptotic expansions in the various solution domainsare required to match in some overlap domain of validity, thereby creating an approximatesolution that is uniformly valid over the entire solution region. In his text on perturbationmethods in uid mechanics, Van Dyke [56] provides a brief historical account of the methodof matched asymptotic expansions. He describes the evolution of the technique from its be-ginning as a generalization of the boundary layer theory of Prandtl in 1905 [43], through toits widespread use in the 1950's in studying viscous ows. In particular, Kaplun [24] used themethod of matched asymptotic expansions in resolving the Stokes paradox in low Reynoldsnumber uid ow in two dimensions. We will revisit this classic problem in a subsequent chap-ter. The method of matched asymptotic expansions is limited in practicality due to the oftenincreasing level of di�culty of obtaining the unknown coe�cients at each subsequent order inan in�nite recursive set of problems.Another approach to �nding an approximate solution has been by solving these mathematicalproblems numerically. Speci�cally, numerical analysis of singular perturbation problems beganreceiving signi�cant attention in the 1970's, with the �rst conference on the subject in 1978 [16].More recently, Roos et al. [47] produced a text of numerical methods for singularly perturbeddi�erential equations in convection-di�usion and ow applications. However, neither that textnor the papers in the conference proceedings consider any \singular boundary problems", whichis indicative of the lack of a systematic numerical study of problems of this type. Althoughthere has been signi�cant development in computer codes for solving a wide variety of singularlyperturbed partial di�erential equations, using �nite di�erence methods or �nite element meth-ods, for example, one should never use any computational package without �rst being awareof the potential di�culties of the equations to solve. In particular, the full numerical approachhas limitations since it is di�cult, without extensive computation, to isolate the parameterdependence and to resolve the rapidly varying scale structure that is inherent in the problemsthat we consider in this thesis.One of many methods that combines techniques from both of the major approaches to �nd-ing approximate solutions is the hybrid asymptotic-numerical method of Ward, Henshaw &Keller [57], which they used to treat certain classes of eigenvalue problems in a bounded,two-dimensional domain with small perforations and with certain boundary conditions on theresulting holes. These types of problems are examples of strongly localized perturbation prob-lems. Using the method of matched asymptotic expansions, they demonstrated that in somecases the eigenvalue expansion for the singularly perturbed problems begins with an in�nitelogarithmic series in powers of (�1= log("d)). Here, " represents the size of the domain perfo-ration, and the constant d depends on the shape of the hole and on the boundary conditionof the hole. Their hybrid method used asymptotic analysis to formulate a related problem,whose solution contained the entire in�nite logarithmic series. The related problem was non-sti� and straightforward to solve numerically. By summing all the logarithmic terms in theseries, the approximation gave accurate results since the error was smaller than any power of(�1= log("d)).In 1995, Kropinski, Ward & Keller [29] appropriately modi�ed the hybrid method to treatsteady, two-dimensional, incompressible uid ow at low Reynolds number past a symmet-ric, cylindrical body. The asymptotic expansions for the drag coe�cient and for the velocity�eld in the limit of low Reynolds number also commence with in�nite logarithmic series. They2



Chapter 1. Introduction and Backgroundimplemented a straightforward �nite di�erence scheme to solve the asymptotically related prob-lem, which was independent of the cross-sectional shape of the cylindrical body. This exploitedKaplun's equivalence principle [24], which established an asymptotic equivalence between cylin-ders of di�erent cross-sectional shape, based on an \e�ective" radius of the cylinder.The crux of applying the hybrid method to strongly localized perturbation problems is to usethe method of matched asymptotic expansions to formulate an asymptotically related problem,in which a singularity structure replaces the localized perturbation. The resulting relatedproblem turns out to be quite easy to solve numerically. In solving this related problem, it isthen possible to determine the asymptotic solution of the original problem that is correct to alllogarithmic terms.The hybrid method has been successful in improving the approximate solution in the area ofstrongly localized perturbation problems that contain an in�nite expansion S(") of logarithmicterms for the quantity of interest of the formS(") � 1Xj=1 aj �� 1log "�j�1 ; "! 0: (1.1)The traditional di�culty of asymptotic solutions containing in�nite logarithmic expansions isthat these solutions converge very slowly, which means that one must retain a great numberof terms of the expansion in order to obtain su�cient accuracy at moderately small values ofthe perturbation parameter. The hybrid method applies techniques of asymptotic analysis andsimple numerical analysis to circumvent the slow convergence di�culty and thus, to improvethe accuracy of the approximate solution.In general, asymptotic expansions need not converge. By de�nition, the error made in truncat-ing the asymptotic solution is of the order of the �rst neglected term. Even when the expansionsdo converge, if they are of the form S("), the slow convergence throws the usefulness of theasymptotic solution into question. The in�nite series appearing in the solutions to the problemsthat we consider in this thesis are not only asymptotic but we believe also converge for small ".We will demonstrate the convergence problem of the reciprocal logarithmic asymptotic seriesby contrasting it to the more familiar type in powers of ". We de�ne P (") to be the powerseries in " of the form P (") � 1Xj=1 aj"j�1; "! 0:We will take aj = 21�j in both S(") and P ("). For " less than approximately 0.6, S(") withaj = 21�j is a convergent in�nite geometric series, which has the exact sum ofS(") = 2 log "2 log "+ 1 :Similarly, the exact sum of P ("), for the same aj , isP (") = 22� ":3



Chapter 1. Introduction and BackgroundIn the top graph of Figure 1.1, we plot the �ve-term partial sum, S5("), and the exact sum S(")versus " for the reciprocal logarithmic series. In the lower graph, we show the correspondingplots for the power series in ". One can see that the truncated reciprocal logarithmic seriesonly compares well to the exact sum for small values of ", whereas the truncated power seriesis virtually indistinguishable from the corresponding exact sum curve.
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Chapter 1. Introduction and Backgroundlogarithmic expansions that comprise the bulk of this thesis fall into four categories: low Pecletnumber convective heat transfer, low Reynolds number uid ow, oxygen di�usion in muscletissue from capillaries, and fully developed laminar uid ow in a straight pipe.This thesis continues the development of the hybrid method by applying it to singular per-turbation problems that arise in a wide range of disciplines. In Chapter 2, we elaborate onthe class of applicable singular perturbations problems and describe the steps of the hybridmethod using an illustrative example. In Chapters 3 and 4, we apply the hybrid method tocertain problems on bounded domains. In Chapters 5 and 6, we apply the hybrid method tocertain problems on unbounded domains. In Chapter 7, we outline extensions of the hybridmethod applications to problems in scattering theory, plate vibration and others, and �nishwith conclusions in Chapter 8.Chapter 2 provides information on the hybrid asymptotic-numerical method. In particular,we state conditions that a singular perturbation problem must satisfy in order to produce theasymptotic structure of the solution that the hybrid method requires. We o�er a commonframework for the governing equations and boundary conditions for a second-order, steady,singular perturbation problem to which one may apply the hybrid method. We outline thesteps of the hybrid method on a linear version of this framework on a bounded domain, withsmall detours to explain how to modify the method for non-linear problems. We explore thee�ect on the asymptotic solution structure of relaxing the necessary conditions on the singularperturbation problem. The hybrid method treats strongly localized singular perturbation prob-lems whose asymptotic solution contains an in�nite series in terms of reciprocal logarithms ofthe form in (1.1). The subdomains that are removed from the solution domain are of arbitrarycross-sectional shape, with a unique shape-dependent parameter d for a particular shape. Inthe chapter describing the hybrid method, we introduce this parameter d more formally, andshow how to determine its value. We distinguish the asymptotic and the numerical portionsof the method, and describe its advantages over using only the method of matched asymptoticexpansions or only a direct numerical computation.Chapter 3 entails the application of the hybrid method to fully developed laminar ow in astraight pipe containing a thin core. The small parameter " in this problem is a measure ofthe size of the core cross-section. We derive the pipe ow equations from the Navier-Stokesequations and apply the hybrid method to obtain an approximate solution for the axial velocityof the uid in a pipe with a core that are both of constant but arbitrary cross-sectional shape.Since this application has a direct link to the linear, second-order singular perturbation problemon a bounded domain that we use in Chapter 2 to outline the hybrid method, we only repeatcertain key details of the application. For the special pipe-core geometries of a concentricannulus and an eccentric annulus, we compare the hybrid solution results to those of an exactor fully numerical solution in terms of the mean ow velocity or the friction coe�cient.Chapter 4 describes in detail the application of oxygen transport from multiple capillariesto skeletal muscle tissue. A mathematical model of the transport of oxygen from capillariesto skeletal muscle tissue is a di�usion problem in a two-dimensional, bounded domain withNeumann and mixed boundary conditions. We consider N capillaries of small but arbitrarycross-sectional shape and demonstrate that, for N > 1, this is a singular perturbation prob-lem that involves an in�nite expansion of logarithmic terms of the small parameter ", whichcharacterizes the size of the capillary cross-sections. We apply the hybrid method to solve ap-5



Chapter 1. Introduction and Backgroundproximately for the steady-state oxygen partial pressure in the tissue. In general, our oxygentransport model incorporates the e�ects of tissue heterogeneities such as mitochondria, variablepermeability of the capillary walls and the facilitation of oxygen transport by the presence ofmyoglobin. We demonstrate the asymptotic results with some speci�c examples to illustratethese and other e�ects, and in certain cases, compare with the exact or numerical solution.Chapter 5 shows the hybrid method applied to a convective heat transfer problem past multiple,arbitrarily shaped bodies. Convective heat transfer from an array of small, cylindrical bodies ofarbitrary shape in an unbounded, two-dimensional domain is a singular perturbation probleminvolving an in�nite logarithmic expansion in the small parameter ", representing the order ofmagnitude of the size of the bodies. Using the hybrid method, we formulate a related problem tosolve for an approximate solution for the dimensionless, steady-state temperature. We assumethat the velocity �eld of the uid surrounding the bodies is arbitrary but known. From ourasymptotic solution for an arbitrary velocity �eld, we present the results for two special cases:a uniform ow �eld and a simple shear ow �eld. We demonstrate the asymptotic results ofthe hybrid method through a number of examples and, in a particular case, we compare to anexact analytical solution.Chapter 6 describes the hybrid method applied to the non-linear problem of low Reynoldsnumber uid ow past a body asymmetric to the uniform free-stream. Low Reynolds numberuid ow past a small, cylindrical body of arbitrary shape in an unbounded, two-dimensionaldomain is a singular perturbation problem involving an in�nite logarithmic expansion in thesmall parameter ", representing the Reynolds number. Using the hybrid method, we constructa related problem that we solve to obtain an asymptotic solution for the dimensionless, steady-state velocity �eld and for the coe�cients of lift and drag. This application extends the workof Kropinski et al. [29] of low Reynolds number uid ow past a symmetric, but otherwise ar-bitrarily shaped, cylinder. We modify their �nite di�erence code to incorporate the asymmetryin the ow �eld, which we use to compute an asymptotic solution for the coe�cient of lift thatis correct to all logarithmic terms.Chapter 7 suggests possible extensions of the hybrid method to other applications that includeunsteady problems, non-linear problems and fourth-order eigenvalue problems. One applicationis a non-linear problem that extends the convective heat transfer analysis of Chapter 5 and isalso a rough model for steady viscous incompressible uid ow. We describe an extensionof the low Reynolds number problem of Chapter 6 to uid ow past an array of cylindricalbodies that are symmetric to the free-stream. We provide some details of the analysis on abiharmonic eigenvalue problem that is a linear, fourth-order problem on a bounded domainwhich models the vibration of thin plates with small holes. To close the chapter on possibleextended applications, we touch on problems that model such physical processes as non-linearreactions on catalytic surfaces and low frequency scattering of light.In the �nal chapter, Chapter 8, we reect on the hybrid asymptotic-numerical method as apowerful tool in treating singular perturbation problems involving in�nite reciprocal logarithmicexpansions. We comment on the advantages of applying the hybrid method to these problemsover using only the method of matched asymptotic expansions or only a full numerical approach.Finally, we summarize the wide variety of contexts in which singular perturbation problems ofthis type occur. 6



Chapter 2The Hybrid Asymptotic-Numerical Method
In this chapter, we answer certain questions about the hybrid asymptotic-numerical method.What conditions on singular perturbation problems are essential for the hybrid method tobe of use? What happens to the asymptotic structure of the solution if we relax any of theseconditions? What are the basic steps of the hybrid method? To aid in answering these questions,we provide a framework for the governing equation and boundary conditions of applicablesingular perturbation problems. This framework includes steady, second-order, two-dimensionalproblems that are linear or non-linear, and that are on bounded or unbounded domains. Wetouch on some generalizations to the framework in this chapter but we leave the detaileddiscussion for later in Chapter 7. We state the necessary conditions on a strongly localizedsingular perturbation problem to produce certain features in the asymptotic structure of thesolution. By enumerating the basic steps of the hybrid method on a second-order linear problem,we illustrate how the hybrid method exploits this asymptotic solution structure. Throughoutthe illustration, we discuss any modi�cations to the steps of the hybrid method for non-linearproblems. After, we explore what happens when we relax any of the conditions on applicablesingular perturbation problems.2.1 Conditions on Applicable Singular Perturbation ProblemsWe describe necessary conditions on singular perturbation problems to produce the asymptoticsolution structure that makes the hybrid method useful. Firstly, applicable singular pertur-bation problems are two-dimensional whose governing equation involves an operator with alogarithmic fundamental solution (eg. the two-dimensional Laplacian operator). The problemsmust also be strongly localized singular perturbation problems, such as those on a solutiondomain with the removal of a small subdomain. A second condition is that the boundarycondition on the subdomain border must contain a Dirichlet component. Finally, the unper-turbed solution of the global expansion in the singular perturbation problem must satisfy anon-degeneracy condition.These conditions are necessary to produce certain features in the asymptotic solution for whichthe hybrid method is applicable. One such feature is that the asymptotic solution must involvereciprocal logarithmic gauge functions of the form (�1= log "), where " is the perturbationparameter. The other feature is that the local solutions, valid in a region close to the removedsubdomain, must be constant multiples of a canonical local solution. In the next section, we7



Chapter 2. The Hybrid Asymptotic-Numerical Methodintroduce a framework for applicable second-order steady problems. Then, we explain how thenecessary conditions give rise to the essential features of the asymptotic solution structure ona linear version of the general framework.2.2 Framework for Applicable Second-Order Steady ProblemsWe present a second-order, steady singular perturbation problem for which we want to obtainan approximate solution for the unknown �(x; "), where " is the small perturbation parameter.A framework for the governing equation and boundary conditions of �(x; ") = �(x1; x2; "), ona bounded or unbounded domain 
, isr � [cr�] +N(x;�;r�)= 0; x 2 
n
0 � R2; (2.1a)"@�@n + b(�� �0) = 0; x 2 @
0; b 6= 0; (2.1b)
 Bounded @�@n +B� = 0; x 2 @
; (2.1c)or, 
 Unbounded � � �1; jxj ! 1: (2.1d)First, we describe the structure of the governing equation. In (2.1a), N(x;�;r�) is a scalarlinear or non-linear function and c is of one sign. Of course, one would impose certain conditions(on N(x;�;r�), for example) to guarantee the existence of a solution. To illustrate thehybrid method, we will simply assume that a solution exists to (2.1). The domain 
 is a two-dimensional domain that is bounded or unbounded, from which we remove 
0, a �nite collectionof k subdomains whose distance apart is O(1). If 
 is a bounded domain, then the distancefrom the boundary of 
 to each of the k subdomains is also O(1). Unless we specify otherwise,boldface variables (eg. the spatial variable x = (x1; x2)) represent vectors in two dimensions.This framework of applicable singular perturbation problems is by no means fully general. Forinstance, we can modify this form to include eigenvalue problems (for example, the originalapplication in Ward et al. [57] in 1993), and also extend it to include unsteady problems. Wediscuss these and other extensions to the general framework of applicable problems, includinga fourth-order eigenvalue problem, in Chapter 7.Now, we move to the form of the boundary conditions on the subdomain border, @
0, of 
0.A requirement of the boundary condition in (2.1b) is that the Dirichlet component must bepresent, i.e. b 6= 0. To describe a purely Dirichlet boundary condition, we would set b = 1.Also, in (2.1b), the function �0 may depend on the spatial variable x and @=@n representsthe outward normal derivative to the domain. In Section 2.4, we will demonstrate that theasymptotic solution structure cannot contain reciprocal logarithmic gauge functions if we relaxthe requirement of the Dirichlet component in the boundary condition on @
0. We will alsoexplore the rami�cations of relaxing the other conditions on applicable singular perturbationproblems.If the solution domain 
 is bounded, the problem to solve is (2.1a) with (2.1b) and the boundarycondition on its outer boundary @
 in (2.1c). Again, @=@n is the outward normal derivative tothe domain. The outer boundary condition could be purely Neumann with B = 1, or purelyDirichlet with B = 0, or a combination of both.8



Chapter 2. The Hybrid Asymptotic-Numerical MethodIf 
 is unbounded, we would solve (2.1a) with (2.1b) and we impose a far-�eld condition of theform in (2.1d), in which �1 may depend on x.In the next four chapters, we delve into applications of the hybrid method on speci�c stronglylocalized singular perturbation problems. In Chapter 3, we solve for the axial velocity, w, offully developed laminar ow in a straight pipe with a core. For this special case, the governingequation is linear and the solution domain is bounded. The problem to solve is (2.1a){(2.1c),in which �(x; ") = w(x; ") (axial velocity component)N = � (positive constant)
 = D (bounded domain of the pipe)
0 = D" (k = 1 small subdomain, the pipe core)b =1 (Dirichlet condition on subdomain border)B =1 (Dirichlet outer boundary condition).Also, for the pipe ow application, c = 1 in (2.1a) and �0 = 0 in (2.1b).Chapter 4 contains our detailed examination of a second application on a bounded domain thatis also linear. In this application, we examine the oxygen partial pressure in a transverse sectionof skeletal muscle tissue that is supplied by multiple capillaries. We solve for the oxygen partialpressure, p, in the tissue and the corresponding variables of (2.1a){(2.1c) for this problem are�(x; ") = p(x; ") (oxygen partial pressure)c = P(x) (spatially dependent)N(x;�;r�)= �M(x) (spatially dependent)
 = D (bounded domain of tissue)
0 = [kD"k (k small subdomains, the capillaries)b = �k=P(x) (mixed boundary conditions on capillary walls)B = 0 (Neumann outer boundary condition).In (2.1b) for the oxygen transport application, �k and �0 = pck are speci�ed constants.Our �rst application on an unbounded domain is in Chapter 5, which is a linear convective heattransfer problem about an array of cylindrical bodies. We solve for the temperature, u(x; "),in (2.1a), (2.1b) and (2.1d) with�(x; ") = u(x; ") (temperature)N(x;�;r�)= �v � ru (linear function with v known)
 = R2 (unbounded domain)
0 = [kD"k (k small subdomains, the cylindrical bodies)b = �k (mixed boundary condition on cylindrical bodies):For the convective heat transfer application, c = 1 in (2.1a). As well, in (2.1b), b = �k and�0 = �k are speci�ed constants, and in (2.1d), �1 = 1 represents the ambient temperature inthe unbounded solution domain.The three problems that we have just mentioned are linear and second-order. In Chapter 6,we study low Reynolds number uid ow past an asymmetric cylindrical body. This problem9



Chapter 2. The Hybrid Asymptotic-Numerical Methodis non-linear and on an unbounded domain. We present the low Reynolds number problemas a fourth-order non-linear problem to solve for the stream function, although it is possibleto formulate it as a second-order non-linear system in terms of velocity and pressure. In thisway, we extend the general framework of applicable singular perturbation problems to includethe fourth-order biharmonic operator. Later in this chapter, we elaborate on how to apply thehybrid method to non-linear problems. Much later in this thesis, in Chapter 7, we outline abiharmonic eigenvalue problem that models the vibration of a thin plate with small cutouts orconcentrated masses.So far, we have provided a general framework for possible applicable singular perturbationproblems. We mentioned that the problems must be two-dimensional and must contain aDirichlet component in the boundary condition on the collection of subdomain boundaries. Also,we require that the unperturbed problem satisfy a non-degeneracy condition. We illustrate thenecessity of these conditions on the asymptotic solution structure of the perturbation problemsby stepping through the hybrid method on a linear version of (2.1) on a bounded domain.2.3 Outline of the Hybrid Method on a Second-order LinearProblemSince three of the four major applications of the hybrid method in this thesis are second-orderlinear problems, we outline the steps of the method on a general strongly localized singularperturbation problem of a similar form. We illustrate the steps of the hybrid method byapplying it to a second-order, linear problem involving the Laplacian operator on a boundeddomain. In so doing, we clarify the role of the conditions on the singular perturbation problemsthat the hybrid method can treat. Also, we comment on necessary modi�cations for non-linearproblems.We can basically summarize the hybrid method in �ve steps. The �rst step of the hybridmethod is to apply the method of matched asymptotic expansions to the singular perturbationproblem to obtain the asymptotic structure of the solution. In particular, this step determinesif the asymptotic solution involves reciprocal logarithmic gauge functions. It also determines ifthe local solutions, valid close to the removed subdomain, are constant multiples of a canonicalsolution. These two features of the asymptotic solution are essential for applying the remainingsteps of the hybrid method.We consider a linear version of (2.1a), whereN is now a linear function (which we will henceforthrefer to as L) and 
 is a bounded domain D. Also in (2.1a), we set c = 1, which means thatthe �rst term involves the two-dimensional Laplacian. Although in general 
0 represents acollection of k subdomains that are removed from 
, we will take k = 1 for ease of illustration,and call the small subdomain D". Also, we take �0 in (2.1b) to be a constant C.Thus, the second-order, linear, singularly perturbed problem for our illustration of the hybrid10



Chapter 2. The Hybrid Asymptotic-Numerical Methodmethod is �� + L(x;�;r�)= 0; x 2 DnD" � R2; (2.2a)"@�@n + b(�� C) = 0; x 2 @D"; b 6= 0; (2.2b)@�@n + B� = 0; x 2 @D: (2.2c)Here and throughout, unless otherwise speci�ed, � represents the two-dimensional Laplacianoperator, � � @2=@x21 + @2=@x22. In (2.2a), L(x; u; v) is linear in u and v.We describe the �ve steps of the hybrid method in determining an asymptotic solution to (2.2).For the asymptotic solution, we de�ne two solution regions. One is the global (outer) region,that is valid away from the removed subdomain, D", located at �, where jx � �j = O(1).The second is the local (inner) region, that is valid close to the removed subdomain, wherejx��j = O("). For an arbitrarily shaped subdomain, � is the location of its centroid. At times,we will refer to the removed subdomain D" as the \hole" in the domain D.Step 1. Apply the method of matched asymptotic expansions to ensure two features of theasymptotic solution structure. One feature is that the local problems are the same, so thateach local solution is a multiple of a canonical local solution. The second feature is that thegauge functions of the asymptotic expansion are reciprocal logarithms of the form (�1= log "),where " is the perturbation parameter.This asymptotic solution structure allows us to de�ne an e�ective radius of the subdomain D"and to establish an asymptotic equivalence between solutions on subdomains of arbitrary andcircular cross-sectional shape. We refer to this as Kaplun's equivalence principle, since he �rstremarked on it in his study of steady viscous ow past a stationary body [24].In the global region, away from the removed subdomain D", we expand the solution in a generalasymptotic series as�(x; ") = �0(x) + F1(")�1(x) + 1Xj=2 Fj(")�j(x) + � � � : (2.3)Here, �0(x) is the solution to the unperturbed problem, that is, the problem on the domain Dwithout the removal of the subdomain D" (and, of course, without the boundary condition on@D"). By de�nition, the gauge functions Fj(") in an asymptotic expansion like (2.3) are suchthat Fj+1(") = o[Fj(")]; or lim"!0 Fj+1(")Fj(") = 0: (2.4)In the local region, close to the hole at x = �, we de�ne the local variablesy = x� �" ; �(y; ") = �("y+ �; "): (2.5)We substitute these variables into the governing equation (2.2a) and the boundary conditionon the hole (2.2b) and obtain�y�+ "2L("y+ �; �; "�1ry�) = 0; y 62 D0; (2.6a)@�@n + b(�� C) = 0; y 2 @D0; b 6= 0: (2.6b)11



Chapter 2. The Hybrid Asymptotic-Numerical MethodHere, the subscript y indicates that di�erentiation is with respect to the local variables. In(2.6a), we assume that we obtain the region D" by shrinking the distance from every point onthe boundary of a �xed domain D0 to the centre by the factor ", and so we write D" = "D0.Also, @D0 is the boundary of D0.We expand the local solution in a general asymptotic series as�(y; ") = �0(y) + f1(")�1(y) + 1Xj=2 fj(")�j(y) + � � � ; (2.7)where we take �0(y) = C and where the gauge functions fj(") also satisfy (2.4). We substitutethis expansion into (2.6). Provided that the gauge functions fj(") also satisfy fj(")� "2L("y+�; �; "�1ry�), then the second term on the left-hand side of (2.6a) is a higher-order correction.For now, we assume that fj("), for j � 1, satisfy this condition. Later, once we choose theform of the gauge functions, we will return to verify that this condition holds. Thus, the localfunctions �j(y) in (2.7) satisfy �y�j = 0; y 62 D0; (2.8a)@�j@n + b�j = 0; y 2 @D0; b 6= 0: (2.8b)In addition, a matching condition replaces the missing boundary condition. Looking at (2.8),we see that the local problems for �j(y), where j � 1, are the same. That is, we can write eachlocal solution as a constant multiple of some canonical local solution�j(y) = aj�c(y): (2.9)We determine the constants, aj , for j � 1, through the matching procedure. In (2.9), �c(y) isthe canonical local solution satisfying�y�c = 0; y 62 D0; (2.10a)@�c@n + b�c = 0; y 2 @D0; b 6= 0; (2.10b)�c � log jyj � log d; jyj ! 1: (2.10c)Since �c satis�es Laplace's equation in two dimensions, the far-�eld behaviour of �c is that itgrows at worst logarithmically plus some constant. In the far-�eld behaviour in (2.10c), we havewritten this constant in the form of (� log d) for notational convenience later on. Here, d is aconstant that depends on b and on the shape of the hole D0. The solution to (2.10) uniquelydetermines the constant d for a given shape of D0. For general subdomain shapes, we mustsolve (2.10) numerically to determine d. In Section 2.5, we describe the numerical procedure tosolve (2.10), and for certain subdomain shapes, such as a circle or an ellipse, we show how todetermine d analytically.Matching the global and local solutions requires that the expression for �(x; ") as x! � agreewith the expression for �(y; ") as jyj ! 1 in some region of overlap. For the global solutionas x! �, we use a Taylor expansion in (2.3) and obtain� � �0(�) +r�0(x)jx=� � (x� �) + � � �+ F1(")�1(x! �) + � � � : (2.11)12



Chapter 2. The Hybrid Asymptotic-Numerical MethodHere, the notation �1(x ! �) refers to the behaviour of the solution �1(x) as x ! �. Wementioned at the beginning of the chapter that the unperturbed solution must satisfy a non-degeneracy condition. We will see that this condition on the unperturbed solution is�0(�) 6= C: (2.12)For the local solution behaviour as jyj ! 1, in terms of global variables, we use (2.9) and(2.10c) in (2.7) and obtain� � C + f1(")a1[log jyj � log d] + f2(")a2[log jyj � log d] + � � �� C + f1(")a1[log jx� �j � log("d)] + f2a2[log jx� �j � log("d)] + � � � : (2.13)Here, the (� log d) form of the constant in the far-�eld behaviour of �c from (2.10c) convenientlyallows us to form the (log("d)) term.The matching proceeds without di�culty if we choose the gauge functions asfj(") = Fj(") = �� 1log("d)�j ; j � 1: (2.14)With this choice, at the O(1) level, the matching requirement is�0(�) = C + a1: (2.15)Thus, the solution to the unperturbed problem determines the constant a1. Then, with a1known, we obtain a2 from the solution to the problem for �1(x) which is of the form��1 + L(x;�1;r�1) = 0; x 2 Dnf�g; (2.16a)@�1@n +B�1 = 0; x 2 @D; (2.16b)�1 � a1 log jx� �j+ a2; x! �: (2.16c)At this stage, we see the necessity for the form of the non-degeneracy condition on the unper-turbed solution in (2.12): without it, (2.15) would require that a1 = 0, which would eliminatethe logarithmic behaviour of �1 as x ! �. The matching procedure continues in this mannerand we obtain an in�nite recursive set of global problems to solve to determine the unknowncoe�cients aj in (2.9). At the O(�j) level in the matching, the behaviour of the solution �j(x),for j � 1, as x! �, is �j � aj log jx� �j+ aj+1; x! �: (2.17)Although the choice of gauge functions is not unique, it is only the reciprocal logarithmic formof gauge functions that would permit us to determine all the free constants in the asymptoticexpansions. Also, this choice of local gauge functions, fj("), satisfy the condition fj(")� "2Lthat allowed us to neglect the second term on the left-hand side of (2.6a). Thus, we haveensured that the gauge functions are reciprocal logarithms of the small perturbation parameter". Since we will see this reciprocal logarithmic form often in the applications of the hybridmethod, we de�ne �("d) = � 1log("d) : (2.18)13



Chapter 2. The Hybrid Asymptotic-Numerical MethodIn Chapter 1, we described the apparent di�culty of the method of matched asymptotic expan-sions in that the asymptotic solution containing such in�nite logarithmic series converges veryslowly unless " is very small. Thus, truncating the series is in general not very accurate even formoderately small ". As well, to determine the coe�cients aj in (2.9), the method of matchedasymptotic expansions requires that we solve an in�nite set of problems for �j(x), for j � 1.In linear systems, with one hole in the domain, these calculations may not be so di�cult. How-ever, for linear problems with multiple holes or for non-linear problems, there is an increasingdegree of complexity in calculating each successive coe�cient in the in�nite expansion. For thisreason, using the hybrid method to circumvent these recursive calculations is of great bene�t.The subsequent steps reveal how the hybrid method exploits the asymptotic structure of theoriginal problem to reduce it to an asymptotically related problem that is non-sti� and easierto solve than the original. We will show how the related problem also avoids having to calculatethe coe�cients aj individually. In general, one must solve this related problem numerically.Step 2. Write the local solution expansion (2.7) from Step 1 in terms of an asymptoticexpression A("d) and the canonical local solution �c(y). The asymptotic expression A("d) isA("d) � 1Xj=1 aj �� 1log("d)�j�1 ; "! 0: (2.19)We remark that A � O(1) as " ! 0. A("d) is an asymptotic expression for the in�niteexpansion of reciprocal logarithms of the small perturbation parameter ", and involves thesubdomain shape-dependent parameter d. As we saw in Step 1, �c(y) is the canonical localsolution to (2.10), which uniquely determines the parameter d for a given b in (2.10b) and fora speci�c shape of the subdomain D0.We require the far-�eld behaviour of the local solution to determine the singularity structureof the hybrid method related problem. We will formulate this related problem in Step 3.To begin, we extend the local solution expansion in (2.7) to�(y; ") = '0(y; �) + "'1(y; �) + "2'2(y; �) + � � � : (2.20)Here, '0(y; �) incorporates all of the logarithmic terms of the local solution, and the remainingterms are beyond all orders of reciprocal logarithms. In (2.20), '0(y; �) is'0(y; �) = C + �("d)a1�c(y) + [�("d)]2a2�c(y) + � � � ; (2.21)which we obtained by substituting (2.9) and (2.14) into (2.7), using the de�nition for �("d) in(2.18). Again, �c(y) is the canonical local solution to (2.10). Then, using the de�nition forA("d) in (2.19), we write the local solution expansion of Step 1 as�(y; ") = '0(y; �) + � � �= C + �c(y)�("d)fa1 + a2�("d) + a3[�("d)]2 + � � � g= C + A("d)�("d)�c(y) + � � � : (2.22)Now, we determine the far-�eld behaviour of the local solution in terms of global variables. We14



Chapter 2. The Hybrid Asymptotic-Numerical Methodsubstitute (2.10c) into (2.22), and use (2.5) and (2.18), to obtain� � C +A("d)�("d)[log jyj � log d] + � � �� C +A("d)�("d)[log jx� �j � log("d)] + � � �� C +A("d)�("d)[log jx� �j+ ��1("d)] + � � � ; jyj ! 1: (2.23)In the next step, we use the far-�eld behaviour of the local solution to determine the singularitystructure of the asymptotically related problem that we formulate with the hybrid method.Step 3. Write the global expansion for �(x; ") in terms of a function ��0(x; �) that incorporatesall of the logarithmic terms of the asymptotic solution and formulate a related problem for thisfunction.For Step 3, we write the global expansion as�(x; ") = ��0(x; �) + "��1(x; �) + "2��2(x; �) + � � � : (2.24)Here, ��0(x; �) incorporates all of the logarithmic terms of the asymptotic solution and theremaining terms are beyond all orders of reciprocal logarithms. We will formulate a problem tosolve for ��0 that is asymptotically related to the original problem (2.2) for �(x; "). This relatedproblem will contain the asymptotic expression, A("d) from (2.19), in its solution. The solutionof the related problem for ��0 then determines the value of A("d), which essentially sums theentire in�nite logarithmic series without having to determine each aj in (2.9) individually.To formulate a related problem for ��0, valid in the global region, we substitute (2.24) into(2.2a) and (2.2c), and require that, as x! �, the solution agree with the far-�eld behaviour ofthe local solution in (2.23). We obtain that the global related problem for ��0 is���0 + L(x;��0;r��0) = 0; x 2 Dnf�g; (2.25a)@��0@n +B��0 = 0; x 2 @D; (2.25b)��0 � C + A("d) + A("d)�("d) log jx� �j; x! �: (2.25c)The governing equation and outer boundary condition for ��0(x; �) are of the same form as theoriginal problem, except that the subdomain D" has been shrunk to the point f�g. Also, thelocalized perturbation in (2.2b) has been replaced by the singularity structure (2.25c), whichwe determined from matching to the far-�eld behaviour of the local solution. The conditionin (2.25c) speci�es the form of both the singular part and the regular part of the singularitystructure. In the �nal steps of the hybrid method, we use this over-determination in thesingularity condition to �nd A("d).Step 4. Decompose the global related problem solution ��0(x; �) into a regular part (satisfyingthe unperturbed problem) and a singular part (involving a Green's function). The behaviourof this decomposition provides a second expression for the singularity structure of the globalsolution. The �rst expression for the singularity structure of ��0 is in (2.25c).For Step 4, we decompose the �rst term on the right-hand side of the global related problemsolution in (2.24) as ��0(x; �) = ��0H(x) + 2�A("d)�("d)G(x; �): (2.26)15



Chapter 2. The Hybrid Asymptotic-Numerical MethodHere, ��0H(x) is a regular function that satis�es the unperturbed problem and G(x; �) is aGreen's function with the singularity structureG � 12� log jx� �j+GR(�); x! �: (2.27)Here, GR(�) is the regular part of the Green's function. For the oxygen transport applicationon a bounded domain that we discuss in Chapter 4, G is a modi�ed Green's function. Withthe decomposition in (2.26), we can write another expression for the singularity structure ofthe global related solution. We substitute (2.27) into (2.26), and let x! �, to obtain��0 � ��0H(�) + 2�A�GR(�) + A� log jx� �j; x! �: (2.28)Again, we require that the unperturbed solution satisfy the non-degeneracy condition, that is,��0H(�) 6= C.In the corresponding Step 4 for a non-linear problem, where a non-linear function N(x; u; v)would replace L(x; u; v), we seek a singular solution to the global related problem in the form��0 � R+ S log jx� �j: (2.29)Here, R is the regular part and a S is the coe�cient of the singular part. The singular solutionde�nes a function R = R(S). Comparing (2.25c) with (2.29), we �nd that in this case,R = C + A; S = A�: (2.30)In the next, and �nal, step of the hybrid method, we obtain an expression for A("d) by com-paring the two forms of singularity structure for the global related problem solution.Step 5. Compare the two expressions for the singularity structure of the global related problemsolution from Steps 3 and 4 to determine an expression for A("d). Once we obtain A("d), thenwe have determined the global solution �(x; ") in (2.24) correct to all logarithmic terms.This �nal matching step requires that the two expressions for the singularity structure of theglobal solution in (2.25c) and (2.28) agree. The log jx � �j terms automatically agree andcomparison of the remaining terms gives an expression for A("d),A("d) = ��0H(�)� C1� 2��("d)GR(�) : (2.31)Here, this procedure is valid provided that ��0H(�) 6= C and that the denominator is non-zero.To ensure that the denominator does not vanish, we insist that the denominator be of one sign,which then gives a range of validity for the small parameter ". For the expression in (2.31) tobe valid, we require that 0 < " < "cr = d�1e�2�GR(�); (2.32)where d is the subdomain shape-dependent parameter in (2.10). As well, ("d) 6= 1 so that �("d)in (2.18) is de�ned. In this linear case with one hole in the solution domain, the expression forA("d) is in the form of a geometric series in powers of �("d). However, this would not be truefor non-linear problems or for problems with multiple holes in the domain. We examine two16



Chapter 2. The Hybrid Asymptotic-Numerical Methodmultiple hole problems in the oxygen transport application of Chapter 4 and the convectiveheat transfer application of Chapter 5.For the non-linear version for Step 5, if a non-linear function N(x; u; v) replaces L(x; u; v), wemust assume that a solution exists to��H +N(x;�H;r�H) = 0; x 2 Dnf�g; (2.33a)@�H@n +B�H = 0; x 2 @D; (2.33b)�H � S log jx� �j; x! �: (2.33c)We can subtract o� the singular part of �H and write the regular part R asR(S) = limx!� [�H(x;S)� S log jx� �j] : (2.34)From (2.30), we have S = A� = �(R�C). Thus, � = S=(R(S)�C) and A = S=�. We computesolutions to (2.33a){(2.33b) and then from (2.34), we obtain R(S) for various values of S, whichgives us �(S) and A(S) also. To obtain A("d), we use � � �1= log("d). In determining A("d)through this process, we have essentially summed the in�nite logarithmic expansion in (2.19).We employ a technique of this form in Chapter 6 when we examine the non-linear applicationof low Reynolds number uid ow past an asymmetric cylindrical body.This completes the outline of the hybrid method on a linear, steady, second-order singularperturbation problem. The hybrid method exploits the asymptotic structure of the originalproblem to reduce it to an asymptotically related problem. This related problem is non-sti�and contains the in�nite logarithmic expansion A("d) from (2.19) in its solution. The speci�casymptotic structure of the solution that the hybrid method requires is that it involves reciprocallogarithmic gauge functions and that the local problems are all the same. We stated necessaryconditions on applicable singular perturbation problems to produce this asymptotic solutionstructure. In the next section, we investigate the e�ect on the asymptotic solution of relaxingthese conditions.2.4 E�ect on the Asymptotic Solution Structure of RelaxingCertain ConditionsNow, we explore the e�ect on the asymptotic solution structure of a singular perturbationproblem of relaxing the conditions that we claimed were essential for the hybrid method to beuseful. The main purpose of the hybrid method is to improve the accuracy of approximationin the asymptotic solution of singular perturbation problems that involve reciprocal logarithmsof ". We stated that an applicable singular perturbation problem must be two-dimensional,with a Dirichlet component in the boundary condition on the removed subdomain, and whoseunperturbed solution satis�es a non-degeneracy condition. Without these conditions, we assertthat the singular perturbation problem will not possess an asymptotic solution structure withreciprocal logarithms.First, we consider the e�ect of relaxing the Dirichlet condition on the subdomain boundary,i.e. setting b = 0 in (2.1b). For ease of illustration, we take c = 1 in (2.1a) on a bounded17



Chapter 2. The Hybrid Asymptotic-Numerical Methoddomain with one removed subdomain D". After rescaling to the local variables in (2.5), thelocal problems for �j(y), j � 1, in (2.7) are�y�j = 0; y 62 D0; (2.35a)@�j@n = 0; y 2 @D0: (2.35b)Here, D0 is the scaled subdomain, with D0 = "�1D". If we impose a logarithmic growth in thefar-�eld behaviour of the local solution of the form�j(y) � cj log jyj+ � � � ; jyj ! 1; (2.36)then we show that cj must be zero. By the Divergence theorem, we haveZy 62D0 ��j dx = limR!1 Zjyj=R @�j@jyj dS + Zy2@D0 @�j@n dS: (2.37)Here, R is the radius of a large circle surrounding D0 and @=@n is the outward normal derivativeto the solution domain. Using (2.35a) and (2.35b) in this expression, only the �rst term on theright-hand side remains. We use the form of (2.36) to obtainlimR!1 Zjyj=R @�j@jyj dS = limR!1 cjR2�R = 0: (2.38)Thus, the constant cj must be zero. Without a logarithmic form to the local solutions, thegauge functions cannot be reciprocal logarithms of ". We see that the e�ect of relaxing theDirichlet condition the subdomain boundary is that we cannot generate reciprocal logarithmsin the asymptotic solution structure.Next, we show that it is impossible to have reciprocal logarithmic gauge functions in the asymp-totic solution of a singular perturbation problem that is not two-dimensional. We use the linear,second-order problem of Section 2.3 in three dimensions for this illustration. The matching con-dition is that the behaviour of the global solution as x! � in (2.11) agree with the behaviourof the local solution in (2.7) as jyj ! 1.The local problem for �0(y) satis�es �y�0 = 0; y 62 D0; (2.39a)@�0@n + b(�0 � C) = 0; y 2 @D0: (2.39b)From the matching, �0(y) has the far-�eld behaviour�0 ! �0(�); jyj ! 1: (2.40)We write the solution to (2.39) in the form�0(y) = �0(�) + (C � �0(�))v0(y); (2.41)18



Chapter 2. The Hybrid Asymptotic-Numerical Methodwhere v0(y) satis�es �yv0 = 0; y 62 D0; (2.42a)@v0@n + b(v0 � 1) = 0; y 2 @D0: (2.42b)Since D0 is three-dimensional in this illustration, the solution v0(y) has the asymptotic formv0 � (C � �0(�)) a0jyj; jyj ! 1; (2.43)for some constant a0 that we determine from the shape of D0 and the value of b. Since thissolution is of order " in the global region, we set the gauge function F1(") = " in the globalexpansion and require that �1 � (C � �0(�)) a0jx� �j ; x! �: (2.44)We see that since the local solution does not have a logarithmic form, the gauge functionscannot be reciprocal logarithms of ".We emphasize this point by considering the special case of a small subdomain of radius ". Intwo dimensions, if D" = "D0 is a circle of radius ", then the solution for �(y; ") is of the form� = log jyj+ C + 1b : (2.45)Here, we remark that the Dirichlet component of the boundary condition must be present,i.e. b 6= 0. Since the fundamental solution of the Laplacian operator in two dimensions islogarithmic in form, the gauge functions in the expansion (2.7) will be reciprocal logarithmsin terms of ". In contrast, if D" = "D0 is a sphere of radius " in three dimensions, then thesolution for �(y; ") is of the form � = 1jyj + C � 1� 1b : (2.46)The fundamental solution for the Laplacian operator in three dimensions is not logarithmicin form. Hence, the local solution will not grow logarithmically in the far-�eld and the gaugefunctions of the asymptotic solution cannot be reciprocal logarithms. We have shown here thatthe singular perturbation problem must be two-dimensional to produce the asymptotic solutionstructure required by the hybrid method.Finally, we consider the e�ect of relaxing the non-degeneracy condition in (2.12) on the un-perturbed solution on the asymptotic solution. We use the second-order, linear problem ofSection 2.3 and now allow �0(�) = C: (2.47)The matching condition is that the behaviour of the global solution as x ! � in (2.11) agreewith the behaviour of the local solution in (2.7), with �0 = C, as jyj ! 1. Writing the globalsolution in terms of the local variable, jx� �j = "y, then we set f1(") = " and match�1 � r�0(�)jx=� � y; jyj ! 1: (2.48)19



Chapter 2. The Hybrid Asymptotic-Numerical MethodThus, the local problem for �1(y) satis�es (2.8) and has the far-�eld behaviour of (2.48). Thus,the local solutions do not have a logarithmic form if we relax the non-degeneracy condition in(2.12), and so the asymptotic solution will not contain reciprocal logarithms. In fact, if we lookat the hybrid method solution to the second-order linear problem in Section 2.3, we see this e�ectright away. If the unperturbed solution ��0H equals the constant C at the subdomain location�, then in (2.31), A("d) would be identically zero. This would mean that the in�nite sum ofthe product of coe�cients and reciprocal logarithmic gauge functions cancels out completely,which means that the e�ect of the domain perturbation is extremely weak, being smaller thanO((�1= log("d))j) for any j. Hence, it is a necessary condition on the singular perturbationproblem that its unperturbed solution satisfy the non-degeneracy condition ��0H(�) 6= C.In the next section, we describe how to determine the subdomain shape-dependent parameterd from the solution to (2.10).2.5 Subdomain Shape-Dependent Parameter dWe determine the solution to (2.10) when b =1 for a speci�c subdomain pro�le D0 in terms ofpolar coordinates (�; �). A one-to-one mapping z = f(�), where z = �ei�, transforms the pro�leD0 in the z-plane to the unit circle in the �-plane where the two exterior planes correspond.Under the transformation, �c satis�es��c = 0; j�j > 1;�c = 0; j�j = 1:This problem has the solution �c = log j�j. For jzj large (and thus, j�j large),z � ��; j�j ! 1:Since the mapping is unique for each pro�le D0, this �xes the value of �. Writing the solutionas �c = log(jzj=j�j) = log jzj � log j�j and matching to the far-�eld structure of the canonicallocal solution in (2.10c), we obtain that d = j�j:When b 6= 1, we cannot determine d using f(�) and instead we must compute it numerically.Ward et al. [57] and Kropinski et al. [29] describe a numerical procedure for determining d =d(b), in which they map the exterior of D0 to the interior of a unit disc, and then use a �nitedi�erence scheme on a uniform polar grid to solve for the stream function, which is modi�edto remove its singular behaviour. They obtain d by matching the behaviour of the modi�edstream function near the origin.We can analytically derive d for a cylinder of elliptic shape and circular shape. First, for oneelliptic cylinder with de�nition�y1a��2 + �y2b��2 = 1; a� > b�;20



Chapter 2. The Hybrid Asymptotic-Numerical Methodthe solution to (2.10a){(2.10b) with b = 1 is �c(y) = �1 � �01. Here, (�1; �2) are ellipticcoordinates de�ned byy1 = c cosh �1 cos �2; y2 = c sinh �1 sin �2; c =pa�2 � b�2:Also, �1 = �01 = tanh�1(b�=a�) is the level line of the elliptic boundary. Matching this solutionto the far-�eld structure of the inner solution in (2.10c), requires that that �01 = log(2d=c).Solving for d, we obtain that d = a� + b�2 ;for an elliptic cross-section with major semi-axis a� and minor semi-axis b�.Next, for one circular cylinder with radius �0", the solution to (2.10a){(2.10b) with b > 0 is�c(y) = log jyj+ a. To satisfy (2.10b) at � = jyj = �0, the constant must be a = � log �0 +1=(b�0). Matching this to the far-�eld structure of the inner solution in (2.10c) requires thata = � log d, giving d = �0e�1=b�0 ;for a circular cross-section of radius �0".For the particular case of b =1, Ransford [45] provides a table of the shape-dependent param-eter d, which we have reproduced in Table 2.1 for certain cross-sectional shapes.D0 dcircle, radius r rellipse, semi-axes a and b a+ b2equilateral triangle, side h p3 � �13�3 h8�2 � 0:422hisosceles right triangle, short side h 33=4� �14�2 h27=2�3=2 � 0:476hsquare, side h � �14�2 h4�3=2 � 0:5902hTable 2.1: Shape-dependent parameter d (capacity) for cross-sectional shape D0 = "�1D", forb =1 in (2.10b), (adapted from Ransford [45]).The subdomain shape-dependent parameter d is part of the canonical local solution for thesecond-order singular perturbation problems in Chapters 3, 4 and 5. In the low Reynoldsnumber uid ow application in Chapter 6, the canonical local problem involves a body shape-dependent matrix M for ow past an asymmetric body. In the case of low Reynolds numberuid ow past a symmetric body, the fourth-order canonical local problem involves an analogousparameter d. 21



Chapter 2. The Hybrid Asymptotic-Numerical Method2.6 Advantages of the Hybrid MethodAs its name suggests, the hybrid asymptotic-numerical method combines techniques of asymp-totic analysis and numerical analysis. We describe the advantages of the hybrid method fortreating certain, two-dimensional, strongly localized singular perturbation problems over usingthe two traditional techniques for approximate solutions: the method of matched asymptoticexpansions and full numerics. For the asymptotic part, the hybrid method uses the method ofmatched asymptotic expansions as a means to reduce the original strongly localized singularperturbation problem to an asymptotically related problem. The related problem has a speci-�ed singularity structure instead of the localized perturbation on the subdomain boundary thatoccurs in the original problem. The hybrid method exploits the asymptotic solution structureof the original problem, which must involve reciprocal logarithmic gauge functions of the per-turbation parameter " and must have local problems that are the same, so that their solutionsare multiples of a canonical solution. From the solution to this canonical solution, we determinea parameter d that depends on the shape of the subdomain and on the constant b in the subdo-main boundary condition. In some problems, due to the conditions on the asymptotic solutionstructure, the gauge functions involve d and " only in terms of their product, "d. This featureallows for an asymptotic equivalence between cylinders of di�erent cross-sectional shape, basedon an \e�ective" radius of the cylinder, which is known as Kaplun's equivalence principle.To determine the unknown coe�cients in the asymptotic solution, the method of matchedasymptotic expansions requires the solution of an in�nite recursive set of problems. Often,the problems increase in analytical complexity at each order in the expansion. For non-linearproblems, it may be too di�cult to determine analytically more than a few of these coe�cients.We have seen in Chapter 1 that in�nite reciprocal logarithmic expansions, if they converge,converge very slowly and so any truncation of the in�nite series may sacri�ce the desiredaccuracy. We also mentioned in Chapter 1 that we believe that these series do converge forsmall ". The fact that we are able to compute values of A("d), which is asymptotic to thein�nite reciprocal logarithmic series, provides evidence of such convergence. The hybrid methodcircumvents this slow convergence di�culty by formulating a related problem whose solutionactually contains the in�nite logarithmic expansion. Thus, by solving this related problem whichis easier than for the original, we obtain the asymptotic solution correct to all logarithmic terms.The numerical part of the hybrid method involves solving the related problem, which is non-sti�and has a smaller parameter space than the original problem. For linear problems, we wrote therelated problem solution in terms of the unperturbed solution, ��0H(x), and a Green's function,G(x; �). Computing the unperturbed solution and the Green's function involves numericaltechniques for solving partial di�erential equations such as the �nite element method or the�nite di�erence method. For a given domain 
 and locations of the removed subdomains,we only need to compute the Green's function, G(x; �), and its regular part, GR(�), once.Then, for a given subdomain shape, D0, we compute a single value d from the solution to thecanonical local problem in (2.10). The remaining part of the numerics for a linear problem isto compute the expression for A("d) and hence, obtain the solution correct to all logarithmicterms, as a function of ". We note that for linear problems with N holes in the domain, we mustnumerically solve a linear system for Ai("d), i = 1; : : : ; N , which is the multiple-hole versionof the asymptotic in�nite sum in (2.19). For non-linear problems, we compute solutions tothe related problem depending on a parameter that represents the strength of the singularity.22



Chapter 2. The Hybrid Asymptotic-Numerical MethodAgain, in general, this would involve �nite element or �nite di�erences techniques.For both linear and non-linear problems, changing the shape of the removed subdomain or themeasure of its size is very easy in the hybrid method solution. However, in the full numericalcomputation of the original problem, such a change would require a new de�nition of thegeometry and of the solution grid. As well, full numerics often have di�culty resolving the rapidchange in scale of singular perturbation problems with small holes in the solution domain. Usingthe hybrid method, it is possible to obtain asymptotic accuracy with less restrictive storage andprocessor time requirements than numerical solvers.We will demonstrate the advantages of the hybrid method through its detailed applicationto four problems. The problems that we have chosen as applications for the hybrid methodare models in: fully developed steady laminar ow in a straight pipe, oxygen transport fromcapillaries to skeletal muscle tissue, convective heat transfer, and low Reynolds number uidow. The �rst two models are applications on bounded domains, and the last two on unboundeddomains. In the following chapters, we discuss each application in more detail, all the whileunderlining the features that link them together.
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Chapter 3Viscous Fluid Flow in a Straight Pipe witha Thin Core
We consider steady, incompressible, laminar ow in a straight pipe containing a thin core. Boththe pipe and thin core have a constant cross-section of arbitrary shape. This problem is the�rst of two applications of the hybrid method on a bounded domain. The second application,which we describe in the next chapter, is that of oxygen transport from multiple capillaries toskeletal muscle tissue.Using the hybrid method, we determine an asymptotic solution for the ow velocity betweenthe walls of the pipe and the pipe core. Due to our assumptions about the geometry andabout the ow, the problem possesses the essential feature for the hybrid method of beingtwo-dimensional. With an approximate solution for the ow velocity, we can compute suchqualitative measures as the mean ow rate and the friction coe�cient. Some special cases ofthe straight pipe-core geometry are a concentric annulus and an eccentric annulus. For thesespecial cases, we compare our hybrid results to those contained in the account of fully developedow in a straight pipe of constant cross-section by Ward-Smith [58].To derive the equations for this pipe ow problem, we begin with the Navier-Stokes equationsfor steady, incompressible ow in three dimensions�(u � r)u+rp = ��u; (3.1a)r � u = 0: (3.1b)We show how the assumptions of the problem reduce the problem to its two-dimensional frame-work. In (3.1), u = (u; v; w) is the velocity vector and p is the pressure of the uid, where bothu and p are functions of the spatial variable x = (x; y; z). In (3.1a), � is the density and � is thedynamic viscosity of the uid. The boundary conditions are that u = 0 on the pipe wall and onthe core wall. We orient the reference frame so that the positive z-direction is along the axis ofthe pipe in the direction of the ow. With our assumptions, the pipe ow is unidirectional andhence, the velocity vector has only the component in the axial direction, u = (0; 0; w). Then,the continuity equation (3.1b) gives that @w=@z = 0 and so we write w = w(x; y). From the x-and y-momentum equations, the �rst and second equations of the vector equation (3.1a), weobtain that p = p(z). The z-momentum equation of the Navier-Stokes equations then reduces24



Chapter 3. Viscous Fluid Flow in a Straight Pipe with a Thin Coreto a two-dimensional equation 1� dpdz = @2w@x2 + @2w@y2 : (3.2)Since the left-hand side of this equation is a function of z only and the right-hand side is afunction of (x; y) only, we can equate both sides to a constant. Thus, we de�ne the positiveconstant � = � 1� dpdz ; (3.3)involving the dynamic viscosity � and dp=dz, the constant negative pressure gradient in theaxial direction.The equation for w in (3.2) and the conditions that the axial velocity w vanish at the pipe andcore walls comprise a two-dimensional singular perturbation problem on a bounded domainthat we will solve approximately using the hybrid method in the next section.3.1 Hybrid Method Solution for a Pipe and Core of ArbitraryShapeWe de�ne D to be the pipe cross-section, from which is removed a small subdomain, D",representing the cross-section of the thin core. The small parameter " is a measure of the sizeof the removed subdomain D". The problem to solve for the axial component of the velocity,w = w(x; "), is �w = ��; x = (x1; x2) 2 DnD"; (3.4a)w = 0; x 2 @D; (3.4b)w = 0; x 2 @D"; (3.4c)where � is the two-dimensional Laplacian operator, and @D and @D" are the boundaries of Dand D", respectively.In Chapter 2, we linked this pipe ow problem to the framework in (2.1) of applicable second-order, steady, singular perturbation problems. For the pipe ow problem, the governing equa-tion is linear and the solution domain is bounded. In (2.1a), we set c = 1 and the functionN = �, a positive constant. As well, both boundary conditions of the pipe ow problem areDirichlet, for which we set b =1 and �0 = 0 in (2.1b) and B =1 in (2.1c).If we were to make a naive attempt at a regular perturbation expansion of (3.4), we would havedi�culties at order ". We will briey outline how a regular perturbation fails for the specialcase of an annular pipe-core geometry with � = 1, and then return to the general pipe owproblem to proceed with the singular perturbation approach of the hybrid method.For the special case of an annular pipe-core geometry, with " � r � 1 and � = 1, suppose thatwe expand the solution to (3.4) in a regular perturbation expansion of the formw(r; ") = w0(r) + "w1(r) + "2w2(r) + � � � : (3.5)25



Chapter 3. Viscous Fluid Flow in a Straight Pipe with a Thin CoreHere, r = jxj. The function w0(r) satis�es the unperturbed problem, that is, the pipe owproblem on a pipe without a core. The unperturbed problem for this special case, whosesolution is a regular function as r! 0, is�w0 = �1; r < 1; (3.6a)w0 = 0; r = 1; (3.6b)which has the solution w0(r) = 1� r24 : (3.7)At the next order of the problem, which is order ", w1(r) must satisfy �w1 = 0 with w1(") =w1(1) = 0. The only solution to this problem is the trivial solution, w1(r) � 0. Hence, at order", we see that we cannot satisfy the condition w(") = 0 using a regular perturbation approach.We now proceed with the singular perturbation approach for the asymptotic solution to thegeneral pipe ow problem in (3.4) using the hybrid method. In Section 2.3 of the previouschapter, we outlined the hybrid method on a second-order, linear problem on a bounded domain,which is precisely the form of this pipe ow problem. To avoid repetition, we reiterate onlycertain details of the hybrid method formulation.In the local (inner) region, close to the subdomain D" located at x = �, we use the localvariables in (2.5), with v(y; ") as the local axial velocity, to write the solution expansion asv(y; ") = V0(y; �) + "V1(y; �) + "2V2(y; �) + � � � ; (3.8)where the leading-order local solution is V0(y; �) = �("d)A("d)vc(y), following the form in(2.22) with C = 0. The de�nitions for �("d) and A("d) are in (2.18) and (2.19), and vc(y) is acanonical local solution that satis�es (2.10) with b =1.Substituting (2.10c) into (3.8), and using (2.5) and (2.18), we obtain that the far-�eld behaviourof the leading-order local solution, in terms of global variables, isV0(y; �) � �A[log jx� �j+ ��1] + � � � ; jyj ! 1: (3.9)This equation has the same form as (2.23) with C = 0.Following (2.24), we write the expansion in the global region in the formw(x; ") = W0(x; �) + "W1(x; �) + "2W2(x; �) + � � � : (3.10)The function W0(x; �) will incorporate all of the logarithmic terms through A("d), which is theasymptotic in�nite sum that we de�ned in (2.19). To formulate a related problem for W0, wesubstitute (3.10) into (3.4a) and (3.4b), and require that it match via (3.9). Thus, we obtainthat the related problem for W0 is �W0 = ��; x 2 Dnf�g; (3.11a)W0 = 0; x 2 @D; (3.11b)W0 � A("d) +A("d)�("d) log jx� �j; x! �: (3.11c)26



Chapter 3. Viscous Fluid Flow in a Straight Pipe with a Thin CoreWe decompose the solution for W0, which is correct to all logarithmic terms, asW0(x; �) = W0H(x) + 2�A("d)�("d)G(x; �): (3.12)This follows the form of (2.26), whereW0H(x) is a regular function that satis�es the unperturbedproblem, �W0H = ��; x 2 D; (3.13a)W0H = 0; x 2 @D; (3.13b)and where G(x; �) is the Green's function satisfying�G = 0; x 2 Dnf�g; (3.14a)G = 0; x 2 @D; (3.14b)G � 12� log jx� �j+ R(�); x! �: (3.14c)In (3.14c), R(�) is the regular part of the Green's function.For the �nal matching step of the hybrid method, we substitute (3.14c) into (3.12) and comparewith (3.11c). This provides an expression for A("d), which isA("d) = W0H(�)1� 2��("d)R(�) : (3.15)This expression for A("d) is valid provided that neither the numerator nor the denominatorvanish. Since � is a positive constant, we are guaranteed that W0H(�) 6= 0 by a maximumprinciple. Requiring that the denominator is non-zero gives us the range of validity for " in(2.32).With (3.15) and the solutions to (3.13) and (3.14) in (3.12), we have the asymptotic solutionfor the axial ow velocity, w(x; "), correct to all logarithmic terms. For a given cross-sectionalshape of the pipe and location � of the thin core, we obtain the Green's function G(x; �) andits regular part R(�) from (3.14); and with a speci�ed constant �, we �nd the unperturbedsolution W0H(x) from (3.13). Obtaining the Green's function is independent of the shape of thethin core and of the measure " of its size. Then, for a given cross-sectional shape of the thincore, we determine the value of the subdomain shape-dependent parameter d. In general, wedetermine d from the solution to (2.10), but for b =1, Table 2.1 in the previous chapter listsvalues of d for certain regular cross-sectional shapes of the small subdomain. Thus, for a givenconstant � and pipe-core geometry, we easily compute the asymptotic solution as a function of", where " lies within the range of validity in (2.32). In the next section, we demonstrate thehybrid method results on certain special cases of the pipe ow problem in (3.4) for which wecan obtain an exact solution. For cases where obtaining an exact solution is impossible, or toodi�cult, we compare the hybrid solution with the results from a direct numerical solution.3.2 Comparison of Hybrid Method Results to Exact and Nu-merical SolutionsWe compare the results of the hybrid method to those special cases where it is possible to �ndan exact solution. Otherwise, we compare the hybrid method results with those of a direct27



Chapter 3. Viscous Fluid Flow in a Straight Pipe with a Thin Corenumerical solution of the original problem. We have used Matlab and its Partial Di�erentialEquations Toolbox [36] for the numerics of the hybrid method and for the direct numericalcomputations. We indicate the direct numerical results as discrete points in the plots.We draw our comparisons in terms of the mean ow velocity, W , and the friction coe�cient,f . The mean ow velocity is W = 1AD ZDnD" w dx: (3.16)Here, AD is the area of the cross-section of the pipe-core geometry, which we also call the ductcross-section. For laminar ow in ducts of non-circular cross-section, with or without cores, onecan express the friction coe�cient f asf = 16ReC1 = fcsC1; (3.17)where Re = WL�=� is the Reynolds number. Laminar ow, for which there is no signi�cantmixing between adjacent layers of the uid, occurs for Reynolds numbers in the approximaterange 0 < Re < 2000. In (3.17), fcs = 16=Re is the friction coe�cient for a pipe of circularcross-section without a core, and C1 is a constant that depends on the pipe-core geometry. Acollection of values of C1 for various non-circular duct geometries appears in Table C5 of Ward-Smith [58], a portion of which we reproduce in Table 3.1. In the de�nition for the Reynoldsnumber, L is a characteristic diameter de�ned as L = 4AD=PD, where PD is the wetted perimeterof the pipe and core.One can also express the friction coe�cient, f , in the formf = L��dpdz�2�W 2 : (3.18)Substituting this expression into (3.17), with the de�nition of � in (3.3), we can express theconstant C1 as a function of the mean ow velocity, W , and the characteristic diameter, L, asC1 = L2�32W : (3.19)Thus, with the mean ow velocity that we obtain using the hybrid method, we will computethis constant C1 and compare to tabulated values in [58] for a special case of the pipe-coregeometry.Example: Concentric annulus. We consider ow between the walls of a circular pipeof radius r0, r0 6= 1, and a concentric thin core of radius ". Since the geometry is radiallysymmetric, we solve for w(r; ") in�w = ��; " < r = jxj < r0; (3.20a)w = 0; r = "; (3.20b)w = 0; r = r0: (3.20c)28
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Figure 3.1: Mean ow velocity �W versus pipe core radius " for a concentric annulus " � r � 2.This has an exact solution ofwE = �4 �r20 � r2 � (r20 � "2) log(r0=r)log(r0=")� : (3.21)Now, we consider the asymptotic solution for w(r; ") from the hybrid method. From (3.14),with a circular pipe of radius r0 and the location of the core at � = 0, the Green's function isG = 12� (log r � log r0): (3.22)Thus, its regular part is R = �(1=2�) log r0, a constant. For a circular pipe of radius r0, thesolution to the unperturbed problem in (3.13) isW0H(r) = �4 (r20 � r2): (3.23)Thus, we have that W0H(0) = �r20=4. In the case of a circular core, D", of radius ", the solutionto the canonical local problem in (2.10) with b =1 gives that the shape-dependent parameteris d = 1. Substituting all of this information into (3.15) gives thatA("d) = A(") = �r204 log "log("=r0) :From (3.12), we get that the hybrid solution, valid for jxj � O("), and correct to all logarithmicterms, is w(x; ") = �4 �r20 � r2 � r20 log(r0=r)log(r0=")� : (3.24)29



Chapter 3. Viscous Fluid Flow in a Straight Pipe with a Thin Core"=r0 Hybrid C1 Tabulated C10.0001 1.1216 1.12160.001 1.1669 1.16690.01 1.2518 1.25180.05 1.3496 1.34800.1 1.4065 1.39640.15 1.4554 1.4244Table 3.1: Constant C1 in (3.19), from the hybrid method solution, and tabulated values of C1from Ward-Smith [58] for laminar ow through ducts of concentric annular section.Comparing the exact solution in (3.21) with the hybrid solution in (3.24), we see that the hybridmethod solution agrees well with the exact solution. We note that the hybrid solution does notcapture the O("2) term.We compare the hybrid method results to those of the exact solution in terms of the mean owvelocity W in (3.16). Using (3.21) in (3.16), the exact mean ow velocity isWE = �8 �r20 + "2 � r20 � "2log(r0=")� : (3.25)Again, AD in (3.16) is the area of the pipe-core cross-section, which in this special case isAD = �(r20 � "2).In Figure 3.1, for a concentric annulus with r0 = 2 and � = 1, we have plotted the mean owvelocity W from (3.16) versus the core radius " using the exact solution in (3.21) and usingthe hybrid solution in (3.24). The range of " in our plot lies well within the range of validityin (2.32). The plot indicates that the hybrid method results agree very well with the exactsolution, with an error that is O("2).
r0

ε eFigure 3.2: Geometry of the eccentric annular section of pipe and core.Using the mean ow velocity that we obtained from the hybrid method, we calculate theconstant C1 in (3.19) and compare to tabulated values of this constant for laminar ow throughducts of concentric annular section in Ward-Smith [58]. Table 3.1 contains the hybrid method30



Chapter 3. Viscous Fluid Flow in a Straight Pipe with a Thin Corevalues and tabulated values of C1 for several ratios of radii, "=r0. We see that for ratios of theradii of the pipe and core up to 0:01, the values of C1 from the hybrid method are exactly thefour-digit accurate tabulated values.Example: Eccentric Annulus. We consider ow between the walls of a circular pipe D ofradius r0 = 2, containing a circular core D" of radius " located at � = (�1; 0) and with � = 1.The o�set of the centre of the subdomain D" from the centre of D is the eccentricity e (seeFigure 3.2). In our computation, e = 1:0.
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Figure 3.3: Mean ow velocity �W versus pipe core radius " for an eccentric annulus, with piperadius r0 = 2 and eccentricity e = 1.From Ward-Smith [58] and from Piercy et al. [40], using our notation, the mean ow velocity,W , for an eccentric annulus in terms of the volume ow rate, Q, isQ = WAD = ��8 "r40 � "4 � 4e2M2b� a � 8e2M2 1Xn=1 n exp(�n(b+ a))sinhn(b� a) # ; (3.26)where M = (N2 � r20) 12 ; N = r20 � "2 + e22e ; (3.27a)a = 12 log N +MN �M ; b = 12 log N +M � eN �M � e: (3.27b)Again, e is the eccentricity.Using the hybrid method, we obtain the asymptotic solution to (3.4) and compare these resultsto the exact results of the mean ow velocity. The unperturbed solution is in (3.23), since it is31



Chapter 3. Viscous Fluid Flow in a Straight Pipe with a Thin Corethe same as in the concentric annulus example. For the solution to (3.14), we letG(x; �) = 12� log jx� �j+ R(x; �): (3.28)Thus, the function R(x; �) is regular as x! � and satis�es�R = 0; x 2 D; (3.29a)R = � 12� log jx� �j; x 2 @D: (3.29b)We compute R(x; �) from (3.29) on a circle of radius r0 = 2, with � = (�1; 0), and the value ofR at x = �, using the Partial Di�erential Equations Toolbox [36] on a mesh of 4064 elements.We use this information, and the unperturbed solution from (3.23) evaluated at �, to computethe value of A("d) = A(") from (3.15). The value of � corresponds to an eccentricity of e = 1.Since the core cross-section is circular, the shape-dependent parameter is d = 1. Thus, with allof this substituted into (3.12), we have the hybrid method solution for the axial velocity in aneccentric annular pipe section correct to all logarithmic terms, which we then use in (3.16) tocompute an approximate value for the mean ow velocity.
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Figure 3.4: Hybrid method and direct numerical results for the mean ow velocity W versusmeasure of size " of cross-sectional shape for a circular pipe of radius r0 = 2 with a concentriccore of three di�erent cross-sectional shapes.In Figure 3.3, for an eccentric annulus with pipe radius r0 = 2, � = 1 and eccentricity e = 1,we have plotted the mean ow velocity W versus the core radius " from the exact solution andfrom the hybrid solution. For this example, the plot indicates that the hybrid method resultscompares reasonably well with the exact mean ow velocity.32



Chapter 3. Viscous Fluid Flow in a Straight Pipe with a Thin CoreExample: Annulus with Various Core Cross-sectional Shapes. We consider ow be-tween the walls of a circular pipe D of radius r0 = 2 containing a concentric core D" of variouscross-sectional shapes and with � = 1. We use Table 2.1 for the shape-dependent parameter dfor a square core, an elliptic core, and an equilateral triangular core. Using the notation in thetable, we set the major and minor semi-axes of the ellipse as a = 2 and b = 1, and both the sideof the square and the equilateral triangle as h = 1. To compute the hybrid method solution,we use the Green's function in (3.22) and unperturbed solution in (3.23) from the concentricannulus example since these solutions are independent of the shape and size of the core. Weuse this information in (3.15) to obtain A("d).For a circular pipe of radius r0 = 2 containing a concentric core, Figure 3.4 contains curvesof mean ow velocity, W , versus ", a measure of the size of the core, for three di�erent cross-sectional shapes of the core. In the hybrid method, the change in shape and size of the corerequires only that we vary the product "d, which allows us to compute the entire " curve veryeasily. In contrast, for each change of shape and size of the core in the direct numerical solution,we had to recreate the solution geometry and remesh the solution grid. For a core of ellipticcross-section, the �gure shows that the hybrid method results agree very well with those of thedirect numerical solution. The slight discrepancy in comparing the results for the other twocore cross-sectional shapes, the square and equilateral triangle, could be due to the inability ofthe numerical method to resolve the corners of the core.In the next chapter, we explore a second application of the hybrid method on a boundeddomain but with an array of removed subdomains. The application of Chapter 4 models oxygentransport from multiple capillaries to skeletal muscle tissue.
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Chapter 4Oxygen Transport from Capillaries toSkeletal Muscle Tissue
We apply the hybrid asymptotic-numerical method to an oxygen transport problem in a bounded,two-dimensional domain representing a transverse section of skeletal muscle tissue that receivesoxygen from an array of capillaries of small but arbitrary cross-sectional shape (Figure 4.1).Outside of the capillaries, we obtain an asymptotic solution for the oxygen partial pressure(i.e. pressure due to unbound oxygen molecules) in the tissue domain. This is the second oftwo major applications in this thesis of the hybrid method on a bounded domain.

(a) Actual skeletal muscle tissue 2-D cut

Capillary
Cross-section

x2

x3

x1(b) Mathematical idealizationFigure 4.1: Capillary blood supply in skeletal muscle tissue.In the oxygen distribution process of the micro-circulation, oxygen binds to its carrier, haemo-globin, in red blood cells, which transports it through the arterioles, branching to the capillarynetworks, to the collecting venules. In the capillaries, the oxygen is released from its carrierand di�uses into the surrounding tissue. The oxygen transport model that we present in thischapter is an idealization of this full transport process, in which we retain its overall featureswhile producing a mathematically tractable problem.The analytical study of tissue oxygenation from capillaries has been the focus of considerableresearch since the original work of August Krogh [28] in 1919. The reviews of Popel [42] andFletcher [10] and references therein provide substantial information on the approaches andadvancements of the theoretical work in this area. Hoofd [17] reviews extensions to the Kroghcylinder model of a single circular capillary surrounded by a concentric circular tissue domain34



Chapter 4. Oxygen Transport from Capillaries to Skeletal Muscle Tissue(Figure 4.2). Following much of this groundwork, we adopt the approach that oxygen transportfrom capillaries to tissue is a passive process, driven by di�usion rather than by the consumptionof energy. Assuming Fick's law, J = �Drc, relating the oxygen ux J to the gradient of oxygenconcentration c, and Henry's law, c = �p, and that there is a balance of mass in the tissue, theequation governing the oxygen partial pressure p is�@p@t = r � [�Drp]�M: (4.1)Here, � is the oxygen solubility coe�cient, D is the oxygen di�usion coe�cient and M is theoxygen consumption rate in the tissue. By balance of mass in the tissue, we mean that the timerate of change of the amount of oxygen per unit volume equals the net di�usion ux throughthe tissue boundaries plus the rate of chemical reaction within the volume minus the rate ofconsumption of oxygen. In addition to satisfying the governing equation, the oxygen partialpressure p must satisfy appropriate conditions at the capillary walls and on the outer tissueboundary.We demonstrate that, for N > 1 capillaries in the tissue domain, this is a singular perturba-tion problem whose solution contains an in�nite expansion of logarithmic terms of the smallparameter ", which characterizes the size of the capillary cross-sections.
cR

RFigure 4.2: The Krogh cylinder: a capillary of radius, Rc, surrounded by tissue of radius, R.In Section 4.1, we present our mathematical model of oxygen transport from capillaries toskeletal muscle tissue and elaborate on the assumptions behind our model. In particular,we discuss how to include in the model the e�ects of tissue heterogeneities, such as oxygen-consuming mitochondria, and of enhancement or facilitation of oxygen transport to the tissueby the presence of myoglobin, an iron-protein compound that can reversibly bind up to oneoxygen molecule. In Section 4.2, we examine a simple version of the full model problem, of onecircular capillary contained in a circular tissue domain as in the original Krogh model cross-section (Figure 4.2), to reveal the form of the asymptotic solution. In Section 4.3, for the specialcase of capillaries with circular cross-sectional shape, we construct an asymptotic solution forthe oxygen partial pressure in the tissue using the method of matched asymptotic expansions.In Section 4.4, for arbitrarily shaped capillary cross-sections, we apply the hybrid method to35



Chapter 4. Oxygen Transport from Capillaries to Skeletal Muscle Tissueconstruct an asymptotic solution for the oxygen partial pressure that is correct to all logarithmicterms. In Section 4.5, we compute a time estimate to reach steady state to justify our time-independent model and in Section 4.6, we show how to compute the modi�ed Green's functionthat occurs in the hybrid solution. In Section 4.7, we demonstrate the asymptotic resultswith some speci�c examples that illustrate important physiological e�ects such as capillaryinteraction; the cross-sectional shape of the capillaries; variable permeability of the capillarywall; tissue heterogeneities and myoglobin facilitation.4.1 Oxygen Transport Model and AssumptionsWe are interested in the steady-state solution to (4.1) in a bounded, two-dimensional domain.One reason that we can view the oxygenation process from capillaries in a two-dimensionaldomain is the regular longitudinal geometry of skeletal muscle tissue: the arrangement of thecapillaries is, for the most part, parallel to the surrounding muscle �bres (Figure 4.3). Inthis type of muscle tissue, one can orient the x3-axis in the axial direction, running alongthe capillaries, and the x1x2-plane in a transverse cut perpendicular to the direction of thecapillaries, which we have shown in Figure 4.1(b). We describe another reason for the two-dimensional framework shortly after we state our general mathematical model for the oxygentransport problem corresponding to Figure 4.4.
Figure 4.3: Photomicrograph of a longitudinally sectioned skeletal muscle, displaying the par-allel arrangement of the capillaries (arrows) between the �bres (reproduced from \Histology: AText and Atlas" [48]).For our model, we assume that the process has reached steady state. In Section 4.5, we de-scribe the details of determining a lower bound for the time necessary to reach steady-stateconditions. This bound depends on the size and shape of the capillary cross-section, the areaof the surrounding tissue domain and the di�usivity, P .36



Chapter 4. Oxygen Transport from Capillaries to Skeletal Muscle Tissue
Dδ

D i
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x 2Figure 4.4: Our general model for i = 1; : : : ; N capillaries of arbitrary shape of magnitude oforder " in a tissue domain D with boundary @D.Now, we state the general, steady-state, dimensionless model of oxygenation of a two-dimensionalskeletal muscle tissue domain D from N small capillaries D"i of arbitrary cross-sectional shape(see Figure 4.4). The mathematical model to solve for the steady-state, dimensionless oxygenpartial pressure p(x; "), where x = (x1; x2), including the boundary conditions at each capillarywall @D"i and at the outer tissue boundary @D, isr � [Prp] =M; x 2 Dn N[i=1D"i ; (4.2a)"P @p@n + �i(p� pci) = 0; x 2 @D"i ; i = 1; : : : ; N; (4.2b)@p@n = 0; x 2 @D: (4.2c)Here, we rendered the quantities in our model dimensionless with respect to a characteristiclength scale of the tissue domain, L�; a characteristic oxygen partial pressure, p�; and thetransverse di�usivity, P�x. With these scalings, the dimensionless oxygen consumption rate isM = L�2M�=(P�xp�). The small, dimensionless parameter, ", represents the order of magnitudeof the capillary cross-sections, which we assume to be independent of the axial position x3. Ourmodel problem can be viewed as the leading-order problem of a perturbation analysis of (4.3)in terms of the small perturbation parameter, �, in (4.4). Following researchers like Hoofd [18],we have decoupled the capillary-tissue di�usion process of oxygen from the transport of oxygenwithin the capillaries. As we will describe shortly, the generality of our model allows us toanalyze more fully the di�usive process in two dimensions before potentially embedding it in amore complex coupled process.In addition to the regular geometry of skeletal muscle tissue, another reason for the two-dimensional framework is that the axial di�usion term is small relative to the other termsin the governing equation. For simplicity, we illustrate the balance of terms for the special caseof a tissue cylinder of radius 1 with constant di�usivity enclosing a single concentric capillarywhose cross-sectional shape depends only on the axial variable, x3 = z. We can write the gov-erning equation for the oxygen partial pressure p(r; z;�; ") in the tissue volume, which includes37



Chapter 4. Oxygen Transport from Capillaries to Skeletal Muscle Tissuethe axial di�usion term, as@2p@r2 + 1r @p@r + �2 @2p@z2 =M; "f(z) < r < 1; 0 � z � 1: (4.3)Here, � is a small parameter de�ned by�2 = P�zP�x �L�xL�z �2 : (4.4)Typically, in skeletal muscle tissue, the intercapillary separation, L�x, is a few microns whereasthe capillary length, L�z , is on the order of a thousand microns. As well, di�usivity in the axialdirection, P�z , is small relative to that in a transverse cut, P�x. The di�usivity, P = �D, is theproduct of the oxygen solubility and di�usion coe�cients. The capillary has a radius of "f(z),where " is a measure of the size of the capillary cross-section. For the analysis that we show inSections 4.3 and 4.4 to be valid, we require that �2 � (�1= log ")a, for any a.The boundary condition (4.2b) models the capillary wall as a �nitely-permeable membrane,where �i is the permeability coe�cient of the ith capillary and pci is the oxygen partial pres-sure within the ith capillary (assumed constant). The limit �i ! 1 represents an in�nitely-permeable capillary wall for the ith capillary, or equivalently, that the oxygen partial pressurep at the boundary of the ith capillary is equal to the constant capillary pressure, pci, of thatcapillary. In contrast, the limit �i ! 0 leads to the case of a perfectly-insulating capillary. Thislimit is physically-unreasonable since such capillaries would not contribute to the transport ofoxygen in the tissue. In (4.2b) and (4.2c), @=@n is the directional derivative along the outwardnormal to the tissue domain.We incorporate skeletal muscle tissue heterogeneities, such as oxygen-consuming mitochondria,through the oxygen di�usivity P in (4.2a) and (4.2b) and the consumption rate of oxygen Min (4.2a) in the tissue. In homogeneous tissue models, both P and M are assumed constant,which one can interpret as meaning that the mitochondria are regularly distributed throughoutthe tissue. The assumption that the rate of irreversible oxygen consumption in tissue is constant,i.e. M =M0, is known as zero-order kinetics. First-order kinetics involve a linear dependenceof the consumption rate on the oxygen partial pressure, M = M(p) = cp for some constantc > 0. A piecewise-linear expression for such an oxygen consumption rate, known as mixedzero- and �rst-order kinetics, isM = 8<: 0; p = 0cp; 0 < p <M0c�1M0; p �M0c�1; (4.5)for some positive constant c. The mixed-order kinetics is a piecewise-linear approximation toMichaelis-Menten kinetics, in which the oxygen consumption rate has the formM = M0pp+ pM : (4.6)Here, pM is the value at which the consumption rateM is half its maximum. For small values ofoxygen partial pressure p, the Michaelis-Menten kinetics approach �rst-order kinetics, whereasfor large p, they approach zero-order kinetics. 38



Chapter 4. Oxygen Transport from Capillaries to Skeletal Muscle TissueWe can also model the local oxygen consumption by mitochondria with a spatially-dependentM. For example, a particular model for the oxygen consumption rate in a cell with m mito-chondria is M =M0 + mXi=1Mi exp��jx� �ij2�2i � : (4.7)Here, we model each mitochondrion by a Gaussian distribution superimposed on a constantbackground consumption rate M0. In this way, there is freedom for varying the form of theheterogeneous tissue through the parameters, which are: the location, �i; the amplitude, Mi(where Mi > M0); and the variance, �i (for �i reasonably small), of the ith mitochondrionfor i = 1; : : : ; m. One could also combine this Gaussian distribution form of the mitochondriawith Michaelis-Menten kinetics, as inM = M0pp+ pM + mXi=1 Mipp+ pM exp��jx� �ij2�2i � :The oxygen di�usivity P within the skeletal muscle tissue can vary with location, whether incells or in the extracellular phase of the tissue, and within the cells, whether at discrete oxygen-consuming mitochondria. Certain theoretical models consider that the tissue is a two-phasemedium (eg. [7] [52]), having a constant speci�ed di�usivity within each phase. We incorporatethis approach in de�ning P(x) to have a similar Gaussian distribution form as inP = P0 + mXi=1 Pi exp��jx� �ij2�2i � ;where P0 is the di�usivity outside of the m mitochondria and Pi is the di�usivity within theith oxygen-consuming mitochondrial region.The fact that myoglobin is able to bind reversibly to one oxygen molecule can enhance, orfacilitate, the di�usion of oxygen into the tissue. To incorporate myoglobin facilitation into ourmodel, we follow Fletcher [11] and de�ne the myoglobin-facilitated pressure p� asp� = p+ pF [s(pc)� s(p�)]: (4.8)Here, pc is an average of the capillary oxygen partial pressures, and pF is the facilitation pressure,which is constant for constant di�usivity P and is zero if no myoglobin is present in the tissue.When oxygen and myoglobin are in equilibrium, the myoglobin saturation s(p) has the forms = pp0:5 + p; (4.9)where p0:5 is the myoglobin half-saturation pressure. To obtain the myoglobin-facilitated oxygenpartial pressure, p�(x; "), we solve for p in the absence of myoglobin from (4.2) and substituteinto (4.8).There have been recent e�orts in extending the single capillary Krogh model to a multiplecapillary system (eg. [41], [5], and [18]), and of those, Clark et al. [5] and Hoofd [18] includemyoglobin facilitation in their models. With greater freedom in the physical parameters, our39



Chapter 4. Oxygen Transport from Capillaries to Skeletal Muscle Tissuemultiple capillary model aims to eliminate certain restrictions of previous multiple capillarymodels, such as circular cross-sectional shapes, periodicity in the capillary bed, and homoge-neous tissue properties. We will �nd an approximate solution to our model using the hybridmethod, which is based on a systematic asymptotic analysis that provides a measure of theerror in the approximation. As well, the hybrid method is computationally faster and has asmaller physical parameter space than a direct numerical method.In the next section, we consider a simple version of (4.2), having one concentric capillary ofradius " in a circular tissue domain of radius 1, with a constant di�usivity P = 1. We notethat the annular capillary-tissue geometry is that of the original Krogh model in Figure 4.2,with R = 1 and Rc = ". The solution to the one-capillary problem contains a �nite number ofterms, and not an in�nite logarithmic expansion in ". Nevertheless, the basic form of the gaugefunctions in the asymptotic solution is the same, which gives us insight into the structure ofthe solution of the problem with N > 1 capillaries, which does involve an in�nite logarithmicexpansion.4.2 One Circular Capillary in a Circular Tissue DomainWe reveal the structure of the asymptotic solution to (4.2) by considering the simple modelproblem �p =M; " < r < 1; (4.10a)"@p@r � �(p� pc) = 0; r = "; (4.10b)@p@r = 0; r = 1: (4.10c)Here,M > 0, � > 0 and pc > 0 are constants. We remark that the capillary boundary conditiongives a negative radial pressure gradient so that the capillary acts as an oxygen source.In this special case, we compare the asymptotic approximation to (4.10) with the exact solution,pE(r), which is pE(r) = pc + M2 �r2 � "22 + "2 � 1� + log �"r�� : (4.11)This solution tends to negative in�nity as �! 0 in (4.11). This is to be expected from (4.10b)since in this limit, the capillary wall becomes perfectly insulating.From (4.11), we can see that the dominant term as " ! 0 is O(log "). The dominant term inthe exact solution suggests that, in the global (outer) region away from the capillary wherer� ", we expand the asymptotic solution to (4.10) in the formp(r; ") = (log ")p0(r) + p1(r) + � � � : (4.12)Substituting (4.12) into (4.10a) and (4.10c), we �nd that the global region problems to solve40



Chapter 4. Oxygen Transport from Capillaries to Skeletal Muscle Tissueare �p0 = 0; "� r < 1; (4.13a)@p0@r = 0; r = 1; (4.13b)and �p1 =M; "� r < 1; (4.14a)@p1@r = 0; r = 1; (4.14b)such that p1(r) is singular and p0(r) is regular as r ! 0. From (4.13) and requiring that p0(r)is bounded as r ! 0, we have that p0(r) = p0 = constant: (4.15)In the local (inner) region near the capillary, we introduce the local variables � = r=" andq(�; ") = p("�; "). These are the radial version of the local variables in (2.5). Substituting thelocal variables into (4.10a) and (4.10b), to leading order, we get that q satis�es��q = 0; � > 1; (4.16a)@q@� � �(q � pc) = 0; � = 1: (4.16b)Here, �� indicates that the Laplacian operator is with respect to the local radial variable �. Tomatch between the local and global region solutions, we require also that q grow logarithmicallyas �!1. We expand the local region solution asq(�; ") = pc + q0(�) + o(1); (4.17)where q0(�) satis�es ��q0 = 0; � > 1; (4.18a)@q0@� � �q0 = 0; � = 1; (4.18b)q0 � a0 log �; �!1: (4.18c)The solution to (4.18) is q0(�) = a0 log �+ a0� : (4.19)Using (4.18c) in (4.17) as � ! 1, and comparing to (4.12) as r ! 0, we �nd that p0 = �a0and that p1 � a0 log r + pc + a0� ; as r! 0: (4.20)41



Chapter 4. Oxygen Transport from Capillaries to Skeletal Muscle TissueWe need to solve (4.14) together with (4.20) for p1. Or, equivalently, we can solve�p1 =M+ 2�a0�(r); jrj < 1; (4.21a)@p1@r = 0; r = 1: (4.21b)In (4.21a), �(r) is the Dirac delta function. We determine the value of a0 by integrating (4.21a)over the region D, which is a circle of radius 1, and applying the Divergence theorem with theuse of (4.21b). We get that M� =M ZD dA = �2�a0: (4.22)Thus, a0 = �M=2 and so from (4.20),p1 � �M2 log r+ pc � M2� ; as r! 0: (4.23)The solution to (4.14) together with (4.23) isp1 = Mr24 + pc � M2 log r � M2� : (4.24)To recapitulate, the asymptotic solution isp(r; ") = pc + M2 �r22 � 1� + log�"r�� : (4.25)Comparing (4.25) to (4.11), we see that the asymptotic solution agrees with the exact solutionup to the O(1) terms and is missing the O("2) correction.From the solution, we can see the role of the parameter �, the permeability coe�cient of the cap-illary wall. As �!1, we obtain the asymptotic solution for the Dirichlet boundary conditionat the capillary, p = pc. As � ! 0, the physically-unreasonable case of a perfectly-insulatingcapillary wall, we notice that the solution becomes increasingly negative. In Section 4.5, wedetermine an estimate for the minimum time necessary tcr for the di�usion process to reachsteady state. In this time scale estimate, tcr ! 1 as � ! 0, meaning that the steady-statecondition would take forever to occur.The asymptotics of this simple model problem provide us with the approach for attacking themore complicated general problem in (4.2). In the next two sections, we consider multiple cap-illaries in an arbitrarily shaped tissue domain. First, we use the method of matched asymptoticexpansions to show that for N > 1 capillaries, the asymptotic solution contains an in�nitelogarithmic expansion in ", the measure of the magnitude of the capillary cross-sections. Sec-ond, we use the hybrid method on the multiple capillary problem to sum essentially the entirelogarithmic series in the asymptotic solution. 42



Chapter 4. Oxygen Transport from Capillaries to Skeletal Muscle Tissue4.3 Solution using the Method of Matched Asymptotic Expan-sionsIn this section, we obtain the asymptotic solution to (4.2) for the special case of N capillarieswith equal, circular cross-sections of radius ". In the next section, we will apply the hybridmethod to (4.2) with arbitrarily shaped capillary cross-sections.As in the simple model problem for one capillary of the previous section, we expand the global(outer) region solution in the formp(x; ") = ��1(")p(0)(x) + p(1)(x) + 1Xj=2 �j�1(")p(j)(x) + � � � ; (4.26)where we de�ne �(") � �1= log ".In the local (inner) region, near the ith capillary located at x = �i, we de�ne the local variablesyi = x� �i" ; qi(yi; ") = p("yi + �i; "): (4.27)The local variables in (4.27) are the extension of those in (2.5) for multiple subdomains locatedat �i, for i = 1; : : : ; N .We expand the solution in the local region near the ith capillary asqi(yi; ") = pci + q(1)i (yi) + �(")q(2)i (yi) + � � � : (4.28)Here, pci is a speci�ed constant that represents the oxygen partial pressure within the ithcapillary, for i = 1; : : : ; N .Substituting the local variables into (4.2a){(4.2b) and using P("yi + �i) � P(�i) + O("), we�nd that, to leading order in ", qi(yi; ") satis�es�yqi = 0; jyij > 1; (4.29a)P(�i)@qi@n + �i(qi � pci) = 0; jyij = 1: (4.29b)To allow for matching to the global region solution, it is necessary for each qi to grow logarith-mically as jyij ! 1, for i = 1; : : : ; N .Substituting (4.28) into (4.29), we �nd that all the local region problems for q(j)i are the same, sowe can write q(j)i = a(j)i q(c)i for j � 1. Here, a(j)i are unknown constants that we will determinethrough the matching process, and q(c)i (yi) is the canonical local solution satisfying�yq(c)i = 0; jyij > 1; (4.30a)P(�i)@q(c)i@n + �iq(c)i = 0; jyij = 1; (4.30b)q(c)i � log jyij+ P(�i)�i ; jyij ! 1: (4.30c)43



Chapter 4. Oxygen Transport from Capillaries to Skeletal Muscle TissueThis is the multiple hole version of the canonical local problem that we �rst introduced in(2.10).In the global region, far from the capillaries, we substitute (4.26) into (4.2a) and (4.2c) to obtainthe problems for p(j)(x) for j � 0. The problem to solve for p(0)(x) isr � [Prp(0)] = 0; x 2 Dn N[i=1 f�ig; (4.31a)@p(0)@n = 0; x 2 @D: (4.31b)As well, we require that p(0) is regular as x! �i for i = 1; : : : ; N . The solution to this problemis that p(0) is a constant. We will show later how to determine this constant. The remainingglobal region problems for p(j)(x), j � 1, arer � [Prp(j)] = ej1M(x); x 2 Dn N[i=1 f�ig; (4.32a)@p(j)@n = 0; x 2 @D: (4.32b)In (4.32a), elk is the Kronecker delta function de�ned aselk = � 1; l = k0; otherwise: (4.33)As well as satisfying (4.32), p(j)(x) must be singular as x! �i for i = 1; : : : ; N .In anticipation of matching the local and global region expansions, we write the global regionexpansion as x! �i, for i = 1; : : : ; N , and the local region expansion as jyij ! 1. As x! �i,for i = 1; : : : ; N , the global region expansion has the formp(x! �i; ") � ��1(")p(0) + p(1)(x! �i) + 1Xj=2 �j�1(")p(j)(x! �i) + � � � : (4.34)Using (4.30c), we �nd that as jyij ! 1, the ith local region expansion, in terms of global regionvariables, is of the formqi(yi; ") �pci + a(1)i flog jx� �ij+ ��1(") + P(�i)=�ig+�(")a(2)i flog jx� �ij+ ��1(") + P(�i)=�ig+ � � � : (4.35)Once again, �(") � �1= log "; the constants pci, P(�i) and �i, for i = 1; : : : ; N , are known; anda(j)i are unknowns that we will determine through matching to the global region solution.Comparing the O(��1) terms in (4.34) and (4.35), we see that matching requiresa(1)1 = a(1)2 = : : : = a(1)N = p(0): (4.36)As well, the matching procedure provides the behaviour of the global region solution p(j)(x) forj � 1, which isp(j) � a(j)i �log jx� �ij+ P(�i)�i � + a(j+1)i + ej1pci + � � � ; x! �i; i = 1; : : : ; N: (4.37)44



Chapter 4. Oxygen Transport from Capillaries to Skeletal Muscle TissueUsing (4.32) and (4.37), we can write the global region problems for p(j)(x), j � 1, asr � [Prp(j)] = ej1M(x); x 2 Dn N[i=1 f�ig; (4.38a)@p(j)@n = 0; x 2 @D; (4.38b)p(j) � a(j)i (log jx� �ij+ P(�i)=�i) + a(j+1)i + ej1pci; x! �i; i = 1; : : : ; N: (4.38c)Combining (4.38a) with (4.38c), we can writer � [Prp(j)] = ej1M(x) + 2� NXi=1 a(j)i P(�i)�(x� �i); x 2 D: (4.39)Here, �(x� �i) is the Dirac delta function.The solution to (4.39) together with (4.38b) is not unique. To address this point, we considerthe corresponding eigenvalue problemr � [Pr�k] = ��k�k; x 2 D; (4.40a)@�k@n = 0; x 2 @D: (4.40b)The �rst eigenpair for this problem is (�0; �0) = (1; 0), and the remaining eigenvalues, �k, aresuch that 0 < �1 � �2 � : : : � �k <1.We expand the solution p(j)(x), for j � 1, as a sum of the eigenfunctionsp(j)(x) = � 1Xk=0 < bj ; �k >�k < �k ; �k >�k(x): (4.41)Here, bj = ej1M(x) + 2�PNi=1 a(j)i P(�i)�(x� �i) is the right-hand side of (4.39) and < f; g >is the inner product of the functions f and g de�ned by < f; g >= RD f(x)g(x) dx. In (4.41),since �0 = 0, we require that < bj ; �0 >=< bj; 1 >= 0 for a solution to exist, and so thesolvability condition for p(j)(x), for j � 1, isNXi=1 a(j)i P(�i) = 8<: � 12� RDM(x) dx; j = 10; j � 2: (4.42)If (4.42) is satis�ed, then we can write the solution p(j)(x), j � 1, asp(j)(x) = � 1Xk=1 < bj ; �k >�k < �k; �k >�k(x) + Cj�0; (4.43)for any constant Cj . We need to �x the constant Cj in order to obtain a unique solution p(j)(x).Requiring that < p(j); �0 >= 0, where �0 = 1, is equivalent toZD p(j)(x) dx = 0: (4.44)45



Chapter 4. Oxygen Transport from Capillaries to Skeletal Muscle TissueUsing < p(j); �0 >= 0 in (4.43) and applying the orthogonality condition of the eigenfunctions,we get that Cj = 0 for j � 1. Thus we can decompose the solution p(j)(x), for j � 1, asp(j)(x) = p(j)u (x) + a(j)G : (4.45)In this decomposition, a(j)G for j � 1 are global constants, and p(j)u (x) is the unique solution tor � [Prp(j)u ] = ej1M(x); x 2 Dn N[i=1 f�ig; (4.46a)@p(j)u@n = 0; x 2 @D; (4.46b)p(j)u � a(j)i (log jx� �ij+ P(�i)=�i) + a(j+1)i + ej1pci; x! �i; i = 1; : : : ; N; (4.46c)ZD p(j)u (x) dx= 0: (4.46d)In (4.45) and (4.46c), the unknowns are a(j)G and a(j+1)i for i = 1; : : : ; N , which we will determineat each level j for j � 1.We decompose the unique solution p(j)u (x) asp(j)u (x) = 2� NXi=1 a(j)i P(�i)G(x; �i) + ej1p(1)R (x): (4.47)In (4.47), G(x; �) is the modi�ed Green's function satisfyingr � [PrG] = � 1AD ; x 2 Dnf�g; (4.48a)@G@n = 0; x 2 @D; (4.48b)G � 12�P(�) log jx� �j+R(�); x! �; (4.48c)ZD G(x; �) dx = 0: (4.48d)In (4.48a), AD is the area of the region D and in (4.48c), R(�) is the regular part of themodi�ed Green's function. We determine R(�) uniquely from the solution to (4.48). Also in(4.47), p(1)R (x) is a regular function, as x! �i, i = 1; : : : ; N , that satis�esr � [Prp(1)R ] =M(x)� 1AD ZD M(x) dx; x 2 D; (4.49a)@p(1)R@n = 0; x 2 @D; (4.49b)ZD p(1)R (x) dx= 0: (4.49c)46



Chapter 4. Oxygen Transport from Capillaries to Skeletal Muscle TissueIn (4.49a), we used (4.42) in the right-hand side. Substituting (4.47) into (4.45) and using(4.48c), we obtain an expression for the behaviour of p(j)(x) as x! �i which isp(j) �a(j)i log jx� �ij+ 2�a(j)i P(�i)R(�i) +2� NXk=1k 6=i a(j)k P(�k)G(�i; �k) + ej1p(1)R (�i) + a(j)G + o(1): (4.50)Comparing (4.38c) and (4.50), we �nd that the log jx � �ij terms automatically agree. Fromthe remaining terms, we see that2�a(j)i P(�i)R(�i) + 2� NXk=1k 6=i a(j)k P(�k)G(�i; �k) + ej1p(1)R (�i) + a(j)G =a(j+1)i + ej1pci + a(j)i P(�i)=�i; (4.51)for i = 1; : : : ; N and j � 1. To determine the constant p(0), and hence the constants a(1)i fori = 1; : : : ; N , we use (4.42) with j = 1 and (4.36) to obtainp(0) = � RDM(x) dx2�PNi=1 P(�i) : (4.52)Thus, the constants a(1)i for i = 1; : : : ; N are known, and (4.51) provides N equations for the(N + 1) unknowns: a(j)G and a(j+1)i for i = 1; : : : ; N and j � 1. The solvability condition in(4.42) for a(j+1)i provides the last equation for these unknowns.In summary, with the a(1)i known, we solve (4.51) and (4.42) recursively to �nd a(j)i , fori = 1; : : : ; N , and a(j�1)G for each j � 2. The parameters to specify in the problem are" order of magnitude of the capillary cross-sectionsN number of capillariespci oxygen partial pressure within the ith capillary�i permeability coe�cient of the ith capillary wall�i location of the ith capillaryP(x) di�usivity in the tissueM(x) consumption rate of oxygen in the tissueD geometry of the tissue domain. (4.53)For a given number and location of the capillaries in the tissue domain, we use (4.48) once onlyto compute the modi�ed Green's function G(x; �) and its regular part R(�). We use (4.52)to compute the constant p(0) and (4.49) to compute the regular function p(1)R (x). Then, weevaluate these expressions at the capillary locations �i. In general, we must perform thesecomputations numerically. For certain special cases, such as a circular tissue domain D withone concentric capillary, it is possible to solve for the modi�ed Green's function G and thefunction p(1)R analytically (see Section 4.6). 47



Chapter 4. Oxygen Transport from Capillaries to Skeletal Muscle TissueThus, we have an in�nite set of recursive problems for the global region function coe�cientsa(j)i . To obtain the global solution for p(x; ") in (4.26) for a given ", the order of magnitudeof the capillary cross-sections, we would use the expressions in (4.45), (4.47) and (4.52), whichrequire these coe�cients for j � 1. In the next section, we examine the solution to the problemvia the hybrid method which avoids the daunting task of determining each set of coe�cients ateach j-level.4.4 Solution using the Hybrid MethodWe now apply the hybrid method to solving (4.2) with N capillaries of arbitrary cross-sectionalshape.Using (4.28) together with q(j)i = a(j)i q(c)i , we expand the solution in the local region, near theith capillary, asqi(yi; ") = pci +Q(0)i (yi; �1; : : : ; �N) + "Q(1)i (yi; �1; : : : ; �N) + � � � : (4.54)Here, we de�ne �i � �1= log("di) where di depends on the shape of the cross-section of the ithcapillary. We take Q(0)i = Aiq(c)i (y), where Ai = Ai(�1; : : : ; �N ), for i = 1; : : : ; N , are to bedetermined. Also, q(c)i (y) is the canonical local solution satisfying�yq(c)i = 0; yi 62 D0i ; (4.55a)P(�i)@q(c)i@n + �iq(c)i = 0; yi 2 @D0i ; (4.55b)q(c)i � log jyij � log di � � � ; jyij ! 1: (4.55c)Here, di is the shape-dependent parameter that is also known as the logarithmic capacity (seeGarabedian [14]), and D0i is the scaled ith capillary, such that D"i = "D0i , and @D0i is itsboundary. This canonical local problem is a multiple subdomain version of (2.10).For the case of capillaries with circular cross-sectional shape of radius " from the previoussection, Ai is asymptotic to the in�nite logarithmic expansionAi � 1Xj=1 �� 1log("di)�j�1 a(j)i ; "! 0: (4.56)This expression is the multiple subdomain version of A("d) in (2.19). We note that eachAi � O(1) as " ! 0 for i = 1; : : : ; N . We recall that in the previous section the constantsdi are all the same and a(j)i are unknown coe�cients that are determined through matchingfor each j � 1. For capillaries of arbitrary cross-sectional shape, the di are not all the samebut each Ai = Ai(�1; : : : ; �N), for i = 1; : : : ; N , sums a similar in�nite logarithmic series. Thehybrid method will exploit the asymptotic structure of the solution to sum essentially the entirelogarithmic series.For a speci�c cross-sectional shape of the ith capillary, we compute the shape-dependent pa-rameter di uniquely from the solution to (4.55). In some cases, like for a circular or elliptic48



Chapter 4. Oxygen Transport from Capillaries to Skeletal Muscle Tissuecross-sectional shape, it is possible to determine di analytically (see Section 2.5). For a circularcapillary of radius ", di = exp(�P(�i)=�i). For the particular case of �i = 1, we �nd di fromthe table of capacities from Ransford [45], which we reproduced in Table 2.1 in Chapter 2.Using Q(0)i = Aiq(c)i and (4.55c) in (4.54), we have that the far-�eld behaviour of the ith localregion solution, in terms of global region variables, isqi(yi; ") � pci +Ai[log jx� �ij+ ��1i ("di)] + � � � ; jyij ! 1: (4.57)In the global region, we expand the solution asp(x; ") = pG + P (0)(x; �1; : : : ; �N) + "P (1)(x; �1; : : : ; �N ) + � � � : (4.58)Here, pG is a global constant that we will determine along with Ai, for i = 1; : : : ; N , and again,�i = �1= log("di). We will see that pG � O(log ") as "! 0. Substituting (4.58) into (4.2a) and(4.2c), and requiring that the global region solution match to the local region solution, we getthat P (0)(x; �1; : : : ; �N) is the unique solution tor � [PrP (0)] =M(x); x 2 Dn N[i=1 f�ig; (4.59a)@P (0)@n = 0; x 2 @D; (4.59b)P (0) � Ai log jx� �ij+ Ai��1i + pci � pG; x! �i; i = 1; : : : ; N; (4.59c)ZD P (0)(x) dx= 0: (4.59d)There is a solution to (4.59) provided thatNXi=1 AiP(�i) = � 12� ZD M(x) dx: (4.60)This condition is analogous to the solvability condition (4.42) of the previous section.We write the solution P (0)(x; �1; : : : ; �N) in the formP (0)(x; �1; : : : ; �N) = 2� NXi=1 Ai(�1; : : : ; �N)P(�i)G(x; �i) + P (0)R (x): (4.61)Here, G is the modi�ed Green's function that satis�es (4.48). As well, P (0)R (x) is a regularfunction, as x! �i, for i = 1; : : : ; N , that satis�es (4.49).Using (4.48c) in (4.61), we obtain that the near-�eld behaviour of P (0) isP (0) � Ai log jx� �ij+ 2�AiP(�i)R(�i)+2� NXk=1k 6=i AkP(�k)G(�i; �k) + P (0)R (�i);x! �i; i = 1; : : : ; N: (4.62)49



Chapter 4. Oxygen Transport from Capillaries to Skeletal Muscle TissueComparing (4.59c) and (4.62), we see that the log jx� �ij terms automatically agree. From theremaining terms, we obtain a set of N equations2�AiP(�i)R(�i) + 2� NXk=1k 6=i AkP(�k)G(�i; �k) + P (0)R (�i) = Ai��1i + pci � pG: (4.63)Thus, (4.60) together with (4.63) provide (N + 1) conditions for the unknowns: pG and Ai, fori = 1; : : : ; N .We let " ! 0 in (4.63) and �nd that, for a non-trivial solution for Ai in (4.63) to exist, werequire that pG balance with Ai��1i . This means that pG � O(log ") as " ! 0 since Ai � O(1)as " ! 0. If we neglect the o�-diagonal terms in (4.63), that represent capillary interaction,then we obtain an expression for pG from the diagonal entries,(pG)diag = 1N NXi=1 �pci +Ai�i�1 � 2�AiP(�i)R(�i)� P (0)R (�i)� : (4.64)In summary, (4.60) and (4.63) provide (N + 1) equations for the unknowns pG and Ai, fori = 1; : : : ; N . As in Section 4.3, we must specify the parameters in (4.53), as well as thecross-sectional shapes of the N capillaries. For a given tissue geometry for which we specify thelocations and the number of capillaries, we compute the modi�ed Green's function G(x; �) andits regular part R(�) once only from (4.48), and compute the function P (0)R (x) from (4.49); andevaluate these expressions at the capillary locations �i. For each speci�ed cross-sectional shapeand permeability coe�cient �i of the ith capillary, we determine the unique shape-dependentparameter di from (4.55), for i = 1; : : : ; N .4.5 Time Estimate to Reach Steady StateOur goal here is to obtain an asymptotic estimate when "� 1 for the length of time necessaryfor the oxygen di�usion process to attain steady state. For simplicity, we consider only onecapillary in the tissue domain. We consider the unsteady version of (4.2) with N = 1 forp(x; t; "), in which we replace (4.2a) with@p@t = r � [Prp]�M; x 2 DnD": (4.65)We also include an initial condition, p(x; 0; ") = P0(x). We assume that the di�usivity Pdepends only on the spatial variable x, but we allow the oxygen consumption rate M to be afunction of the oxygen partial pressure, p(x; t; "), such that dM=dp > 0. We will compare thesteady-state time estimates for the case with M = M(x), independent of p, versus the casewith M =M(p).We substitute p(x; t; ") = pst(x; ") + e��tv(x; ") (4.66)50



Chapter 4. Oxygen Transport from Capillaries to Skeletal Muscle Tissueinto (4.65), where v � 1 and pst(x; ") satis�es the steady-state problem (4.2) with N = 1.Linearizing (4.65), with boundary conditions (4.2b) and (4.2c), we obtain that v(x; ") satis�esthe eigenvalue problem r � [Prv]�M0(pst)v = ��v; x 2 DnD"; (4.67a)"P @v@n + �v = 0; x 2 @D"; (4.67b)@v@n = 0; x 2 @D; (4.67c)together with the normalization conditionZDnD" v2dx = 1: (4.68)There are in�nitely many eigenvalues � of (4.67). We are interested in an estimate for thesmallest such eigenvalue, �0(") as "! 0, which will provide us with the time scale necessary toreach steady-state conditions.First, let us consider the case with M =M(x), independent of p. In this case, (4.67a) reducesto r � [Prv] = ��v; x 2 DnD": (4.69)We will determine the �rst eigenpair, v(0)(x; ") and �(0)("), of (4.67) with (4.67a) replaced by(4.69), as "! 0. Since the �rst eigenvalue for the unperturbed problem (i.e., with no capillary)is �(0)0 = 0, we expect that the �rst eigenvalue for the corresponding perturbed problem willtend to zero as " ! 0. Based on this, we expand v(0)(x; ") and the smallest eigenvalue �(0)(")as v(0)(x; ") � v(0)0 (x) + �("d)v(0)1 (x) + � � � ; (4.70a)�(0)(") � �(0)0 + �("d)�(0)1 + � � � ; (4.70b)as " ! 0. Here, �("d) is some unknown gauge function. We will construct global region andlocal region expansions for the eigenfunction v(0)(x; "), corresponding to regions away from andnear to the capillary respectively. Through the procedure of matching the solutions in the globaland local regions, we will show that the gauge function, �("d), has the reciprocal logarithmicform of (2.18). Our interest in constructing the matched asymptotic solution lies in obtaining�(0)1 , which we will use in (4.66) to calculate the steady-state time estimate.In the global region, away from the capillary, we substitute (4.70) into (4.69), (4.67c) and (4.68)and obtain that the global region functions v(0)j , for j � 0, satisfyr � [Prv(0)j ] = � jXi=0 �(0)j�iv(0)i ; x 2 Dnf�0g; (4.71a)@v(0)j@n = 0; x 2 @D; (4.71b)ZD v(0)i v(0)j dx = (1; i = j = 0;0; otherwise: (4.71c)51



Chapter 4. Oxygen Transport from Capillaries to Skeletal Muscle TissueIn the local region, near the capillary located at x = �, we de�ne the variables y = "�1(x� �)and w(0)(y; ") = v(0)("y+ �; "). We expand the local region solution w(0)(y; ") asw(0)(y; ") = a0�("d)wc(y) + � � � ; (4.72)where a0 is a constant that we will determine through the matching procedure. We substitute(4.72) and the local variables into (4.69) and (4.67b) and �nd that wc(y) satis�es the canonicallocal problem in (4.55), to leading order in ".For the matching procedure, we compare the global region expansion of v(0) in (4.70a) as x! �with the local region expansion of w(0) in (4.72) as jyj ! 1, using the far-�eld behaviour from(4.55c) in terms of the global region variables. The matching procedure requires that the gaugefunction is �("d) = �1= log("d) as in (2.18), and thatv(0)0 = a0; (4.73a)v(0)1 (x) � v(0)0 log jx� �j+ � � � ; x! �: (4.73b)Combining (4.71a) for j = 1 with (4.73b), and given that �(0)0 = 0, we can writer � [Prv(0)1 ] = ��(0)1 v(0)0 + 2�v(0)0 P(�)�(x� �); x 2 D: (4.74)Here, �(x � �) is the Dirac delta function. Using (4.71b) and Green's identity, we obtain< Lv(0)1 ; v(0)0 >=< Lv(0)0 ; v(0)1 >, where L is the operator L � r � [Pr]. Since Lv(0)0 = 0, andwith Lv(0)1 given above, we obtain �(0)1 = 2�P(�)AD : (4.75)Here, AD is the area of the domain D. We determine the value of the constant v(0)0 (and hencea0) from the normalization condition in (4.71c) with i = j = 0, which gives us thatv(0)0 = (AD)�1=2: (4.76)Now, we construct the estimate for the time necessary for the process to reach steady state.The oxygen partial pressure is approximately the steady-state value, p(x; t) � pst(x) for t �(�(0))�1. Using �("d) = �1= log("d) and (4.75) in (4.70b), with �(0)0 = 0, we can express theminimum time required to reach steady state ast� � log("d)AD2�P(�) : (4.77)From this expression, we see that the time estimate to reach steady state is O(log "). This givesa slow decay to steady state, yet one that is more rapid than an O("�1) decay.Next, let us consider the case with M =M(p). The �rst eigenvalue, �(0)p , of the unperturbedproblem of (4.67) is �(0)p = RD hPjrv(0)p j2 +M0(pst)(v(0)p )2i dxRD (v(0)p )2 dx : (4.78)52



Chapter 4. Oxygen Transport from Capillaries to Skeletal Muscle TissueForM independent of p, the �rst eigenvalue �(0) is O(�1= log("d)), which is smaller than �(0)p ,the �rst eigenvalue for the case with M = M(p), whose leading order is in (4.78). In (4.66),we see that for a larger �rst eigenvalue �(0), there is a faster decay to steady state. Thus, theprocess in the case with M =M(p) decays to steady state more rapidly than in the case withM =M(x), independent of p.Example: Krogh Cylinder Geometry. We consider the special case of a circular cross-section of tissue of radius 1 containing a concentric circular capillary of radius ", with uniformdi�usivity P � 1 in the tissue. For a circular capillary with constant di�usivity, AD = � and thesolution to (4.55) gives that the shape-dependent parameter is d(�) = exp(�1=�). Substitutingthese expressions into (4.77), we obtain thatt� 12 �� log "+ 1�� ; "� 1: (4.79)In the next section, we provide details of the numerical procedure for �nding the modi�edGreen's function solution to (4.48).4.6 Finding the Modi�ed Green's FunctionFor certain special cases, it is possible to solve analytically (4.48) for the modi�ed Green'sfunction. One such special case is that of a circular cross-section of tissue having radius a, withconstant di�usivity P = P0 in the tissue, and with a concentric capillary (singularity) locatedat the origin. In this case, the solution to (4.48) isG(r) = 12�P0 log r + 14�P0 �32 � 2 log a� r2a2� : (4.80)The regular part evaluated at the capillary centre isR(0) = 14�P0 �32 � 2 loga� : (4.81)When it is not possible to obtain an analytic solution, we discuss how to numerically solve(4.48) for the modi�ed Green's function, G(x; �), and its regular part, R(�). We used thePartial Di�erential Equation Toolbox [36], a �nite element code for solving for u(x) in ellipticpartial di�erential equations of the form�r � [cru] + au = f; x 2 D; (4.82a)c@u@n + qu = g; x 2 @D: (4.82b)We employ a regularization procedure to compute G in (4.48) by introducing a regularizationparameter �. To implement the guarantee of uniqueness in (4.48d), we solve (4.48) forG�(x; �; �)with (4.48b) replaced by @G�@n + �G� = 0; x 2 @D; (4.83)53



Chapter 4. Oxygen Transport from Capillaries to Skeletal Muscle Tissuewhich has a unique solution for non-zero �, where � � 1. We impose the singularity structurefrom (4.48c) by seeking a solution of the formG�(x; �; �) = 12�P(�) log jx� �j+R�(x; �; �): (4.84)Substituting (4.84) into (4.48), with (4.48b) replaced by (4.83), we obtain that R�(x; �; �) is aregular function as x! � that satis�es r � [PrR�] = � 1AD ; x 2 D; (4.85a)@R�@n + �R� = �� 12�P(�) @@n log jx� �j � �2�P(�) log jx� �j� ; x 2 @D; (4.85b)ZD R�(x; �) dx = � 12�P(�) ZD log jx� �j dx: (4.85c)We expand the solutions to (4.48), with (4.48b) replaced by (4.83), and (4.85) as � ! 0. Todetermine the form of these expansions, we consider the corresponding eigenvalue problem forthe special case of a circular domain D of radius a, with constant di�usivity P = 1 and withthe singularity (capillary) located at the origin��� + ���� = 0; 0 < r < a; (4.86a)@��@r + ��� = 0; r = a: (4.86b)Since �0 = 0 and �0 = C, a constant, form a solution to (4.86), we expand the principaleigenvalue and the corresponding eigenfunction as�0�(�) � ��1 + �2�2 + � � � ; (4.87a)�0�(r; �) � C + ��1(r) + � � � ; � ! 0: (4.87b)Substituting (4.87) into (4.86), and imposing a solvability condition, we �nd that �1(r) satis�es��1 = �C�1; 0 < r < a; (4.88a)@�1@r = �C; r = a: (4.88b)The solution to (4.88) is �1(r) = �Cr2=(2a), providing that �1 = 2=a. Thus, from (4.87a), wecan write �0�(�) � 2�a + � � � : (4.89)We express the solution, R�(r), as a sum of eigenfunctions of the homogeneous operator in(4.85a). Then, using the orthogonality of eigenfunctions and Green's second identity, we getR� = 1Xj=0 < R�; �j� >< �j�; �j� > �j� = 1Xj=0 R@D �j�PgdS � RD �j�fdx�j� < �j�; �j� > �j�(r): (4.90)54



Chapter 4. Oxygen Transport from Capillaries to Skeletal Muscle TissueHere, < u; v > is the integral inner product, and f is the right-hand side of (4.85a) and g is theright-hand side of (4.85b). Since �0� � O(�), and the leading-order eigenfunction is a constantC, the solution for R�(r) would be O(��1) providing that the numerator does not vanish as� ! 0. For a circular domain of radius a, with constant di�usivity, the numerator in (4.90) is�(�Ca log a): (4.91)Thus, we can see that for a circular domain of radius a, the numerator does vanish as � ! 0.Since the numerator vanishes, we expand the solutions for � ! 0 asG�(x; �; �) � G0(x; �) + �G1(x; �) + � � � ; (4.92a)R�(x; �; �) � R0(x; �) + �R1(x; �) + � � � : (4.92b)We compute the regular solution to (4.85a){(4.85b) for two values of � and we call the resultingregular solutions (R�1)c and (R�2)c. The size of � we choose is bounded below by the tolerance� for our computed solution: e.g. � > �cr = 0:001. We expand the computed solutions as(R�1)c � R0c + �1R1c + � � � ; (4.93a)(R�2)c � R0c + �2R1c + � � � : (4.93b)From an extrapolation of (4.93), we obtain the solutionR0c = �2(R�1)c � �1(R�2)c�2 � �1 : (4.94)This is the leading-order solution in the expansion for R�(x; �; �) in (4.92b), although it isnot unique. We still need to impose (4.85c) to determine the arbitrary additive constant.Substituting R� = R0c + k into (4.85c), we obtain the constant k and thus can express thesolution as R�(x; �; �) = R0c � 1AD 24 12�P(�) ZD log jx� �j dx+ ZD R0c dx35 : (4.95)Example: Krogh cylinder geometry. We test this computation technique on a special casefor which we know the exact solution: a circular tissue domain of radius 1, with di�usivityP = 1 and containing a single concentric capillary. For this special case, the exact solution to(4.48) for the modi�ed Green's function is the purely-radial solution in (4.80) with a = 1 andP0 = 1, which simpli�es to G(r) = 12� log r + 14� �32 � r2� : (4.96)We compare the regular part of the exact solution in (4.96) as r ! 0 to what we computefrom (4.48), with (4.48b) replaced with (4.83). We note that, since the singularity (capillary)is located at the origin and since the outer boundary is at r = 1, the log jx� �j term vanishes55



Chapter 4. Oxygen Transport from Capillaries to Skeletal Muscle Tissuef�1; "2g Maximum absolute error L2 of error Computed R(0)f0:025; 0:05g 8.42e-04 0.0017 0.1195f0:01; 0:025g, 8.26e-04 0.0016 0.1194f0:01; 0:05g, 8.30e-04 0.0016 0.1194Table 4.1: Test of �-dependence on R�(0) using three pairs of � values: maximum absolute errorand L2 norm of the error between R�(0) in (4.95) and the exact R(0) in (4.97).in (4.85b) and so the exact solution to the problem for the regular part, R�, is independent of�. The regular part of the modi�ed Green's function evaluated at the capillary location isR(0) = 38� � 0:1194: (4.97)We test the dependence on � of our computed solution (R�)c for three pairs of �1 and �2.Table 4.1 contains the maximum absolute error, the L2-norm of the error and the computedvalue of R(0) for each of the �-pairs, on a computational mesh containing 4,088 elements. Thevalues in the table indicate that that the computed solution is essentially independent of �.In the �nal section of this chapter, we display the results of the hybrid solution for the oxygentransport application.4.7 Computed Results and DiscussionWe present our results demonstrating the e�ect of homogeneous versus heterogeneous tissuewith respect to oxygen di�usivity and consumption rate, and the e�ects of capillary inter-action, the cross-sectional shape of the capillaries, variable capillary wall permeability, andmyoglobin-facilitated oxygen transport. Although we can consider tissue domains and capillar-ies of arbitrary shape in our model, we choose simple geometries in the examples to highlightcertain e�ects that are unrelated to the tissue geometry. In certain cases, where possible, wecompare to the exact solution or a direct numerical solution of (4.2). We have used Matlab, inparticular the Partial Di�erential Equations Toolbox [36], for the simple numerics of the hybridmethod and for the direct numerical computations. Unless otherwise speci�ed, the discretepoints in the plots below are the direct numerical results.In Table 4.2, we list ranges of dimensional parameter values for use in our computations thatwe obtained from a number of references. The dimensionless di�usivity P and dimensionlesscapillary pressure pc are measured relative to their dimensional counterparts (indicated with �).In the examples below, we choose values for our dimensionless parameters, such as the dimen-sionless oxygen consumption rateM = L�2M�=(p�P�), that correspond to typical dimensionalquantities.Example: Homogeneous versus heterogeneous tissue. For the special case of one circularcapillary of radius " that is concentric with a circular tissue domain D of radius 1 with di�usivityP = 1, the exact solution of (4.2) for the oxygen partial pressure in the tissue is (4.11). In56



Chapter 4. Oxygen Transport from Capillaries to Skeletal Muscle TissueDimensional Parameter Range of Values UnitsO2 consumption rate M� 3:3� 10�5 ! 3:1� 10�2 mL-O2/cm3-sTissue di�usivity P� 3:9� 10�10 ! 4:8� 10�10 mL-O2/cm-s-mm HgTissue O2 partial pressure p� 26! 30 mm HgTissue domain length scale L� 1:5� 10�3 ! 1:8� 10�2 cmTable 4.2: Range of dimensional parameter values; compiling data from Clark et al. [5],Ellsworth et al. [9], Hoofd [17], Hsu et al. [21] and Popel [42].
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Chapter 4. Oxygen Transport from Capillaries to Skeletal Muscle Tissuemitochondria, Mi = 50 and Pi = 4, for i = 1; : : : ; 4. The pmin(") curves in Figure 4.5 areincreasing functions of ", indicating that the larger the capillary radius, the more oxygen thetissue receives. The heterogeneous tissue pmin(") curve lies below that of the homogeneoustissue, given the same background oxygen consumption rate and di�usivity, showing that thepresence of the mitochondria lowers the oxygenation in the tissue. The �gure also reveals thatthe hybrid solution agrees well with the exact solution for values of " up to approximately 0.2.Table 4.3 contains the time to compute a single point of the homogeneous tissue pmin(") curveof Figure 4.5. The table shows that the direct numerical solution took approximately 13 timesas long to compute as the hybrid method solution using meshes of comparable re�nement.Mesh size Time/pointpmin(0:05) (elements) (seconds)Exact 4.3758Hybrid 4.3760 7680 2.99Numerical 4.3765 7424 40.494.3759 29696 187.88Table 4.3: CPU time to compute one point, pmin(") = pmin(0:05), for the homogeneous tissuecase of Figure 4.5: hybrid method solution versus the direct numerical solution.Example: Capillary interaction. We consider N = 4 capillaries of circular cross-sectionwith radius " in a circular tissue domain D of radius 1, and vary the intercapillary spacing todisplay the e�ect of interaction on oxygenation of the tissue. Figure 4.6(a) shows the locationsat �ji = (�j=4 cos(�=4);�j=4 sin(�=4)), for j = 1; 2; 3 of the i = 1; : : : ; 4 capillaries. Theparameter values for this example are: di�usivity P = 1 and oxygen consumption rateM = 0:3;capillary permeability coe�cients �i = 1; and intracapillary oxygen partial pressure pci = 5,for i = 1; : : : ; 4. With circular cross-sectional shapes of radius " and with �i = 1, the shape-dependent parameters are di = 1, for i = 1; : : : ; 4.In the top graph of Figure 4.6(b), we have plotted the minimum oxygen partial pressure pminversus ", the radius of the capillary cross-sections. For certain values of ", we have included theresults from a direct numerical solution of (4.2). Of the pmin(") curves that include interactione�ects, the j = 2 curve lies uppermost, showing that the tissue receives more oxygen whenthe capillaries are in this position, than in the other capillary spacings we considered. Thehybrid method results compare well with those of the direct numerical computation. Again,the direct numerical solution was signi�cantly more time-consuming since it involved rede�ningthe geometry and the grid for each " and for each set of capillary locations.There are two ways in which we can test the no-interaction limit of the hybrid method solu-tion. One way is to include only the �rst term on the right-hand side in (4.58), that neglectsthe capillary interaction term in (4.61). The other way is to neglect the o�-diagonal terms,representing interaction, in (4.63), which results in (4.64). For the j = 2 case, we includedthe corresponding pmin(") curves of pG, the �rst term on the right-hand side of (4.58), and of(pG)diag from (4.64). We see that the pmin(") curve corresponding to pG lies above the othercurves, indicating that the global e�ect of capillary interaction is to lower the oxygenation inthe tissue. In their multiple capillary oxygen transport model, Clark et al. [5] found a reduction58
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Chapter 5Convective Heat Transfer Past SmallCylindrical Bodies
We present asymptotic solutions to a convective heat transfer problem in an unbounded, two-dimensional domain. We consider an array of small, cylindrical bodies of arbitrary shape in auid with a known velocity �eld and constant ambient temperature. Outside of these bodies,we solve for the temperature �eld. This is the �rst of two applications of the hybrid method onan unbounded domain. The second application on an unbounded domain involves low Reynoldsnumber uid ow past an asymmetric cylindrical body, which we discuss in Chapter 6.We assume that the surrounding uid is incompressible and that we can neglect any e�ects ofnatural convection and viscous dissipation. With these assumptions, the equation governingthe temperature T is k�T = � cp�@T@t + u � rT� ; (5.1)where we have treated the thermal conductivity k, the density �, and the heat capacity atconstant pressure cp as constants. We assume that we already have the solution to the Navier-Stokes equations for the velocity �eld u, completely independent of the temperature.We illustrate that this is a singular perturbation problem involving an in�nite logarithmicexpansion in the small parameter ", the order of magnitude of the size of the cylindrical bodies.The convective heat transfer problem is analogous to the problem of low Reynolds numberow past an array of cylindrical bodies. Both problems have the in�nite logarithmic expansionstructure in their asymptotic solutions, but the heat transfer problem is easier to analyze thanthe low Reynolds number problem for multiple bodies. In Chapter 7, we discuss an extendedapplication of the hybrid method on low Reynolds number uid ow past an array of symmetriccylindrical bodies.In Section 5.1, for a single cylindrical body, we illustrate the singular nature of the convectiveheat transfer problem and outline the hybrid asymptotic-numerical method that we use to con-struct an asymptotic solution for the steady-state, dimensionless temperature. In Section 5.2,for an array of cylindrical bodies, we generalize the convective heat transfer problem and con-struct an asymptotic solution to the temperature for an arbitrary velocity �eld. In Section 5.3,we derive a further term in the asymptotic solution expansion that reveals the asymmetry ofthe temperature �eld near each cylindrical body. In Section 5.4, we derive asymptotic solutions63



Chapter 5. Convective Heat Transfer Past Small Cylindrical Bodiesfor two speci�c cases of the velocity �eld: a uniform ow �eld and a simple shear ow �eld.Finally, in Section 5.5, we present examples to illustrate the asymptotic results.5.1 Singular Nature of the ProblemWe seek the steady-state solution to (5.1) that we non-dimensionalize with respect to themagnitude of the free-stream velocity, the ambient temperature and a characteristic lengthscale of the cylindrical bodies. The dimensionless and steady-state form of (5.1) is�w = Pe(v � rw); (5.2)where w and v are the dimensionless temperature and velocity �eld respectively, and Pe =U1l�cp=k is the Peclet number. Here, U1 is the magnitude of the free-stream velocity and lis the length scale of the bodies. We also note that the di�erentiation is now with respect todimensionless variables.We will demonstrate the singular nature of the problem by attempting a regular perturbationexpansion in the asymptotic limit Pe! 0. For simplicity, we consider only one body of circularcross-section and radius 1 with a constant temperature � on its boundary. The problem tosolve for w, with appropriate boundary conditions, is�w = "(v � rw); jyj > 1; (5.3a)w = �; jyj = 1; (5.3b)w � 1; jyj ! 1; (5.3c)where " � Pe� 1 and jyj is O(1) in the Stokes region near the body. Leal [32] and Romero [46]examined the three-dimensional analogue of this problem in their studies of ow past a sphere.We assume a regular perturbation expansion for w(y; ") of the formw(y; ") = W (0)(y) + "W (1)(y) + � � � : (5.4)To leading order in ", the problem to solve is�W (0) = 0; jyj > 1; (5.5a)W (0) = �; jyj = 1; (5.5b)W (0) � 1; jyj ! 1: (5.5c)The general solution to (5.5a) is W (0) = a+ b log jyj, where we apply the boundary conditionsto specify the constants a and b. However, in setting a = � to satisfy (5.5b), we �nd that itis not possible to satisfy (5.5c). Hence, a regular perturbation expansion fails. This di�cultyis analogous to the Stokes paradox in uid dynamics: no solution exists in an unbounded,two-dimensional domain that satis�es the condition at in�nity. To circumvent this di�culty,we adopt a singular perturbation approach and construct local (inner) and global (outer) ex-pansions with appropriate length scales in each subdomain to resolve the non-uniformity atin�nity. 64



Chapter 5. Convective Heat Transfer Past Small Cylindrical BodiesWe declare y to be the local variable and w(y; ") the local solution. In the global region, farfrom the body, we rescale the variables as x = "y and u(x; ") = w("�1x; ") and expand thelocal and global solutions asw(y; ") = � + f1(")W (1)(y) + f2(")W (2)(y) + � � � ; (5.6)u(x; ") = 1 + F1(")U (1)(x) + F2(")U (2)(x) + � � � : (5.7)The logarithmic growth in W (1)(y) as jyj ! 1 requires that we choose the gauge functions, fjand Fj , as fj(") = Fj(") = �� 1log "�j ; j = 1; 2; : : : : (5.8)This reciprocal logarithmic form of the gauge functions, as in (2.14) with d = 1, enables us tomatch the local and global expansions without di�culty. In particular, since (�1= log ")j � "for any j = 1; 2; : : : , we can obtain from (5.3a) and (5.3b) that the local solution for thetemperature is of the formw(y; ") = � + w(c)(y) 1Xj=1 aj �� 1log "�j + � � �= � + �� 1log "�w(c)(y)A(") + � � � : (5.9)Here, w(c)(y) is a canonical local solution with a logarithmic far-�eld structure,w(c)(y) � log jyj+ � � � ; jyj ! 1: (5.10)Also in (5.9), the aj for j � 1 are constant and A(") is asymptotic to an in�nite logarithmicseries of the form A(") � 1Xj=1 aj �� 1log "�j�1 : (5.11)This asymptotic expression is the same as (2.19) with d = 1. Thus, we have shown that theproblem in (5.3) is singular in nature and that its solution contains an in�nite logarithmicexpansion in terms of the small parameter ". Our goal is to avoid calculating the individualcoe�cients aj in (5.11) by formulating a problem that determines A(") directly.We outline here the hybrid asymptotic-numerical method for this single body case, which wewill extend in detail to the case of many bodies in the next section.Rescaling to the global variables in (5.3a) and (5.3c), and using (5.8), we can write the globalsolution as u(x; ") = 1 + 1Xj=1 aj �� 1log "�j G(x) + � � �= 1 + �� 1log "�G(x)A(") + � � � : (5.12)65



Chapter 5. Convective Heat Transfer Past Small Cylindrical BodiesHere, G(x) is the Green's function that satis�es�G = v � rG; x 2 R2nf0g; (5.13a)G! 0; jxj ! 1; (5.13b)G = log jxj+R+ o(1); x! 0; (5.13c)where R is the regular part of the Green's function. We de�ne �(") � �1= log " and, from thesecond term of the global expansion (5.12), we setu� 1 � u� where u� � �(")G(x)A("); "! 0: (5.14)We will formulate a related problem for u�, one that is straightforward to solve, and show thatits solution contains the in�nite logarithmic expansion A(").Using (5.13c) in (5.14), we obtain, as x! 0, that the leading-order form for u� isu� � �(")A(") log jxj+ �(")A(")R: (5.15)Using (5.10), the far-�eld form of the local solution, in terms of the global variable, isw(y; ") � � + �(")A(")[log jxj+ ��1(")] + � � � ; jyj ! 1: (5.16)We require that the global solution as x! 0 match to this far-�eld form of the local solution.Hence, we get that u� satis�es �u� = v � ru�; x 2 R2nf0g; (5.17a)u� ! 0; jxj ! 1; (5.17b)u� = �(")A(") log jxj+ �+A(")� 1 + o(1); x! 0: (5.17c)The �rst term in the right-hand sides of (5.15) and (5.17c) automatically agree, and the re-maining terms gives us the expression for A("),A(") = 1� �1� �(")R: (5.18)The expression forA(") in this unbounded-domain problem is similar in form to the expression in(2.31) for a bounded domain. In formulating this related problem, we have avoided calculatingthe individual coe�cients aj in (5.9) and (5.12) and, instead, have determined A(") directly.5.2 Matched Asymptotics for an Arbitrary Flow FieldWe now formulate the general convective heat transfer problem for an array of N small, cylin-drical bodies D"i of arbitrary cross-sectional shape. The surrounding uid has a known velocity�eld v = v(x) where x is the Oseen variable. The governing equation for the temperatureu(x; "), the boundary condition at each body surface and the condition at in�nity are�u� v � ru = 0; x 2 R2n N[i=1D"i ; (5.19a)"@u@n + �i(u� �i) = 0; x 2 @D"i ; i = 1; : : : ; N; (5.19b)u � 1; jxj = (x21 + x22) 12 !1: (5.19c)66



Chapter 5. Convective Heat Transfer Past Small Cylindrical BodiesHere, D"i is the cross-section of the ith cylindrical body of \radius" O(") for i = 1; : : : ; N andD"i is the scaled ith body, such that D"i = "D0i . Also, @=@n is the inward normal derivative tothe body and @D"i is the boundary of D"i . In the boundary condition (5.19b), which representsimperfect Newtonian cooling on the body surfaces, �i > 0 and �i > 0 are constants, where�i and �i represent the temperature on the boundary and the surface heat transfer coe�cientrespectively. The condition at in�nity in (5.19c) represents the ambient state of the temperaturefar from the bodies.In contrast to the approach of Leal [32], we study the convective heat transfer problem in theOseen region where x is O(1) far from the bodies of size O("). Although the small parameter" now appears as the measure of the body cross-section size and not in the governing equationas in the one body case of Section 5.1, the singular nature of the problem remains the same.We use the method of matched asymptotic expansions to construct a hybrid asymptotic-numerical method to solve (5.19) in the limit " ! 0. In the local region, close to the ithbody located at �i, we rescale the variables as yi = "�1(x� �i) and wi(yi; ") = u("yi + �i; ").These local variables have the same form as (4.27). From (5.19a) and (5.19b), the temperature,wi(yi; "), about the ith body satis�es�ywi � "v("yi + �i) � rywi = 0; yi 62 D0i ; (5.20a)@wi@n + �i(wi � �i) = 0; yi 2 @D0i ; (5.20b)where the subscript y indicates di�erentiation with respect to the local variable.We expand the local solution aswi(yi; ") = �i +W (0)i (yi; �1; : : : ; �N) + "W (1)i (yi; �1; : : : ; �N) + � � � ; (5.21)and take W (0)i (yi; �1; : : : ; �N) = Ai�iw(c)i (yi). Here, Ai = Ai(�1; : : : ; �N) is arbitrary andanalogous to the in�nite logarithmic series that we de�ned in (5.11), �i = �i("di) � �1=log("di)and w(c)i (yi) is the canonical local solution that satis�es�yw(c)i = 0; yi 62 D0i ; (5.22a)@w(c)i@n + �iw(c)i = 0; yi 2 @D0i ; (5.22b)w(c)i � log jyij � log di + p � yijyij2 + � � � ; jyij ! 1: (5.22c)This is a multi-body version of the canonical local problem in (2.10). In (5.22c), di = di(�i) isa positive constant that depends on the shape of the ith body. When �i =1, di represents thelogarithmic capacity (see Garabedian [14]) of D0i . Section 2.5 in Chapter 2 contains details onthe computation of di. Also in (5.22c), p is a vector that depends on �i and on the shape ofthe ith body. The far-�eld form of the local solution, to leading order in " and in terms of theglobal variable, iswi(yi; ") � �i + Ai�i[log jx� �ij+ ��1i ] + � � � ; jyij ! 1: (5.23)67



Chapter 5. Convective Heat Transfer Past Small Cylindrical BodiesIn the global region, far from the bodies, we expand the solution asu(x; ") = 1 + U (0)(x; �1; : : : ; �N) + "U (1)(x; �1; : : : ; �N) + "2U (2)(x; �1; : : : ; �N) + � � � : (5.24)We substitute (5.24) into (5.19a) and (5.19c) and require that U (0) match to the far-�eld formof the local solution in (5.23) as x! �i for each i = 1; : : : ; N . Hence, we get that U (0) satis�es�U (0) � v � rU (0) = 0; x 2 R2n N[i=1 f�ig; (5.25a)U (0) ! 0; jxj ! 1; (5.25b)U (0) = Ai�i log jx� �ij+ �i +Ai � 1 + o(1); x! �i; i = 1; : : : ; N: (5.25c)To solve for U (0) in (5.25), it is convenient to introduce the Green's function G(x; �) thatsatis�es �G� v � rG = 0; x 2 R2nf�g; (5.26a)G! 0; jxj ! 1; (5.26b)G = log jx� �j+ R+ o(1); x! �: (5.26c)Here, R = R(�) is a constant that we determine from the solution to (5.26). If the velocity�eld v is independent of x, then by translational invariance R is independent of the location,�, of the singularity.Now, using the principle of superposition, the solution for U (0) isU (0)(x; �1; : : : ; �N) = NXk=1Ak�kG(x; �k): (5.27)As x! �i, the leading-order form of U (0) isU (0) � Ai�i log jx� �ij+Ai�iRi + NXk=1k 6=i Ak�kG(�i; �k): (5.28)Comparing the �rst term in the right-hand sides of (5.28) and (5.25c), we observe that theyautomatically agree. Comparison of the remaining terms in these expressions gives us the linearsystem of N equations for Ai,[�iRi � 1]Ai + NXk=1k 6=i Ak�kG(�i; �k) = �i � 1: (5.29)In (5.28) and (5.29), Ri � R(�i) is the regular part of the Green's function that we can obtainfrom the solution to (5.26). We can also obtain the constants di, for i = 1; : : : ; N , from thesolution to the canonical local problem in (5.22). In some cases we can determine di analytically(see Section 2.5). Since �i = �1= log("di) ! 0 as " ! 0, the system (5.29) is asymptotically68



Chapter 5. Convective Heat Transfer Past Small Cylindrical Bodiesdiagonally dominant and so is non-singular in this limit. To leading order, as " ! 0, we havefrom (5.29) that Ai � 1� �i: (5.30)This leading-order approximation, which is just the di�erence between the temperature atin�nity and at the bodies, ignores the o�-diagonal terms in (5.29) that represent the interactionbetween the bodies. In Section 5.5, we examine the asymptotic results for the special cases ofN = 1 and N = 2 cylindrical bodies.The hybrid method that we have just described combines asymptotic analysis and simple nu-merics to solve (5.19). Using the hybrid method, a change in the cross-sectional shape of theith cylindrical body requires only the computation of the shape-dependent parameter di from(5.22). This process is independent of ", the order of magnitude of the size of the bodies.However, in a direct numerical solution to (5.19), restructuring the solution grid is necessaryfor a change in cross-sectional shape as well as for a change in ". Thus, the hybrid method hasthe advantage of avoiding such a computationally intensive procedure.In summary, after specifying the parameters:" order of magnitude of the size of the bodiesN number of bodies�i temperature on the ith body�i location of the ith bodydi body shape-dependent parametersRi regular part of the Green's function;one can solve (5.29) for Ai and hence determine the global solution U (0). Recall that Ai isanalogous to the in�nite logarithmic series in the small parameter " that we stated in (5.11).Hence, the hybrid method essentially sums the entire logarithmic expansion of the solutionwith an error ju� (1+U (0))j = O(") away from the bodies. We calculate a further term in theasymptotic expansion in the next section.5.3 A Higher-Order Term in the ExpansionIn Section 5.1, we showed that the solution for convective heat transfer from a small, cylindricalbody involves an in�nite sum of powers of 1= log ", where " represents the order of magnitudeof the size of the bodies. Then in Section 5.2, we showed how the solution to a hybrid problemthat is asymptotic to the desired solution essentially sums the entire in�nite logarithmic series.In this section, for the special case of N cylinders of circular cross-section with radii �i" fori = 1; : : : ; N , we show how to continue the asymptotic expansion of the solution to includethe �rst term that is smaller than all positive powers of 1= log ". We will demonstrate how thisterm reveals the asymmetry of the solution near each cylindrical body of circular cross-section.In the local region, we substitute the expansion (5.21) into (5.20a) and (5.20b). As in Section 5.2,we take W (0)i = Ai�iw(c)i , where w(c)i is the canonical local solution to (5.22). For bodies of69



Chapter 5. Convective Heat Transfer Past Small Cylindrical Bodiescircular cross-section, the vector p in (5.22c) vanishes and we can express W (0)i analytically asW (0)i = Ai�i[log jyij � log di]: (5.31)Here, the coe�cient Ai is the solution to (5.29) and the body shape-dependent parameter di(see Section 2.5) is di = �ie�1=�i�i : (5.32)Continuing to the next order in the expansion and using v(�i + "yi) = v(�i) + O("), we �ndthat the solution W (1)i to the O(") local problem satis�es�yW (1)i = v(�i) � ryW (0)i ; yi 62 D0i ; (5.33a)@W (1)i@n + �iW (1)i = 0; yi 2 @D0i : (5.33b)Substituting (5.31) into the right-hand side of (5.33a), we obtain that the solution W (1)i isW (1)i =Bi�i[log jyij � log di] +Ci � (yi �Diyi=jyij2)+ Ai�iv(�i) � �12yi log jyij+ Eiyi=jyij2� : (5.34)To satisfy the boundary condition (5.33b), the constants Di and Ei areDi = �2i ��i�i � 1�i�i + 1� ; Ei = �2i2 � (1� �i�i) log�i + 11 + �i�i � : (5.35)In (5.34), we will determine the unknown constant vector Ci through a leading-order matchingcondition and the unknown Bi through a higher-order matching condition. Substituting (5.31)and (5.34) into (5.21), we obtain that the far-�eld form of the local solution, to leading orderin " and in terms of the global variable, iswi =�i +Ai�i log jx� �ij+Ai +Ci � (x� �i)+ Ai�i2 [log jx� �ij � log "] v(�i) � (x� �i) + � � � ; (5.36)as jyij ! 1.In the global region, far from the bodies, we expand the solution u as in (5.24), where theleading-order global solution U (0) is in (5.27) and the Green's function G satis�es (5.26). Tomatch the global solution with the (x� �i) log jx � �ij term in (5.36), G(x; �i) must have theform G� log jx� �ij �R(�i) = v(�i)2 � (x� �i) log jx� �ij+ a(�i) � (x� �i) + � � � ; (5.37)as x ! �i, for some constant vector a(�i). As x ! �i, we can decompose the solution to theleading-order global problem in (5.27) as the sum of a singular part representing the inuenceof only the ith body and an analytic part representing the interaction with the other bodies,U (0) = Ai�iG(x; �i) + NXk=1k 6=i Ak�kG(x; �k): (5.38)70



Chapter 5. Convective Heat Transfer Past Small Cylindrical BodiesSubstituting (5.38) into (5.24) and using (5.37) and expanding the analytic part in a Taylorseries, we obtain that the form of the global solution as x! �i, for i = 1; : : : ; N , isu =1 +Ai�i log jx� �ij+Ai�iRi+ Ai�i2 v(�i) � (x� �i) log jx� �ij+ Ai�ia(�i) � (x� �i)+ NXk=1k 6=i Ak�kG(�i; �k) + NXk=1k 6=i Ak�krG(�i; �k) � (x� �i) + � � � : (5.39)The leading-order matching condition requires that (5.36) and (5.39) agree. First, we observethat the (x��i) log jx��ij and log jx��ij terms in these expressions automatically agree. Next,matching the O(1) terms, we obtain the linear system for Ai in (5.29) as we expect. Finally, inmatching the (x� �i) terms, we determine the constant vector Ci asCi = Ai�i � log "2 v(�i) + a(�i)�+ NXk=1k 6=i Ak�krG(�i; �k); (5.40)where G is the solution to (5.26a) and (5.26b) with the singular form in (5.37). In order todetermine fully the constant vector Ci, we must obtain the constant vector a(�i). To do so, weintroduce polar coordinates x = �i + (ri cos �; ri sin �) and we compute the Fourier coe�cientsof the left-hand side of (5.37) at ri = � � 1,G(c)i (�) = 1� Z 2�0 [G(ri; �)� log ri � Ri] ���ri=� cos � d�; (5.41)G(s)i (�) = 1� Z 2�0 [G(ri; �)� log ri � Ri] ���ri=� sin � d�: (5.42)In general, the Fourier coe�cients, G(c)i (�) and G(s)i (�), depend on �i. Using the right-handside of (5.37) in (5.41) and (5.42), we obtain that�G(c)i (�); G(s)i (�)� � v(�i)2 � log � + a(�i)�; � ! 0: (5.43)Thus, the constant vector a(�i) isa(�i) = lim�!0�1� �G(c)i (�); G(s)i (�)�� log �2 v(�i)� : (5.44)Next, we describe how to determine the constant Bi in (5.34). Substituting (5.31) and (5.34)into (5.21) and taking the far-�eld expansion up to O("), we �nd that the solution U (1) to theO(") global problem satis�es�U (1) � v � rU (1) = 0; x 2 R2n N[i=1 f�ig; (5.45a)U (1) ! 0; jxj ! 1; (5.45b)U (1) � Bi�i[log jx� �ij+ ��1i ]; x! �i; i = 1; : : : ; N: (5.45c)71



Chapter 5. Convective Heat Transfer Past Small Cylindrical BodiesUsing the principle of superposition, the solution for U (1) isU (1)(x; �1; : : : ; �N) = NXk=1Bk�kG(x; �k): (5.46)In analogy to the linear system for Ai in (5.29), we obtain the N equations for Bi,[�iRi � 1]Bi + NXk=1k 6=i Bk�kG(�i; �k) = 0; i = 1; : : : ; N: (5.47)Since the system in (5.47) is asymptotically diagonally dominant as "! 0, it is non-singular inthis limit. This determines that Bi = 0 for i = 1; : : : ; N , and thus U (1) � 0.In summary, the global solution for an array of N circular cylinders isu = 1 + NXk=1Ak�kG(x; �k) +O("2); (5.48)and the local solution near the ith cylindrical body iswi =�i + Ai�i[log jyij � log di]+ "�Ci � (yi �Diyi=jyij2) + Ai�iv(�i) � �12yi log jyij+ Eiyi=jyij2��+O("2): (5.49)Here, Ai is the solution to (5.29), the constant vector Ci is in (5.40) and the constants Di andEi are in (5.35). We can see that the O(") term in (5.49) involves yi and not just the magnitudejyij. This indicates that the temperature �eld is asymmetric near each cylindrical body, evenfor a body of circular cross-section. We will illustrate this e�ect in examples 5.5.2 and 5.5.3 inSection 5.5.5.4 Two Speci�c Flow Fields5.4.1 Array of Cylindrical Bodies in Uniform FlowWe examine the special case where the velocity �eld is a uniform ow in the positive x1-directionand where we �x the temperature on the boundary of each cylindrical body. Thus, in the generalproblem (5.19), we set the velocity �eld to v = (1; 0) and �i =1 for i = 1; : : : ; N .In this case, we determine analytically that the Green's function G(x; �), satisfying (5.26) withv = (1; 0), is G(x; �) = � exp �x1 � �12 �K0� jx� �j2 � ; (5.50)where � = (�1; �2) and K0(z) is a modi�ed Bessel function. As x! �, G(x; �) has the formG(x; �) � log jx� �j � log 4 +  + � � � ; (5.51)72



Chapter 5. Convective Heat Transfer Past Small Cylindrical Bodieswhere  = 0:5772 : : : is Euler's constant. Comparing (5.51) and (5.26c), we obtain that R isindependent of � and is R =  � log 4: (5.52)Substituting (5.50) into (5.27) and using (5.24), we have that the temperature in the globalregion satis�es u(x; ") = 1� NXi=1 Ai�i exp �x1 � �i;12 �K0� jx� �ij2 �+ O("): (5.53)Here, �i;1 is the x1-coordinate of �i and �i = �1= log("di). We obtain the coe�cients Ai, fori = 1; : : : ; N , by substituting (5.50) and (5.52) into (5.29) which yields the linear system[�i( � log 4)� 1]Ai � NXk=1k 6=i Ak�k exp ��i;1 � �k;12 �K0� j�i � �kj2 � = �i � 1: (5.54)The o�-diagonal terms in (5.54), containing exp[(�i;1 � �k;1)=2], reect the asymmetry of thetemperature �eld in the global region. To leading order, as " ! 0, we have Ai � 1 � �i.Thus, to leading order, the Ai are independent of the locations of the small, cylindrical bodiesand hence the asymmetry of the temperature �eld. In Section 5.5, we test the validity of thisno-interaction limit for the speci�c example of two identical cylinders of elliptic cross-section.5.4.2 Array of Cylindrical Bodies in Shear FlowNext, we consider the special case of N small, cylindrical bodies of arbitrary cross-section in asimple shear ow velocity �eld. Frankel and Acrivos [13] examined the case of one small cylinderof circular cross-section in their study of heat and mass transfer from spheres and cylinders inshear ow.As in Section 5.4.1, we �x the temperatures on the boundaries. In this case, u satis�es (5.19)with v = (x2; 0) and �i =1 for i = 1; : : : ; N . To calculate R, the regular part of the Green'sfunction, we introduce the new variables X = x � � and  (X) = G(x; �) into (5.26) withv = (x2; 0), giving � � (X2 + �2) @ @X1 = 0; X 2 R2nf0g; (5.55a) ! 0; jXj ! 1; (5.55b) = log jXj+R+ o(1); X! 0; (5.55c)where X = (X1; X2). We can see from (5.55) that R depends only on �2, the x2-coordinate of�. The solution to (5.55) is (see Bretherton [3]), (X) = � Z 10 (1 + t2=12)� 122t exp"�(X1 � 12X2t� �2t)24t(1 + t2=12) + (X2)24t #dt: (5.56)73



Chapter 5. Convective Heat Transfer Past Small Cylindrical BodiesThus, in terms of x, the solution to (5.26) with v = (x2; 0) isG(x; �) =� Z 10 (1 + t2=12)� 122t �exp"� [(x1 � �1)� 12(x2 � �2)t� �2t]24t(1 + t2=12) + (x2 � �2)24t #dt: (5.57)
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0 0.5 1 1.5 2 2.5 3 3.5 4R �i;2Figure 5.1: The regular part of the Green's function R versus �i;2 for the simple shear ow case.To determine the form of G(x; �) as x! �, from (5.26c) we writeR = limx!�fG(x; �)� log jx� �jg: (5.58)As in [3], we add the modi�ed Bessel function K0(jx� �j) asR(�) = limx!�(G(x; �) +K0(jx� �j)� log 2 + ): (5.59)This makes the integral in (5.57) converge when x = �. Thus,R(�) = � Z 10 12t �(1 + t2=12)� 12 exp�� (�2)2t4(1 + t2=12)�� e�t� dt� log 2 + : (5.60)Since the velocity �eld v = (x2; 0) for the simple shear ow depends on spatial position, theconstant Ri = R(�i) is dependent on the location �i. Here, Ri depends only on �i;2, the x2-coordinate of �i. Figure 5.1 contains the plot of R, that we computed numerically from (5.60),versus the x2-coordinate of the location of the ith cylindrical body.We obtain the linear system for Ai in the simple shear ow case by substituting the expressionsfor Ri = R(�i) from (5.60) and G(�i; �k) from (5.57) into (5.29).74
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Figure 5.2: Test of no-interaction limit: A1 and A2 versus the separation distance r for twoidentical, elliptic cylinders aligned with the uniform ow.5.5 Results and DiscussionWe present the results of our study through various examples. In one particular example, wecompare the asymptotic solution with the exact analytical solution.Example 5.5.1 We consider two identical, elliptic cylinders with constant temperatures onthe boundaries in a uniform ow with v = (1; 0). The inset in Figure 5.2 shows the alignmentof the cylinders in the uniform ow. The cylinders have semi-axes "a and "b, where a = 1:0and b = 0:5, so the body shape-dependent parameter for both cylinders is d = 0:75 (seeSection 2.5). Since the constant temperature � on each cylinder boundary is greater than thatof the surrounding uid, the two cylinders behave as heat sources. In Figure 5.2, for " = 0:02,we have plotted the values of A1 and A2 from (5.54) versus r, the separation distance betweenthe two cylinders. The �gure indicates that there is still a signi�cant interaction between thetwo bodies even at r = 500. This suggests that the no-interaction limit is not valid at this valueof ".In Figure 5.3, for r = 5, we have plotted A1, A2 and the �rst approximation a0 versus ". The�rst approximation a0 is the solution to (5.54) ignoring the o�-diagonal terms, and isa0 = �� 1�( � log 4)� 1 ; (5.61)where � = �1= log("d) and  = 0:5772 : : : is Euler's constant. The results reveal that a0 is areasonable approximation for A1, the coe�cient associated with the upstream cylindrical body.75



Chapter 5. Convective Heat Transfer Past Small Cylindrical BodiesHowever, a0 greatly underestimates A2, the coe�cient for the downstream body that lies in the\wake" of the other.
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Figure 5.3: Test of �rst approximation: A1, A2 and the �rst approximation a0 versus the smallparameter " for two identical, elliptic cylinders aligned with the uniform ow.In Figure 5.4, for " = 0:02 and r = 5, we show plots of A1 and A2 versus �, the alignment anglebetween the cylinders (see the inset in Figure 5.4). We observe that the coe�cients for the twocylinders are equal at � = �=2. This indicates that the �rst approximation a0 that we plottedin Figure 5.3 would be a reasonable approximation for both A1 and A2 in this case.Example 5.5.2 We consider N circular cylinders of radius " with constant temperatures onthe boundaries in a uniform ow. In this case, �i = 1, �i =1 and v = (1; 0) for i = 1; : : : ; N .We use (5.50) and (5.52) in (5.41) and (5.42) to obtain the Fourier sine and cosine coe�cients,G(s) � 0; G(c) � ��2(log 4� ) + 12� log �; � ! 0: (5.62)Thus, from (5.44), the components of a = (a1; a2) area1 = �12(log 4� ); a2 = 0: (5.63)Note that for a uniform ow, a is independent of �i. Using (5.63) in (5.40), we determine thatthe vectors Ci = (Ci;1; Ci;2), for i = 1; : : : ; N , areCi = Ai�i2 �log "4 + ; 0�+ NXk=1k 6=i Ak�krG(�i; �k): (5.64)76
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Figure 5.4: A1 and A2 versus the alignment angle � for two identical elliptic cylinders.The summation term in (5.64) represents the interaction between the cylindrical bodies.We compare the local solution wi in (5.49) for two circular cylinders (N = 2) to that for onecircular cylinder (N = 1) in a uniform ow. We substitute (5.64) into (5.49) in which Di = 1,Ei = 0 and Ai is the solution to (5.54). In Figure 5.5, for cylinders of radius " = 0:02, wehave plotted contour lines of constant temperature 1.3 for each of two circular cylinders adistance r = 1:5 apart and the corresponding contour line for one circular cylinder alone. Weplotted each contour in reference to the origin (yi;1; yi;2) = (0; 0) of the ith cylindrical body. Incomparison to the contour for one cylinder alone, the �gure indicates a substantial expansionof the w2 contour, corresponding to the downstream body, whereas the w1 contour shows thatthe upstream body is relatively insensitive to the presence of the other body. Hence, we cansee that the main interaction between the two cylinders in the uniform ow is the inuence ofthe upstream body on the \wake" of the one downstream.Example 5.5.3 We show how to calculate even further terms in the asymptotic expansion ofthe solution for one circular cylinder of radius " with a constant temperature on its boundaryin a uniform ow. In this case, N = 1, � = 1, v = (1; 0) and � = 1, where we have droppedthe subscript 1 for brevity. Thus, the body shape-dependent parameter in (5.32) simpli�es tod = 1 and from (5.31), we can write W (0) = A� log jyj: (5.65)Here, A = (1� �)=[�(log 4 � ) + 1] is the solution to (5.54) and � = �1= log ". From (5.35),we obtain that D = 1 and E = 0. Hence, (5.34) simpli�es toW (1) = �C1�%� 1%�+ A�2 % log %� cos �; (5.66)77



Chapter 5. Convective Heat Transfer Past Small Cylindrical Bodies� = 1:5, d = 1:0, " = 0:02, r = 1:5 w1w2w� � �-15 -10 -5 0 5 10 15 20 25yi;1
yi;2 100-10Figure 5.5: Local solution temperature contours at w = 1:3 for two circular cylinders (w1 andw2) and for one circular cylinder (w) of radius " in a uniform ow.where y = (% cos�; % sin �) and % = jyj. Also, C1 = (� � 1)=2 from (5.64). We solve for W (2),that satis�es (5.33a) and (5.33b) with v = (1; 0) and � =1 , and obtainW (2) =�C14 � A�16 � %2 + A�8 %2 log %� b log%+ A�16 � C14+ ��C14 � �� %2 + �%2 + A�16 %2 log %� C14 � cos 2�: (5.67)To determine the constants � and b, we substitute (5.65) and (5.67) into (5.21) and express thelocal solution in terms of the global variable. A leading-order matching condition requires that� = (��1)=16. Then, retaining only terms of O("2), we obtain the singular form for the globalsolution U (2) of the expansion in (5.24). Thus, the solution U (2) to the O("2) global problemsatis�es (5.45a) and (5.45b) and, as r = jx� �j ! 0, has the singular formU (2) � �b log r � C1 cos �r � C1 cos2 �2 � b� + A�16 : (5.68)The form of U (2) as r! 0 requires that we express the solution asU (2)(r; �) = b exp�r cos �2 �K0�r2�� C12 exp �r cos �2 �K1�r2� cos �: (5.69)Here, K0(z) and K1(z) are modi�ed Bessel functions. As x! �, or as r! 0, the expression in(5.69) has the form U (2) � �b log r � C1cos �r � C1 cos2 �2 + b(log 4� ): (5.70)78



Chapter 5. Convective Heat Transfer Past Small Cylindrical BodiesMatching requires that (5.68) and (5.70) agree. We observe that the �rst three terms in theseexpressions automatically agree. Comparing the remaining terms, we �nd that the unknownconstant b is b = A�216[1 + �(log 4� )] = �2(1� �)16[1 + �(log 4� )]2 : (5.71)Thus, the global solution is of the form u = 1 + U (0) + "2U (2).We can �nd the exact analytical solution to (5.19) for this special case. Following Philip etal. [39], we let u(x) = 1� (1� �)ex1=2H(x); (5.72)and introduce polar coordinates (x1 � �1; x2 � �2) = (r cos �; r sin �). Here, � = (�1; �2) is thelocation of the circular cylinder. Then H satis�es4H �H=4 = 0; r > "; (5.73a)H = e�r cos �=2; r = "; (5.73b)Her cos �=2 ! 0; r!1: (5.73c)The solution for H in terms of the polar coordinates isH(r; �) = I0("=2)K0("=2)K0(r=2) + 2 1Xn=1(�1)n In("=2)Kn("=2)Kn(r=2) cosn�; (5.74)where In(z) and Kn(z) are modi�ed Bessel functions of order n. Changing back to the originalvariables, we obtain that the exact analytical solution uE to (5.19) with � =1 about a circularcylinder of radius " in a uniform ow isuE(x; ") =1� (1� �) exp �x1 � �12 �� I0("=2)K0("=2)K0� jx� �j2 �+ 2 1Xn=1(�1)n In("=2)Kn("=2)Kn � jx� �j2 � cosn�) ; (5.75)where tan � = (x2 � �2)=(x1 � �1).We compare the asymptotic solution with the exact analytical solution in terms of the heat uxQ across the boundary. The heat ux isQ = Z@D @u@n ds = � Z 2�0 @u@jxj����jxj="" d� = � Z 2�0 @w@jyj����jyj=1d�: (5.76)Using the asymptotic solution to compute the heat ux, we substitute the local expansion(5.21), using (5.65){(5.67), into (5.76). To leading order in ", the asymptotic heat ux Q1 isQ1 = �2�A�: (5.77)79
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Chapter 6Low Reynolds Number Fluid Flow Past anAsymmetric Cylinder
In this chapter, we apply the hybrid method to a non-linear problem on an unbounded domain.We consider two-dimensional, steady, incompressible, viscous uid ow at low Reynolds numberabout an arbitrarily shaped cylindrical body with a uniform free-stream velocity of magnitudeU1 in the positive x1-direction. Low Reynolds number uid ow can model the locomotionof micro-organisms (see Lighthill [34]) with a Reynolds number in the range of 10�3 to 1. Inmeasuring the force that the uid exerts on the body, the dimensionless lift and drag coe�cientsare of particular interest.The equations for the velocity u = (u1; u2) and pressure p of the uid ow are the Navier-Stokesequations, which are (u � r)u = �1�rp+ ��u; (6.1a)r � u = 0: (6.1b)Here, u and p are functions of the spatial variable, x = (x1; x2). Also, � is the density, and � isthe kinematic viscosity of the uid. All of the quantities above are dimensional. The boundaryconditions of the problem areu = 0; x 2 @D; u! (U1; 0); jxj ! 1: (6.2)Here, @D is the boundary of the body. Typically, we express the problem in terms of dimen-sionless variables using a characteristic length scale L of the body and the magnitude of theuniform free-stream velocity, U1. With this form of non-dimensionalization, we are able toidentify the dimensionless quantity known as the Reynolds number, Re = U1L=�.The problem of slow, steady uniform ow past a stationary body is rich in history. In the midnineteenth century, Stokes considered an approximation of the Navier-Stokes equations in whichhe neglected the e�ects of inertial forces. The \Stokes paradox" refers to his inability to �nda solution to the resulting Stokes equations in two dimensions. About sixty years later, Oseendetermined that the Stokes equations were not valid at in�nity and constructed a linear, �rstapproximation to the Navier-Stokes equations which he could solve in a region where the ow isnearly uniform. We can see that this low Reynolds number problem is a singular perturbation81



Chapter 6. Low Reynolds Number Fluid Flow Past an Asymmetric Cylinderproblem, in which the Stokes approximation is valid in a local (inner) region, close to the body,and the Oseen approximation is valid in a global (outer) region, far from the body.In 1957, Kaplun [24] and Proudman & Pearson [44] used the method of matched asymptoticexpansions to resolve the Stokes paradox in two-dimensional, steady, viscous ow past a circularcylinder. Proudman & Pearson formulated the problem in terms of the dimensionless streamfunction, whereas Kaplun used velocity and pressure in his formulation. In their separatestudies, each were able to determine analytically the �rst two terms in an asymptotic expansionfor the drag coe�cient and, with some di�culty, Kaplun was able to determine the third term.Also, Kaplun remarked on how to obtain the form of an expansion for a cylinder of arbitrarycross-sectional geometry. In Chapter 2, we discussed the equivalence principle of Kaplun thatasymptotically links the drag coe�cients of cylinders of any cross-sectional shape.Twenty-�ve years later, Shintani, Umemura & Takano [49] applied the method of matchedasymptotic expansions to determine the lift and drag coe�cients of an elliptic cylinder in lowReynolds number uid ow. They were able to obtain terms up to order (logRe)�2 in the innerexpansion for the lift and drag forces acting on the cylinder. However, the truncated series forthe drag and lift coe�cients are only accurate for moderately small Reynolds number. Thus,further terms are necessary to provide reasonable accuracy for a wider range of low Reynoldsnumbers. For the special case of an elliptic cross-section, we will compare the leading-orderform of our lift coe�cient result to theirs.Shortly thereafter, in 1986, Lee & Leal [33] numerically implemented the method of matchedasymptotic expansions using velocity and pressure as variables in their study of low Reynoldsnumber ow past cylinders of arbitrary cross-sectional shape. Like Shintani et al., they wereable to determine expressions for the lift and drag force on the cylinders that were correct upto order (logRe)�2.We extend the analysis of Kropinski, Ward & Keller [29] who applied the hybrid method incalculating the drag coe�cient, correct to all logarithmic terms, of a cylindrical body that issymmetric about the direction of the free-stream. We will refer to this as the symmetric case.In extending the work of Kropinski et al., we allow the cylinder cross-section to be asymmetricwith respect to the free-stream and hence, the body could have a non-zero lift force. For onecylindrical body, of arbitrary cross-sectional shape D0 and asymmetric with respect to the free-stream, we construct an asymptotic solution for the lift and drag coe�cients in the limit ofRe ! 0. Applying the hybrid method enables us to sum all the logarithmic terms appearingin the expansions for the lift and drag forces, resulting in an error that is O(Rep) instead ofO((logRe)�q) for some p and q.We introduce the stream function  , in terms of the dimensionless uid velocity componentsv = (v1; v2), as v1 = @ @y v2 = �@ @x :Hence, the continuity equation (in dimensional form in (6.1b)) is automatically satis�ed. As is82



Chapter 6. Low Reynolds Number Fluid Flow Past an Asymmetric Cylinderwell-known, in terms of polar coordinates centred in the body, the stream function satis�es�2 + "Jr( ;� ) = 0; r 62 D0; (6.3a) = @ @n = 0; r 2 @D0; (6.3b) � r sin �; r = (x21 + x22)1=2!1: (6.3c)Here, " � Re = U1L=� � 1 is the Reynolds number based on the length scale L of the cylindercross-section D0, and Jr is the Jacobian, Jr(f; g) � r�1(frg� � grf�).In Sections 6.1 and 6.2, we outline the standard singular perturbation analysis of (6.3) in thetwo regions of the solution domain; the \Stokes" (inner) and \Oseen" (outer) regions. Usingthe asymptotic structure that unfolds in the standard analysis, we apply the hybrid method to(6.3) in Section 6.3 and formulate a related problem for the stream function that we will solvenumerically by extending the �nite-di�erence code of Kropinski et al. [29]. The solution of therelated problem contains the entire in�nite logarithmic expansion of the ow �eld and the forcecoe�cients. In Section 6.4, we describe certain details of numerically solving the hybrid relatedproblem, including the necessary modi�cations to the symmetric case �nite-di�erence code.We derive an asymptotic expression for the lift coe�cient, CL, in Section 6.5, that is correctto all logarithmic terms. For the special case of an inclined elliptic cylinder, in Section 6.6, wedetermine an analytic expression for a body shape-dependent matrix M that is analogous tothe parameter d of the symmetric case. In Section 6.7, we provide details of certain analyticalformulae that we require in the numerical solution of the hybrid related problem. Finally, inSection 6.8, we illustrate the hybrid method results in terms of the lift coe�cient, CL.6.1 The Stokes RegionIn the Stokes (inner) region where r = O(1), the stream function satis�es (6.3a) with " = 0 and(6.3b). We declare r and  to be the Stokes variables and expand the stream function in theform  (r; �; ") = 1Xj=1 �j(") j(r; �) + � � � ; (6.4)where �(") � �1= log ". Substituting (6.4) into (6.3a){(6.3b), we �nd that  j for j = 1; 2; : : :satis�es �2 j = 0; r 62 D0; (6.5a) j = @ j@n = 0; r 2 @D0: (6.5b)The asymptotic form of  j as r ! 1 involves linear combinations of fr3; r log r; r; r�1g cos�and fr3; r log r; r; r�1g sin �. To match with the Oseen expansion, the r3 terms must vanish.Thus, we can write the far-�eld form of  j as j � aj � [(r log r cos �; r log r sin �) +M(r cos �; r sin �)] + � � � ; (6.6)83



Chapter 6. Low Reynolds Number Fluid Flow Past an Asymmetric Cylinderas r ! 1. We were inspired in our expression for the far-�eld form of the stream function  jby the section on viscous ow problems of Hsiao & MacCamy [19]. In (6.6), aj = (acj ; asj),for j � 1, are constant vectors that are independent of the Reynolds number, ". Also, M is a2x2 matrix that depends on the cross-sectional shape of the body and on its orientation withrespect to the free-stream. The matrixM is analogous to the body shape-dependent parameterd of the symmetric case.Thus, the Stokes expansion has the far-�eld behaviour � 1Xj=1 �j(") aj � [(r log r cos �; r log r sin �) +M(r cos �; r sin �)] ; (6.7)as r!1. We can also write the far-�eld behaviour of the Stokes expansion as � 1Xj=1 �j(") aj � [y log jyj+My] ; (6.8)as r = jyj ! 1. Here, y = (r cos �; r sin �). We compare this to the symmetric case thatKropinski et al. [29] studied in which, due to the symmetry of the ow �eld, it was onlynecessary to include sin � terms in the stream function expansion.6.2 The Oseen RegionIn the Oseen (outer) region of the solution domain, where r = O("�1), we introduce newvariables � = "r, x = "y = (� cos�; � sin �) and 	(�; �; ") = " (�"�1; �; "), and expand 	 as	(�; �; ") = � sin � + 1Xj=1 �j(")	j(�; �) + � � � : (6.9)Again, � � �1= log ".Substituting (6.9) into (6.3a) and (6.3c) and matching 	 as � ! 0 to the far-�eld form of theStokes expansion in (6.7), we �nd that a1 = (0; 1) so that 	1 satis�esLos	1 � �2	1 + �sin �� @@� � cos � @@���	1 = 0; � > 0; (6.10a)	1 ! 0; �!1; (6.10b)	1 � (log �+m22 + as2)� sin � + (m21 + ac2)� cos�; �! 0: (6.10c)We will elaborate later on the signi�cance of the form of the �rst constant vector, a1. In (6.10a),Los is the linearized Oseen operator and 	1 is the linearized Oseen solution. In (6.10c), mij isthe entry in row i and column j of the matrix M. For j = 2; 3; : : : , the functions 	j satisfyLos	j = � j�1Xk=1 J�[	k;�	j�k]; � > 0; (6.11a)	j ! 0; �!1; (6.11b)	j � aj � [x log jxj+Mx] + aj+1 � x; � = jxj ! 0: (6.11c)84



Chapter 6. Low Reynolds Number Fluid Flow Past an Asymmetric CylinderAgain, the constant vectors aj for j = 2; 3; : : : are independent of the Reynolds number, ". Thesolution to (6.11) recursively determines these constant vectors.For the symmetric body case, all the acj components of aj vanish. As well for this case, we willsee in Section 6.6 that the o�-diagonal entries of the matrix M are zero.For " ! 0, the drag CD and lift coe�cient CL for a cylinder of arbitrary cross-section are ofthe form [see Section 6.5]CD � 4��" 0@ 1Xj=1 asj�j�1 + � � �1A ; CL � �4��" 0@ 1Xj=2 acj�j�1 + � � �1A : (6.12)We begin the in�nite sum in the lift coe�cient expression at j = 2 since ac1 = 0 (recall thata1 = (0; 1)). At this stage, we see that with � � �1= log ", where " is the Reynolds number,the coe�cient of drag is O((" log ")�1) and the coe�cient of lift is O("�1(log ")�2).Kropinski et al. [29] noted that Kaplun's three-term expression for the drag coe�cient providesa poor approximation of the experimental values unless " is very small (see Van Dyke [56]). Itis possible to compute numerically further coe�cients in the series from the in�nite sequenceof partial di�erential equations. However, one would still have to truncate the series at some�nite j. In Chapter 1, we demonstrated the poor accuracy of a �ve-term reciprocal logarithmicexpansion at moderate values of the perturbation parameter. Instead of truncating the seriesfor the lift and drag coe�cients, we show that the hybrid asymptotic-numerical method allowsus to sum all the terms in the in�nite logarithmic series while avoiding the direct and tediouscalculations of the individual coe�cients in the asymptotic expansions.6.3 The Hybrid FormulationWe de�ne the vector function A(") as asymptotic to the in�nite logarithmic seriesA(") = (Ac("); As(")) � 1Xj=1 aj�j�1("); "! 0: (6.13)As in the previous section, the aj = (acj ; asj) for j � 1 are constant vectors, and � � �1= log "where " is the Reynolds number. To obtain these constant vectors, it would be necessary tosolve a recursive set of linearized, forced Oseen problems. In the symmetric case, Kaplun [24]was able to determine asj for j = 1; 2; 3. However, it is analytically intractable to calculate anymore of the asj . For this reason, we will apply the hybrid method in order to �nd A(") directly.We de�ne the vector function  c(�; �) to be the canonical inner solution satisfying�2 c = 0; r 62 D0; (6.14a) c = @ c@n = 0; r 2 @D0; (6.14b) c � y log jyj+My; r = jyj ! 1: (6.14c)Again,M is a 2x2 matrix that depends on the shape of the body and is analogous to the shape-dependent parameter d in the symmetric case. The solution of the canonical inner problem85



Chapter 6. Low Reynolds Number Fluid Flow Past an Asymmetric Cylinderfor a speci�c cylinder cross-section provides the matrix M for that shape. For certain cross-sectional shapes, such as an ellipse, it is possible to determine M analytically. In Section 6.6,we show how to determine M for an ellipse inclined at an angle � to the free-stream. Thecanonical problem in (6.14) is a vector analogue in terms of polar coordinates of the canonicallocal problem in (2.10).Using (6.13) and (6.14) together with (6.6), the Stokes expansion (6.4) is asymptotic to (r; �; ") = �(")A(") � c(r; �) + � � � : (6.15)Substituting (6.14c) into (6.15) and writing the result in terms of the Oseen variable x = "y,we get the far-�eld form � "�1A(") � [x+ �(")x log jxj+ �(")Mx] ; jyj ! 1: (6.16)We now formulate the related problem for the stream function. The related problem for A(")and the auxiliary stream function 	H � 	H(�; �; ") is�2	H + J�(	H;�	H) = 0; � = jxj > 0; (6.17a)	H � � sin �; �!1; (6.17b)	H � A(") � [x+ �(")x log jxj+ �(")Mx] ; �! 0: (6.17c)The solution to the related problem will allow us to compute A(").The related problem is a hybrid asymptotic-numerical formulation of the original problem (6.3)but in terms of the Oseen (outer) variables. In the related problem, we have replaced theboundary conditions on the cylindrical body in (6.3b) by the singularity structure (6.17c). Wederived the form of the singularity through the far-�eld behaviour of the logarithmic expansionin the Stokes region. Applying the hybrid method reduces the problem to computing thesolution to the parameter-dependent problem (6.17) instead of computing the solutions to thein�nite sequence of outer problems in (6.11). In terms of A, the asymptotic formula for the liftand drag coe�cients, valid to within all logarithmic terms, is(CL;�CD) = �4�" [�(")A(") + � � � ]; �(") = �1= log ": (6.18)We found that a1 = (0; 1), which we substitute into (6.13) to see that Ac = O(�) and thatAs = O(1). Thus, we see that the lift coe�cient is smaller than the drag coe�cient by a factorof O((log ")�1).6.4 Numerical Solution of the Hybrid Related Problem in theOseen RegionIn numerically solving the parameter-dependent hybrid related problem in (6.17), we �rst de-compose the solution as	H(�; �; ") = � sin � + �(")A(") � (	oc;	os) + 	�(�; �): (6.19)86



Chapter 6. Low Reynolds Number Fluid Flow Past an Asymmetric CylinderUsing this expression, we will construct a problem to solve for 	� that is regular as �! 0. In(6.19), 	oc and 	os correspond to the cosn� and sinn� parts of the linearized Oseen solutionrespectively. From the form of (6.10), we have that 	oc and 	os satisfyLos(	oc;	os) = 0; � > 0; (6.20a)(	oc;	os)! 0; �!1; (6.20b)	oc � � log� cos �; 	os � � log � sin � �! 0: (6.20c)Here, Los is the linearized Oseen operator as de�ned in (6.10a).The solution for 	os, from Proudman & Pearson [44], is	os(�; �) = � 1Xn=1 �n hK0��2��In�1��2� + In+1��2�� + 2K1��2� In��2�i sinn�: (6.21)In this expression, Kn(z) and In(z) are modi�ed Bessel functions of order n of the �rst andsecond kind. In a similar manner (see Section 6.7 for details), we determine 	oc(�; �) to be	oc(�; �) = �4 1Xn=1K0��2� In��2� cosn�: (6.22)For small z = �=2, the asymptotic behaviours as z ! 0 of the modi�ed Bessel functions areK0(z) � � log�z2� �  + � � � ; K1(z) � 1z + � � � ; (6.23a)I0(z) � 1 + � � � ; I1(z) � z2 + � � � : (6.23b)In (6.23a),  = 0:5772 : : : is Euler's constant. Using (6.23) in (6.21) and (6.22), we obtain thatthe behaviours of 	oc and 	os, as �! 0, are	oc � � log � cos� + ( � log 4)� cos�; (6.24a)	os � � log � sin � + ( � log 4� 1)� sin �; �! 0: (6.24b)Substituting (6.19) into (6.17), and using (6.24), we have that 	� is regular as � ! 0 andsatis�esLos	� = �J�[�A � (	oc;	os) + 	�; �A � (�	oc;�	os) + �	�]; � > 0; (6.25a)	� ! 0; �!1; (6.25b)	� � [Ac + �(m11Ac+m12As � Ac( � log 4))]� cos� +[As + �(m21Ac +m22As � As( � log 4� 1))� 1]� sin � + � � � ; �! 0: (6.25c)Again, A = (Ac; As) and mij is the ijth entry of the matrix M. In Section 6.7, we derivethe linearized Oseen solution, 	oc, and determine analytical formulae for its various derivativesthat we require to evaluate numerically the Jacobian J� in (6.25a). The corresponding formulaefor 	os are in the paper of Kropinski et al. [29] for the symmetric case.87



Chapter 6. Low Reynolds Number Fluid Flow Past an Asymmetric CylinderWe can also write (6.25c) in the form	� = 	(c)(�) cos� + 	(s)(�) sin � + � � � ; �! 0: (6.26)In (6.26), 	(c) and 	(s) are the Fourier cosine and sine coe�cients respectively, given by	(c) = 1� Z 2�0 	�(�; �) cos� d�; (6.27a)	(s) = 1� Z 2�0 	�(�; �) sin � d�: (6.27b)Here, 	(c) and 	(s) depend on �� 1 and on the vector parameter � = (�c; �s) = �A. We nowoutline how to determine the vector A("), where " is the Reynolds number. Comparison of thetwo expressions for 	� as �! 0 in (6.25c) and (6.26) results in a 2� 2 non-linear system for �of the form� m21 ��1 +m22 � ( � log 4� 1)��1 +m11 � ( � log 4) m12 � ��c�s� = 26641 + lim�!0 	(s)(�c; �s)�lim�!0 	(c)(�c; �s)� 3775 :(6.28)For various �, we compute the solution 	� from the parameter-dependent problem (6.25a)and (6.25b), noting that Ac = ��1�c and As = ��1�s. We �x � = � � 1 and using (6.27),we compute a \table of values" for the right-hand side of the non-linear system involving theFourier sine and cosine coe�cients. In the speci�c case of low Reynolds number uid ow pastan elliptic cylinder, we can �nd the mij entries of the matrix M analytically. For a generalcross-sectional shape, we can employ an integral equation method for biharmonic boundaryvalue problems such as the one of Greengard et al. [15] to determine numerically the mij . Fora given Reynolds number, ", we have the value of � � �1= log ". We can then solve the 2� 2non-linear system in (6.28) for �("). We use a bi-cubic spline to interpolate values of the right-hand side of (6.28) at arbitrary � from our \table of values" of the Fourier sine and cosinecoe�cients. To solve (6.28), we employ Newton's method in which we compute the Jacobianwith centred �nite di�erences. Finally, A(") = ��1�("). With A(") in hand, we calculate thecoe�cients of lift and drag from the asymptotic expression in (6.18).To compute the solution 	� from (6.25), we extend the �nite di�erence code of Kropinski etal. [29]. They based their code for the symmetric case on a stream function/vorticity formula-tion of the problem and solved the resulting non-linear system of equations for the unknowns	�(�; �) and !�(�; �) = �	�(�; �) using Newton's iterations. They stretched the radial variableaccording to � = log(1+�) and applied a second-order centred discretization on a uniform polargrid to the equations in terms of the variables (�; �). Exploiting the symmetry of the ow �eld,they solved for the unknowns 	� and !� on the domain 0 < � � �1; 0 � � � �, where �1 is anarti�cial far-�eld boundary.The main modi�cations to the symmetric version of the code were: to expand the solutiondomain to 0 < � � �1; 0 � � � 2� since the ow �eld is no longer symmetric in general; todetermine the solution for various input vector parameters � = (�c; �s) instead of the scalar88



Chapter 6. Low Reynolds Number Fluid Flow Past an Asymmetric Cylinderparameter � in the symmetric case; and using a Fourier cosine and sine expansion to producea 2� 2 non-linear system to solve for the vector A(").In the symmetric case, Kropinski et al. [29] could exploit the symmetry of the ow �eld to restrictthe solution domain to the upper half plane. The corresponding computational domain was then0 < � � �1; 0 � � � �. For ow past an arbitrarily shaped cylinder, the ow �eld is, in general,asymmetric. Thus, we extend the code to solve for 	� and !� on 0 < � � �1; 0 � � � 2� andimpose the periodicity conditions, 	�(�; 0) = 	�(�; 2�) and !�(�; 0) = !�(�; 2�). We enforceperiodicity in the computations through the addition of an arti�cial grid line in the �-direction.We add cos � terms to the linearized Oseen solution in the Jacobian term in (6.25a), which werenot present in the symmetric case version of that equation, and compute the solution for variousinput vector parameters � = (�c; �s) using n values of �c andm values of �s. This is in contrastto the symmetric case where the parameter dependence was on a scalar �, corresponding to our�s. For a given �c;i, for i = 1; : : : ; n, we compute 	� for a range of �s;j , for j = 1; : : : ; m, andat each stage, use the solution of the previous stage where � = (�c;i; �s;j�1) as the initial guess.When we step to the next value of �c, we use the solution from the stage where � = (�c;i; �s;1)as the initial guess for the stage where � = (�c;i+1; �s;1).Kropinski et al. [29] matched the computed solution to its asymptotic behaviour near the originin terms of its derivative, @	�=@� , which gave them a narrow range for the constants A("). Incontrast, we follow the technique in Keller & Ward [25] of comparing the behaviour of thesolution at the origin to an expansion in terms of its Fourier cosine and sine coe�cients. Thistechnique provides us with a 2� 2 non-linear system to solve for � = �A, and in turn, to �ndA.In the next three sections, we present the details of determining the asymptotic expression forthe lift and drag coe�cients in terms of the vector A("), the matrix M for an inclined ellipse,and analytic formulae for various derivatives of the linearized Oseen solution for use in ourcomputations. In the last section of this chapter, we present graphical results of our study.6.5 Calculating the Lift Coe�cient CLIn this section, we derive an asymptotic expression for the lift coe�cient CL in terms of thevectorA. At the same time, we link this expression to that of the drag coe�cient fromKropinskiet al. [29]. Following Imai [22], we have an expression for the drag force X and lift force Y ,which isX � iY = �2i�U21L IC �@ @z �2 dz � i�U21L IC !�z d � 2�U1 IC @!@�z �z d�z: (6.29)Here, � is the density of the surrounding uid, U1 is the magnitude of the uniform free-streamvelocity, L is a characteristic length scale of the cylinder cross-section, � is the dynamic viscosity,C is a closed contour surrounding the cylinder,  is the non-dimensional stream function, !is the dimensionless vorticity and z = x + iy, where (x; y) are the non-dimensional spatialcoordinates. 89



Chapter 6. Low Reynolds Number Fluid Flow Past an Asymmetric CylinderTo obtain the drag coe�cient CD and the lift coe�cient CL, we divide (6.29) by �U21L. Then,de�ning the Reynolds number to be " = Re � �U1L� ; (6.30)we get that CD � iCL = �2i IC �@ @z �2 dz � i IC !�z d � 2" IC @!@�z �z d�z: (6.31)We convert this expression to polar coordinates using z = rei� and obtain, after a bit of algebra,thatCL = r2 Z 2�0 "sin ��@ @r �2 � sin �r2 �@ @� �2 + 2 cos �r @ @r @ @� # d�+ r Z 2�0 ! cos �@ @� d� � r2" Z 2�0 cos �@!@r d� + r" Z 2�0 ! cos � d�: (6.32)andCD = r2 Z 2�0 "cos ��@ @r �2 � cos �r2 �@ @� �2 � 2 sin �r @ @r @ @� # d�� r Z 2�0 ! sin �@ @� d� + r2" Z 2�0 sin �@!@r d� � r" Z 2�0 ! sin � d�: (6.33)The vorticity ! is ! = �� : (6.34)Substituting the asymptotic behaviour of the Stokes (inner) expansion from (6.15) into (6.34),we see that the vorticity in the inner region is of the form! � ��(")A(") �� c(r; �) + � � � : (6.35)Here,  c is the vector canonical inner solution satisfying (6.14). Using (6.14c) in (6.35), we getthe far-�eld behaviour of the vorticity, which is! � �2�(") 1jyj2(A(") � y); as jyj ! 1: (6.36)Substituting (6.14a) and (6.15) into (6.32) and (6.33), we �nd that there are no contributionsfrom the terms involving derivatives of the stream function  . Considering only the expressionfor the lift coe�cient, we can show that it reduces toCL = �r2" Z 2�0 cos �@!@r d� + r" Z 2�0 ! cos � d�: (6.37)90



Chapter 6. Low Reynolds Number Fluid Flow Past an Asymmetric CylinderSubstitution of (6.36) into (6.37), gives us that the lift coe�cient isCL = �4�" �(")Ac("); (6.38)where Ac is the �rst component of the vector A(") = (Ac("); As(")). Similarly, we obtain thatthe expression for the drag coe�cient isCD = 4�" �(")As("): (6.39)Finally, we can write (CL;�CD) = �4�" �(")A("): (6.40)Thus, we have linked the drag and lift coe�cient in this asymptotic expression involving thevectorA. In the next section, we show how to determine analytically the body shape-dependentmatrixM for a cylinder with an elliptic cross-section, which is analogous to the parameter d ofthe symmetric case.6.6 Determining M for an EllipseFor certain cross-sectional shapes, such as an ellipse, we can determine analytically the matrixM that we �rst introduced in (6.6). For non-elliptic shapes, we could employ an integral methodtechnique such as the one of Greengard et al. [15] to determine numerically M from (6.14).We consider a uniform free-stream in the positive x-direction about a cylinder with an ellipticcross-section, such that the major axis makes an angle � with the free-stream (see Figure 6.1(a)).The ellipse has major semi-axis a and minor semi-axis b, where a > b. We rotate the ellipse in
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u(a) (b)Figure 6.1: (a) Inclined ellipse in the (x; y) reference frame, with polar coordinates x = r cos �,y = r sin �. (b) Ellipse in the (u; v) reference frame, with polar coordinates u = r cos�,v = r sin�.the (x; y) reference frame by a positive angle �, using�uv� = �cos� � sin�sin� cos� ��xy� : (6.41)91



Chapter 6. Low Reynolds Number Fluid Flow Past an Asymmetric CylinderIn the new (u; v) reference frame, which we show in Figure 6.1(b), the equation of the ellipse is(u=a)2 + (v=b)2 = 1.We will solve (6.5) for the special case where D0 is an ellipse. Then, we will compare thefar-�eld behaviour of the solution as r ! 1 with (6.6) to determine the matrix M. To solve(6.5) about an ellipse, it is convenient to convert (u; v) to the elliptic coordinates (�; �) usingthe de�nitions u = c cosh� cos �; v = c sinh � sin �; (6.42)where c = (a2 � b2)1=2. The boundary of the ellipse is the level line � = �0, where�0 = 12 log�a+ ba� b� : (6.43)The solution  j to (6.5a) in terms of elliptic coordinates is j = Ajf(�) cos � + Bjg(�) sin �; (6.44)where f(�) = (� � �0) cosh � + sinh �0 cosh �0 cosh � � cosh2 �0 sinh �; (6.45a)g(�) = (� � �0) sinh � � sinh �0 cosh �0 sinh � + sinh2 �0 cosh �: (6.45b)To determine the behaviour of  j as r ! 1, we �rst convert (�; �) to the polar coordinates(r; �) in the far �eld. We note that u = r cos� and v = r sin�. As � ! 1 (and hence, asr!1), we have thatcosh � � e�=2; sinh � � e�=2; � � log(2�=c); � � �: (6.46)Using (6.46) and (6.45) in (6.44), we obtain an expression for the far-�eld form of  j , as r !1,which is j � 1c �Aj �log r � log�a+ b2 � � aa+ b� r cos��Bj �log r � log�a+ b2 � � ba+ b� r sin�� : (6.47)Now, we revert to the polar coordinates (r; �) of the original reference frame, where x = r cos �and y = r sin �, using (6.41). As well, we de�neacj = 1c (Aj cos�� Bj sin�); asj = �1c (Aj sin�+ Bj cos�): (6.48)After a bit of algebra, we obtain that, as r !1, j � acjr log r cos � + asjr log r sin �+�acj �(b� a) cos2 �� ba+ b � log�a+ b2 ��+ asj � (a� b) sin� cos�a+ b �� r cos �+�acj � (a� b) sin� cos�a+ b �+ asj �(a� b) cos2 �� aa+ b � log�a+ b2 ��� r sin �: (6.49)92



Chapter 6. Low Reynolds Number Fluid Flow Past an Asymmetric CylinderComparing (6.49) with (6.6), where aj = (acj ; asj) and mij is the ijth entry of the matrix M,we determine, for an ellipse with major semi-axis a and minor semi-axis b at an angle of attack�, that m11 = (b� a) cos2 �� ba+ b � log�a+ b2 � ; (6.50a)m12 = m21 = (a� b) sin� cos�a+ b ; (6.50b)m22 = (a� b) cos2 �� aa+ b � log�a+ b2 � : (6.50c)From (6.50), we see that for any angle of incline �, the matrix M for an ellipse is symmetric.For � = 0 (no angle of incline), M is diagonal and the m22 entry must be equal to � log(de1=2),where d is the shape-dependent parameter of the symmetric case, given byd = a+ b2 exp� b� a2(a+ b)� : (6.51)For no angle of incline (� = 0), m22 = � log�a+ b2 � � ba+ b: (6.52)Indeed, this expression corresponds to � log(de1=2) from the symmetric case.Thus, we have an analytical expression for the entries of the matrix M for an inclined ellipse.In the next section, we derive the linearized Oseen solution 	oc and certain analytical formulaeof its derivatives that we require for solving the hybrid related problem numerically for thestream function.6.7 The Linearized Oseen Solution, 	oc, and its DerivativesIn order to evaluate numerically the Jacobian, J�, in the hybrid formulation in (6.25a), werequire analytical formulae for various derivatives of 	oc(�; �), which satis�es (6.20). In partic-ular, we require (i) @�	oc, (ii) @�	oc, (iii) @��	oc and (iv) @��	oc. At the end of this section,we will reproduce the formulae for the corresponding derivatives of 	os(�; �) that appear in thepaper by Kropinski et al. [29].First, we will outline the derivation of the solution 	oc and then use this solution to �ndthe necessary analytical formulae of certain of its derivatives. To obtain the solution 	oc, we�rst de�ne the negative vorticity !oc = �	oc, and let !oc be of the form !oc = e 12� cos �!̂oc.Thus, !̂oc satis�es �!̂oc � 14 !̂oc = 0. Using the technique of separation of variables, we let!̂oc = AnRc(�) cosn�. Substituting this form into the equation for !̂oc gives that Rc(�) satis�esz2@2Rc@z2 + z @Rc@z � (n2 + z2)Rc = 0; (6.53)where z = �=2. This is the modi�ed Bessel equation of order n, which has solutionsRc(z) = I�n(z); Kn(z): (6.54)93



Chapter 6. Low Reynolds Number Fluid Flow Past an Asymmetric CylinderTo allow us the proper behaviour in the far-�eld, we choose Kn(z) since Kn(z)! 0 as z !1,whereas In(z)!1 as z !1. Therefore, in general,!̂oc = 1Xn=0BnKn��2� cosn�: (6.55)Using (6.20c) in the de�nition !oc = �	oc, we get that !oc � (2=�) cos� as �! 0, and so!̂oc � 2� cos �e� 12� cos � � 2� cos ��1� 12� cos� + � � �� ; �! 0: (6.56)We look at the asymptotic behaviour for Kn(z) for small z, which isKn(z) � �(n)2 �z2��n ; n > 0; (6.57)as z ! 0. The behaviour for K0(z) for small z is in (6.23a). Using this behaviour and the factthat we will need to integrate !̂oc twice in obtaining 	oc, we set Bn = 0 for n > 1 in (6.55).With this, we have that !̂oc = B0K0(�=2)+ B1K1(�=2) cos�, and so�	oc = e 12� cos � hB0K0��2�+B1K1��2� cos �i : (6.58)To �nd 	oc, we need to integrate the previous expression. But �rst, we will rewrite the expres-sion a bit. Using a Fourier cosine series, we writee 12� cos � hB0K0��2�+ B1K1��2� cos �i = 1Xn=0 bn(�) cosn�; (6.59)where bn(�) is bn(�) = 2� Z �0 e 12 � cos � hB0K0��2� +B1K1��2� cos �i cosn� d�: (6.60)Using the identities [1], 2 cosz1 cos z2 = cos(z1 � z2) + cos(z1 + z2); (6.61)and In(z) = 1� Z ez cos � cosn� d�; (6.62)we can write bn(�) asbn(�) = 2B0K0��2� In��2�+ B1K1��2� hIn�1��2� + In+1��2�i : (6.63)Next, we write 	oc(�; �) in the form	oc(�; �) = 1Xn=1 yn(�) cosn�: (6.64)94



Chapter 6. Low Reynolds Number Fluid Flow Past an Asymmetric CylinderHere, we have started the summation at n = 1 since a term that is �-independent cannot satisfyLos	oc = 0.From this form, we have that�	oc = 1Xn=1 �y00n(�) + 1�y0n(�)� n2�2 yn(�)� cosn�: (6.65)Thus, using (6.63), yn(�) satis�esy00n(�) + 1�y0n(�)� n2�2 yn =2B0K0��2� In��2�+B1K1��2�hIn�1��2�+ In+1��2�i ; n > 0: (6.66)We let yn(�) = (�=n)fn(�=2) and z = �=2, and so fn(z) satis�esf 00n (z) + 3z f 0n(z) + 1� n2z2 fn(z) = 2nz fB1K1(z)[In�1(z) + In+1(z)] + 2B0K0(z)g (6.67)The solution to (6.67), or equivalently (6.66), determines the solution for 	oc.We follow Shintani et al. [49] and try fn(z) of the formfn(z) = �nz K0(z)In(z): (6.68)Substituting this form into the left-hand side of (6.67), we obtain2�nz [K0(z)In(z)�K1(z)I 0n(z)]: (6.69)To agree with the right-hand side of (6.67), we require that � = 2B0 and � = �2B1. Weaccomplish this with B1 = 1, � = �2 and B0 = �1. Thus, fn(z) = (�2n=z)K0(z)In(z) and soyn��2� = �nfn��2� = �4K0��2� In��2� : (6.70)Finally, we obtain that 	oc(�; �) = �4 1Xn=1K0��2� In��2� cosn�: (6.71)We need to verify that the solution for 	oc satis�es the far-�eld condition in (6.20b) and thebehaviour for small � in (6.20c). For large �, the asymptotic behaviour of K0(�=2) and In(�=2)is K0(�=2) �r��e��=2�1� 14� + � � �� ; (6.72a)In(�=2) � e�=2p�� �1� 4n2 � 14n + � � �� ; (6.72b)95



Chapter 6. Low Reynolds Number Fluid Flow Past an Asymmetric Cylinderas �!1. Thus, we have thatK0��2� In��2� � 1� �1� 34� + � � �� ; �!1; (6.73)which veri�es that the solution satis�es the far-�eld condition in (6.20b). Using the behaviour ofthe modi�ed Bessel functions for small �, in particular, thatK0(�=2) � � log �+log 4�+O(�2)and I1(�=2) � �=4 + O(�3), we verify that the solution satis�es the behaviour in (6.20c).Using (6.58) and (6.71), we obtain analytical expressions for certain derivatives of 	oc, whichare @�	oc = ex=2 hK1��2� � cos �K0��2�i +K0��2� I1��2��K1��2� I0��2� ; (6.74a)@�	oc = ex=2K0��2� � sin �; (6.74b)2@��	oc = ex=2 ��2K0��2� cos � +K1��2� cos2 � +K1��2�� 2�K1��2� cos �� ; (6.74c)2@��	oc = �ex=2 sin � h��K0��2�+ �K1��2� cos � + 2K1��2�i : (6.74d)Here, x = � cos�. The corresponding analytical formulae for various derivatives of 	0s, fromKropinski et al. [29], are@�	os = �ex=2K0��2� sin �; (6.75a)@�	os = ��ex=2 hK1��2�+K0��2� cos �i + 2; (6.75b)2@��	os = ex=2 sin � �K1��2� cos � �K0��2�� 2�K1��2�� ; (6.75c)2@��	os = ex=2K1��2� [2 cos � � � sin2 �]: (6.75d)Again, x = � cos �. We require these expressions in numerically evaluating the Jacobian, J�, in(6.25a). In the next section, we present the results of this application of the hybrid method interms of the lift coe�cient, CL.6.8 Results and DiscussionWe present the results of our study through various examples using the speci�c cross-sectionalshape of an inclined ellipse. The shape of the cylinder cross-section enters into the hybridmethod solution through the matrix M, which we can determine analytically for an ellipsefrom (6.50). We use the numerical procedure of Section 6.4 to solve the hybrid related problemin (6.25) for the stream function 	� on a 100� 100 grid with an arti�cial boundary conditioncorresponding to a radial variable of value �1 = 60. We use the solution for 	� to compute theFourier sine and cosine coe�cients in (6.27), which we require for solving the 2� 2 non-linearsystem in (6.28) for A(") = �(")��1("). We then use A(") in (6.18) to obtain the coe�cientsof lift and drag, correct to all logarithmic terms.96
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Figure 6.2: Drag coe�cient, CD from the hybrid results and from Kaplun's three-term ex-pansion, and the lift coe�cient, CL, from the hybrid results, versus Reynolds number, ", of acircular cylinder (an ellipse with equal major and minor semi-axes a = b = 1).In examining the leading-order form of the asymptotic expansions for the lift and drag coe�-cients in (6.12), we �nd that the drag coe�cient is O(�=") and that the lift is O(�2="), where� = �1= log ". For an elliptic cylinder with major semi-axis a and minor semi-axis b inclined atan angle � to the free-stream at Reynolds number ", the leading-order form of our expressionfor the lift coe�cient, CL, is CL = 4�"(log ")2 a� ba+ b sin� cos�: (6.76)To obtain this leading-order form from (6.12), we need the �rst non-zero ac-component of theconstant vectors, aj . In Section 6.2, we found that the �rst constant vector is a1 = (0; 1). Wecontinue the matching procedure between the Stokes and Oseen regions to determine that thecomponent ac2 of the second constant vector, a2, is ac2 = �m21, where m21 is an entry of thebody shape-dependent matrix M. Substituting the matrix M for an inclined ellipse in (6.50)and the form of ac2 into (6.12), we obtain our leading-order form for the lift coe�cient of aninclined ellipse.We con�rm the leading-order form of our result by comparing it with the leading-order expres-sion for the lift coe�cient of Shintani et al. [49] in their study of low Reynolds number ow pastan elliptic cylinder. Their expression for the lift coe�cient, correct to O("�1(log ")�2), can bewritten as (CL)S � 4�R(logR� t+)(logR� t�) �a� ba+ b� sin 2�; (6.77)97



Chapter 6. Low Reynolds Number Fluid Flow Past an Asymmetric Cylinderwhere t� = � + 4 log(2)� log[1 + b=a]� 12 (1 + 2�a� ba+ b� cos 2�+ �a� ba+ b�2) 12 :Here, R = 2" and  = 0:5772 : : : is Euler's constant. The leading-order expression of Shintaniet al. [49] in (6.77) is consistent with our leading-order form in (6.76). In their paper on owpast cylinders of arbitrary cross-sectional shape, Lee & Leal [33] numerically calculated the liftforce, correct to O((log ")�2), which corresponds to a lift coe�cient of O("�1(log ")�2). Theyshowed that their numerically calculated values for the lift agree with the analytical results ofShintani et al. [49] for an elliptic cross-section. Chester [4] examined the motion of an inclinedelliptic cylinder at low Reynolds number and obtained an analytic expression for the lift force,correct to O((log ")�2), that (once adjusted for the uid in motion past a stationary body) isalso consistent with our leading-order form. These results of previous researchers substantiatethe form of the �rst term in our asymptotic expression for the lift coe�cient as an in�niteexpansion of reciprocal logarithms. With the numerical solution of the hybrid related problemthat we show in the next two examples, we obtain the lift coe�cient correct to all logarithmicterms.
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Chapter 6. Low Reynolds Number Fluid Flow Past an Asymmetric Cylinderthe original symmetric code of Kropinski et al. [29]. For a circular cross-section of radius 1(an ellipse with equal major and minor semi-axes, a = b = 1), Figure 6.2 displays the forcecoe�cients versus the Reynolds number, ", showing a constant zero lift coe�cient and the samecoe�cient of drag curve as produced in Kropinski et al. [29]. For the drag coe�cient curve inFigure 6.2, we compare with the three-term expansion of Kaplun [24], which we can write as(CD)K � 4��̂[1� 0:8669�̂2]; �̂ � 1log 3:7027� log ": (6.78)In Figure 6.3, we plot the lift coe�cient versus Reynolds number, ", for an elliptic cross-sectionwith major semi-axis a = 1 and minor semi-axis b = 0:5 and at an angle of inclination of� = �=4. The �gure contains the CL(") curves from the hybrid method result correct to alllogarithmic terms in (6.18), from the leading-order expression in (6.76), and from the resultof Shintani et al. in (6.77). The plot shows reasonable agreement with the result of Shintaniet al. [49], which is valid up to O(�2="). Figures 6.2 and 6.3 indicate that the three-termexpansion for CD in (6.78) and the leading-order expression for CL in (6.76) are valid only for anarrow range of ". This is analogous to the poor accuracy of the �ve-term reciprocal logarithmicexpansion at moderate values of " that we demonstrated in Chapter 1.
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Chapter 6. Low Reynolds Number Fluid Flow Past an Asymmetric Cylinderb = 1, the cross-sectional shape is a circle, and as we expect, we see that the drag coe�cientis constant and non-zero, and that the lift coe�cient is 0. The �gure also displays that thedrag coe�cient increases as the angle of incline increases, and decreases as the minor semi-axisb decreases.The graphs in Figure 6.4 are qualitatively similar in nature to those of Lee & Leal [33], in whichthey plotted the contributions to the force on an elliptic cylinder at O((1= log")2), where " isthe Reynolds number, as a function of the angle of inclination, �.This low Reynolds number uid ow problem was the second of two applications of the hybridmethod on problems with unbounded domains. In the next chapter, we discuss some possibledirections for future applications of the hybrid method.
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Chapter 7Other Applications of the Hybrid Method
So far, we have shown the details of four major applications of the hybrid method: fullydeveloped laminar ow in a straight pipe with a core (Chapter 3), oxygen transport frommultiple capillaries to skeletal muscle tissue (Chapter 4), convective heat transfer past an arrayof cylindrical bodies (Chapter 5) and low Reynolds number uid ow past a cylinder asymmetricto the free-stream (Chapter 6). All of these problems are independent of time, and, with theexception of the application in Chapter 6, linear. It is possible to extend the exploration of thisthesis to a more general framework that would incorporate singular perturbation problems thatarise in other disciplines, and that include unsteady problems and more general non-linearity.In this chapter, we discuss other possible applications of the hybrid method. One is a non-linearproblem that could be viewed as an extension to the linear convective heat transfer problemof Chapter 5 as well as a rudimentary model of the non-linear low Reynolds number uid owproblem of Chapter 6. We also comment upon extending the low Reynolds number applicationto uid ow past an array of bodies symmetric to the free-stream. Our formulation of theapplication in Chapter 6 involved the biharmonic operator. We elaborate on another probleminvolving this operator, but this time on an eigenvalue problem that models the vibration ofthin plates with small cutouts or concentrated masses. To end this chapter, we touch uponsome possible extensions to the general framework of applicable problems that we presented inChapter 2.7.1 A Non-linear Model ProblemTo begin our discussion of future directions for the hybrid method, we describe a problemthat is an extension to the convective heat transfer problem of Chapter 5. An analogousproblem, that we studied in Chapter 6, is low Reynolds number uid ow past cylindricalbodies, although in that case, the governing equation is non-linear. Hsiao [20] considered anon-linear exterior Dirichlet problem that was a crude model for a class of problems in twodimensions, including stationary viscous incompressible ow past a cylinder. He considered101



Chapter 7. Other Applications of the Hybrid Methodproblems for u = u(x1; x2; ") of the form�u� "u @u@x1 = 0; x 2 R2nD0; (7.1a)u = �; x 2 @D0; (7.1b)u! �a; jxj ! 1: (7.1c)Here, D0 is a domain of radius O(1) that is independent of ", @D0 is its boundary, and � and aare constants. As a �rst step in constructing an asymptotic solution for the non-linear problem,he examined the singular nature of the linear problem�u� "b @u@x1 = 0; x 2 R2nD0;u = �; x 2 @D0;u! �a; jxj ! 1;where b is a constant. In essence, Hsiao's linear problem is the same as the convective heattransfer problem for one cylinder in a uniform ow. Hsiao used the linear analysis as a guideto construct an asymptotic expansion for the exact solution to (7.1), carrying the solution upto order (log ")�2. To this order, he rigorously justi�ed the use of the method of matchedasymptotic expansions on this problem.We could also apply the hybrid method to a class of non-linear model problems that includes(7.1) as a special case. This would be an intermediate step between the linear convective heattransfer problem of Chapter 5 and the non-linear low Reynolds number problem of Chapter 6.In contrast to Hsiao, applying the hybrid method to (7.1) would extend the solution furtherthan the (log ")�2 term, since the method avoids the di�culty of having to calculate analyticallyeach individual term in the in�nite logarithmic expansion. To obtain an asymptotic solutionto (7.1), we would employ the hybrid method as we outlined in Chapter 2, with the necessarymodi�cations for a non-linear problem.Another similar problem is of the form�u� "rv � ru = F (u); x 2 R2nD0; (7.2a)u = �; x 2 @D0; (7.2b)u! U1; jxj ! 1: (7.2c)This is an extension of the analysis of heat convection past a small body to treat non-linearsource terms to solve for the temperature u(x; "). For example, if F (u) = u4�U41, this problemmodels radiative heating such as that for black-body radiation.7.2 Low Reynolds Number Flow Past an Array of CylindricalBodiesWe could also consider low Reynolds number uid ow past an array of N cylindrical bodies.In this case, we assume that the cross-sectional shapes are arbitrary although symmetric with102



Chapter 7. Other Applications of the Hybrid Methodrespect to the free-stream. We construct asymptotic expressions for the drag coe�cient of eachbody. The governing equations are the steady-state Navier-Stokes equations, which, in termsof the dimensionless Stokes variables, are�v�rp = "(v � r)vr � v = 0 � ; x 62 N[i=1Di;with the boundary conditions v = 0; x 2 @Di;v! {̂; p! 1; jxj ! 1:Here, v(x; ") is the velocity vector, p(x; ") is the pressure, " � Re is the Reynolds number basedon a characteristic length L of the cross-section, and @Di is the boundary of the cylinder i, fori = 1; : : :N . Here, we have non-dimensionalized with respect to the length L, the magnitudeof the free-stream velocity U1 and the free-stream pressure p1.Applying the hybrid method to these problems would enable us to determine asymptotic ex-pressions for the drag coe�cient, correct to all logarithmic terms, and to measure the error inthe approximation. In the method, we formulate a related problem whose solution containsthe in�nite logarithmic expansion. For this case involving multiple bodies, we would be able toexamine the e�ect of the interaction between the bodies.Two di�erent limits in terms of the Stokes variables that we may consider are: a \lumped-body"limit where the bodies of O(1) radii are separated by O(1) distances, and an \unlumped-body"limit in which the radii of the bodies have magnitude of O(1) and are separated by distancesof O(1=") where "� 1 is the Reynolds number.In the �rst limit, we can lump the bodies together via one parameter d for the entire arrayof cylinders and in such a way, reduce the problem to the previous case that Kropinski etal. [29] examined for one cylinder. Greengard, Kropinski & Mayo [15] developed a boundaryintegral solver to perform the sophisticated numerical computation to determine this d. Thelumped-body problem is analogous to the one-body problem in that one can consider theStokes region containing all of the bodies. This was the approach of Lee & Leal [33] whoused boundary integral methods to solve for low Reynolds number ow past multiple cylinders,assuming that they were close enough together so that the Stokes ow region encompassed bothcylinders. Even though they were considering cylinders of simple cross-sectional shape, theyonly computed their solution to order (log ")�2.In the second limit, we cannot lump the array of cylinders together. This makes the \unlumped-body" problem analogous to the multi-body convective heat transfer problem of Chapter 5in which we considered the long range interaction of the bodies. Each of the N cylindersin the array would have its own body-shape dependent parameter di associated with it, fori = 1; : : : ; N . To treat the multi-body problem, it would be necessary to formulate the relatedproblem of the hybrid method in terms of the velocity and pressure, instead of the streamfunction formulation that was possible in the one-cylinder case.There are further possible extensions for the low Reynolds number uid ow application. Oneextension is to compute the higher-order terms, beyond all logarithmic terms, in the asymptotic103



Chapter 7. Other Applications of the Hybrid Methodexpansion for a body of arbitrary cross-sectional shape. These terms, which are transcenden-tally small compared to the logarithmic terms, are necessary to reveal any asymmetry of thenear-body ow pattern, such as the emergence of standing eddies, due to inertial terms. Skin-ner [50] showed how to determine a few of the transcendentally small terms for the case ofa circular cylinder. Also, for one circular cylinder, Keller & Ward [25] extended the hybridmethod to determine the solution beyond logarithmic orders. Another extension is to applythe hybrid method to slender-body theory, with possible applications in biouiddynamics (seeLighthill [34]). Batchelor [2] considered slender-body theory for rigid bodies of arbitrary cross-section in Stokes ow. Khayat & Cox [27] examined the e�ect of small inertial terms on themotion of slender bodies using asymptotic expansions based on the ratio of cross-sectional ra-dius to body length, that they assumed to be small. They obtained up to three terms in thelogarithmic series of the asymptotic solutions for the drag, lift and torque on the bodies. Theslender-body problem can also be related to an extension of the capillary oxygen transportproblem of Chapter 4 in which we would take into account the slow variation in the axialdirection of the capillary.7.3 A Biharmonic Eigenvalue ProblemAnother application of the hybrid method involves strongly localized perturbations of bihar-monic eigenvalue problems in a bounded, two-dimensional domain D. The strongly localizedperturbations could be of two types: domain perturbations from the removal of N small sub-domains D"i from D and imposing certain boundary conditions on the resulting holes, anddomain perturbations from concentrations of mass in N small regions D"i of the domain. Forboth problems, we are interested in the e�ects of the perturbations on the eigenvalue � of thebiharmonic operator.The biharmonic eigenvalue problem models the free vibration of a uniform, thin plate wherethe eigenvalue is proportional to the square of the frequency of vibration. The theory of platevibration has applications in structural engineering, such as the design of at panels in machinesand buildings. As well, plate vibration can represent certain percussion instruments that areessentially at, metal plates (see Fletcher & Rossing [12]). We can contrast the biharmoniceigenvalue problem to the Laplacian eigenvalue problem, which models the vibration of anideal membrane. The basic di�erence between a membrane and a plate is that the restoringforce for a membrane is due primarily to the external applied tension, whereas for a plate themain restoring force is due to the sti�ness of the material. The equation of motion for the smalldisplacement U from equilibrium of a thin material with sti�ness is of the formUtt = ��U � ��2U: (7.3)Here, � = T=� and � = h2E=[12�(1� �2)] are positive constants depending on the tension T ,the mass per unit area �, the thickness h of the material, the Young's modulus E, the density�, and the Poisson's ratio �. For a typical thin plate, � is small, so that to a �rst approximationwe can neglect the �U term. Similarly for a typical membrane, � is small and so we wouldneglect the �2U term in this case.We sketch out the application of the hybrid method on the �rst of the two biharmonic eigenvalueproblems that we mentioned: that is, the perturbation of the domain D by removing N small104



Chapter 7. Other Applications of the Hybrid Methodsubdomains D"i and setting certain boundary conditions on the resulting holes. In (7.3), setting� = 0 and assuming harmonic vibrations with frequency ! so that U(x; t) = u(x)ei!t, we obtainthat the governing equation for the perturbed linear biharmonic eigenvalue problem is�2u� �u = 0; x 2 Dn N[i=1D"i ; (7.4)where � = !2=�. We impose boundary conditions that represent clamped edges of the plate:u = @u@n = 0; x 2 @D; x 2 @D"i ; i = 1; : : : ; N: (7.5)Swanson [51] established the �rst few terms in asymptotic formulae for the eigenvalues of thebiharmonic operator in bounded, two-dimensional domains. He showed a key feature in thesolution to the clamped vibrating plate problem, (7.4) together with (7.5): in the limit of smallsubdomains, the perturbed eigenvalues do not converge in general to the classical eigenvaluesfor the unperturbed domain. Eastep & Hemmig [8] considered the vibration of a thin, uniformplate with a cutout whose boundaries deviated slightly from a circular shape. By approximatingthe boundary as a Fourier cosine series, they solved (7.4) with N = 1 for the displacement uas a regular perturbation expansion and constructed an approximation for the fundamentalfrequency of the vibrating plate.The analogous membrane problem is one where the displacement u of the membrane satis�es�u+ �u = 0:This membrane problem (or Laplacian eigenvalue problem), with appropriate boundary condi-tions, has been the subject of much research. Ozawa [37] rigorously derived the leading-orderbehaviour as " ! 0 of the eigenvalue �(") for the Laplacian with a small hole of order " re-moved from a bounded, two-dimensional domain. Lange & Weinitschke [30] used the methodof matched asymptotic expansions to determine a few terms in the logarithmic series of �("),applying their results to the vibration of a rectangular membrane with one or two circular holes.Ward, Henshaw & Keller [57] were able to sum the entire logarithmic series of the eigenvalueby applying the hybrid method to the Laplacian eigenvalue problem.The second type of strongly localized biharmonic eigenvalue problem, which we will not discussin detail here, involves concentrations of mass in N small regions D"i , each centred at �i, of thedomain. The problem is of the form�2u� ��u = 0; x 2 Dn N[i=1D"i ; (7.6)where � = �(x) satis�es�(x) = 8><>: "�m�i�x� �i" � x 2 D"i ; i = 1; : : : ; N;1 x 2 Dn N[i=1D"i : (7.7)The solution of the problem would determine �(") as " ! 0 for some range of m > 0 and forarbitrary �i. 105



Chapter 7. Other Applications of the Hybrid MethodIngber, Pate & Salazar [23] examined both experimentally and numerically the vibration ofclamped plates with concentrated masses and spring attachments. It is possible to cast theirformulation, in which they treated the masses and attachments as point sources, into theconcentrated mass problem in (7.6) and (7.7). Doherty & Dowell [6] took an experimentalapproach to determine the response of a rectangular plate under an applied force, with andwithout point masses, taking into consideration the interaction between the masses.There is also an analogous concentrated mass problem for membranes. Leal & Sanchez-Hubert [31] used the method of matched asymptotic expansions to examine the e�ect of aconcentrated mass on the eigenmodes of a vibrating membrane in the limit as " ! 0, where "measured the size of the region of concentration.We now return to the �rst biharmonic eigenvalue problem. We outline the hybrid methodapplied to the biharmonic eigenvalue problem on a bounded, two-dimensional domain D withthe removal of one small subdomains D" from D. Our goal is to formulate an asymptoticexpression for the eigenvalue �(") for strongly localized perturbations of the bounded domainof the biharmonic eigenvalue problem. In some cases, the biharmonic eigenvalue problem issimilar in nature to the stream function formulation of low Reynolds number uid ow pastone cylindrical body of Chapter 6. In these cases, we are able to apply the hybrid methodsince an in�nite logarithmic expansion arises in the expansion for the eigenvalue � as it doesin the expansion for the drag coe�cient, and the canonical inner problem for both involvethe biharmonic operator. In other cases, the asymptotic expansion does not involve reciprocallogarithmic terms and hence, we cannot apply the hybrid method and it would be necessary toestablish a di�erent asymptotic approach.The biharmonic eigenvalue problem to solve for the eigenfunction u(x; ") and eigenvalue �(")is �2u� �u = 0; x 2 DnD" � R2; (7.8a)u = @u@n = 0; x 2 @D; x 2 @D"; (7.8b)ZDnD" u2dx = 1: (7.8c)Here, @D and @D" are the boundaries of D and D" respectively, and D" is a small removedsubdomain located at a point � in D. The aim of applying the hybrid method to this problem isto determine the change in the simple eigenvalue �0 as a result of the perturbation. We assumethat the position � of the small subdomain lies on a nodal line, that is, the unperturbed solutionu0 vanishes at x = �. Without the nodal line assumption, the perturbed problem would haveto have a point constraint at the centre of the removed subdomain. Although we assume thatu0(�) = 0, we also require that ru0 does not vanish at �.As the �rst step of the hybrid method, we apply the method of matched asymptotic expansionsto (7.8). We expand the eigenfunction u and eigenvalue � in the global region, where jx� �j =O(1), away from the removed subdomain, in the form�(") � �0 + �(")�1 + � � � ; (7.9a)u(x; ") = u0(x) + �(")u1(x) + � � � : (7.9b)106



Chapter 7. Other Applications of the Hybrid MethodHere, � = �1= log ".In the local region, near the removed subdomain, we use the local variables y = "�1(x� �) andv(y; ") = "�1u("y+ �; "), and we expand the solution in the local region asv(y; ") = �(")v1(y) + [�(")]2v2(y) + � � � : (7.10)The scaling between the local and global variables in this biharmonic problem has the same formas the that between the Stokes and Oseen variables in the low Reynolds number application ofChapter 6. The local problems for vj(y) in the biharmonic eigenvalue problem, where j � 1,are analogous to those of the Stokes region problems in (6.5){(6.6) of the low Reynolds numberow application. The problems to solve for vj(y), where j � 1, are�2vj = 0; y 62 D0; (7.11a)vj = @vj@n = 0; y 2 @D0; (7.11b)vj � aj � [y log jyj+My]; jyj ! 1: (7.11c)Here, D0 = "�1D" and M is the 2� 2 matrix that we introduced in (6.6). We note again thatM depends on the shape of D0.Using (7.11c) in (7.10), we �nd that the local expansion v(y; ") has the same far-�eld behaviouras  in (6.8), as jyj ! 1.In the global region, we substitute (7.9) into (7.8), excluding the boundary condition on @D".Thus, the governing equations and boundary conditions for uj(x), j � 0, are�2uj � �0uj = (1� ej0) j�1Xk=0�j�kuk; x 2 Dnf�g; (7.12a)uj = @uj@n = 0; x 2 @D: (7.12b)Here, �lk is the Kronecker delta function as de�ned in (4.33). In addition to the governingequations and boundary conditions above, the global functions uj(x) must satisfy appropriatematching conditions to the local expansion and the normalization conditionsZDnf�g jXk=0 ukuj�k!dx = ej0: (7.13)For the global solution behaviour as x ! �, we expand the unperturbed solution u0(x) in aTaylor series about x = � to getu0(x) = ru0(x)jx=� � (x� �) + � � � : (7.14)Here, we used our assumption that u0(�) = 0. To match between the global and local regions,we use (7.14) in (7.9b) as x ! �, and compare with the local solution in (7.10) as jyj ! 1using (7.11c). Noting that v scales like "�1u, matching requires that a1 = ru0(x)jx=� and thatthe behaviour of uj(x) as x! �, for j � 1, isuj � aj � [(x� �) log jx� �j+M(x� �)] + aj+1 � (x� �); x! �: (7.15)107



Chapter 7. Other Applications of the Hybrid MethodThis behaviour has the same form as (6.11c) in the low Reynolds number ow application thatalso involved the biharmonic operator.Considering only the problem for u1(x), we can write (7.12a) and (7.15) with j = 1 as�2u1 � �0u1 = �1u0 + 4�a1 � r�(x� �) + � � � ; x 2 D: (7.16)Here, r�(x� �) is the gradient of the Dirac delta function. Using (7.12b) and Green's identity,we require that < Lu1; u0 >=< Lu0; u1 >; (7.17)where L is the operator L = �2� �0. Since Lu0 = 0, and with Lu1 = �1u0+ 4�a1 � r�(x� �),we obtain the solvability conditionZD u0(x) [�1u0(x) + 4�a1 � r�(x� �)]dx = 0: (7.18)We solve this condition for �1, using that a1 = ru0jx=� , to obtain�1 = 4�jru0jx=� j2: (7.19)Hence, we have determined �1, the leading-order correction for the simple eigenvalue in (7.9a).To obtain the further corrections, �j for j � 2, the method of matched asymptotic expansionswould require us solve an in�nite set of such solvability conditions. We now present how thehybrid method will avoid determining each �j individually. We introduce ��(") as a functionthat is asymptotic to the sum��(") � �0 + �(")�1 + [�(")]2�2 + � � � ; "! 0: (7.20)In applying the hybrid method, we formulate a related problem to the original whose solutionessentially sums the entire logarithmic series for ��.Using (7.11c) in (7.10), we can write the far-�eld behaviour of the local solution for the eigen-function as v(y; ") � �(")A(") � [y log jyj+My] + � � � ; jyj ! 1: (7.21)Here, A(") is a constant vector that is asymptotic to an in�nite sum as in (6.13) for the lowReynolds number uid ow application. As well, we can express the local solution for v(y; ")in terms of a canonical local vector function as in (6.15).We formulate a related problem to the original perturbation problem. We solve for the auxiliaryfunction uH(x; ") which satis�es �2uH � ��uH = 0; x 2 Dnf�g; (7.22a)uH = @uH@n = 0; x 2 @D; (7.22b)ZD (uH)2dx = 1; (7.22c)uH � A(") � [�(")(x� �) log jx� �j+ �(")M(x� �) + (x� �)]; x! �: (7.22d)108



Chapter 7. Other Applications of the Hybrid MethodHere, the boundary conditions at the removed subdomain are replaced, using the far-�eld formof the local solution, by the singularity structure in (7.22d). This singularity structure imposestwo conditions; one on the cos � part and the other on the sin � part of the solution. Wedetermine the matrix M by solving the local canonical problem in (6.14). To solve the relatedproblem, it is convenient to remove the logarithmic singularity through a change of variables.We let uH(x; ") = 4��(")A(") � rG(x; �) + u�(x; "): (7.23)In (7.23), rG(x; �) is the gradient of the Green's function that satis�es�2G� �G = 0; x 2 R2nf�g; (7.24a)G � 18� jx� �j2 log jx� �j; x! �: (7.24b)The function u�(x; �) in (7.23) is regular as x! � and satis�es�2u� � ��u� = 0; x 2 D; (7.25a)u� = �4��A � rG; x 2 @D; (7.25b)@u�@n = �4��A � @@nrG; x 2 @D; (7.25c)u� � A(")�(") �M(x� �); x! �: (7.25d)As well as (7.25), u�(x; �) must satisfy the normalization conditionZD [u�]2 dx = 1: (7.26)The shape-dependent matrixM in (7.25d) is found from the solution to (6.14) for a given shapeof D0. In Section 6.6, we showed how to determine M analytically when D0 is an ellipse.The Green's function G(x; �) isG(x; �) = � 18��1=2 h�Y0(�1=4jx� �j) + 2K0(�1=4jx� �j)i : (7.27)Here, Y0(z) is a Bessel function and K0(z) is a modi�ed Bessel function, both of order zero.We now outline how to determine u�(x; �) and �� using the hybrid related problem. To solve(7.25), we decompose the solution asu� = A1u1 + A2u2; A = (A1; A2): (7.28)For k = 1; 2; uk is a regular function as x! � that satis�es�2uk � ��uk = 0; x 2 D; (7.29a)uk = �4�� @G@xk ; x 2 @D; (7.29b)@uk@n = �4�� @@n� @G@xk� ; x 2 @D: (7.29c)109



Chapter 7. Other Applications of the Hybrid MethodWe solve for uk numerically, for k = 1; 2, as a function of ��. In terms of this solution, wecompute Ck and Sk, for k = 1; 2, which areCk � lim�!0 1�� Z 2�0 uk cos � d�; Sk � lim�!0 1�� Z 2�0 uk sin � d�: (7.30)Here, � = jx� �j and we note that Ck and Sk, for k = 1; 2, depend on ��. Then, as x! �, wehave u� = A1(C1� cos� + S1� sin �) +A2(C2� cos� + S2� sin �): (7.31)Comparing (7.31) with (7.25d), we have thatA1(C1� cos � + S1� sin �) + A2(C2� cos � + S2� sin �)� A1�(m11� cos� +m12� sin �) +A2�(m21� cos � +m22� sin �): (7.32)Then, equating the coe�cients of cos � and sin �, we obtain�C1 � �m11 C2 � �m21S1 � �m12 S2 � �m22� �A1A2� = �00� : (7.33)We require that the determinant of the matrix on the left-hand side is equal to 0, which providesthe equation for ��. Noting again that Ck and Sk, for k = 1; 2, depend on ��, the equation is(C1 � �m11)(S2 � �m22)� (S1 � �m12)(C2� �m21) = 0: (7.34)This equation gives �� as a function of � = �1= log " and in terms of the body shape throughthe mij coe�cients. We calculate the ratio of A1 to A2 from this system. Without loss ofgenerality, we set A1 = 1, and then, the normalization condition in (7.26) provides the �nalrelation between A1 and A2.In the next, and last section, of this chapter, we continue our description of extended applica-tions for the hybrid method.7.4 Extensions to the General FrameworkWe present briey some further possible applications of the hybrid method that extend thegeneral framework that we discussed in Chapter 2.One could apply the hybrid method to study linear di�usion problems with localized non-linearreactions. Peirce & Rabitz [38] considered a problem of this type in their study of the e�ectof defect structures on two-dimensional chemically active surfaces. The governing equation forthe concentration u(x; t; ") of a chemical species on a bounded catalytic surface D is of the form@u@t ��u+ "�pV ("�1jx� �j)F (u) = 0; x 2 D: (7.35)Here, V is a potential that measures the �nite range of the reaction that is located at x = �(ie. V (jyj)! 0 as jyj ! 1) and p measures the strength of the reaction. We note that if p = 2in two-dimensions, then the reaction has the behaviour of a Dirac delta function.110



Chapter 7. Other Applications of the Hybrid MethodAnother application of the hybrid method is to examine low frequency scattering of light bysmall cylindrical bodies D"i of arbitrary cross-sectional shape. The scattering of a plane waveis modelled by the Helmholtz equation�� + k2� = 0; x 2 Dn [Ni=1 D"i ; (7.36)with boundary conditions and far-�eld condition of the form� = 0; x 2 @D"i ; i = 1; : : : ; N; (7.37a)� � eik�x; jxj ! 1: (7.37b)Here, �(x; ") is the scattering �eld and k is the wave number. In the low frequency limit,k"� 1 where " is a measure of the cross-sectional size of the bodies. The form of the governingequation conforms to the second-order framework for applicable problems that we described inChapter 2. In a series of articles (one of which is [55]), Twersky studied this problem, whichis the optical version of the low Peclet number heat transfer application in a uniform ow ofChapter 5. Thus, mathematically, the solution involves reciprocal logarithms and so we canapply the hybrid method.An unsteady application of the hybrid method is to consider a perturbed-boundary di�usionequation such as the di�usion of a chemical species out of a mostly impervious container. Theproblem to solve for the concentration c(x; t; ") of the chemical species would be of the form@c@t ��c = 0; x 2 D; (7.38a)c = 0; x 2 N[i=1@D"i ; (7.38b)@c@n = 0; x 2 @Dn N[i=1 @D"i ; (7.38c)with an initial concentration c(x; 0; ") = C0(x; "). The boundary @D is mostly insulating, butcontains many small regions @D"1 ; : : : ; @D"N where the material could leak out. The goal ofapplying the hybrid method would be to calculate the amount of material in the container aftera large amount of time and to determine how long it takes it to leak out completely. Thisproblem has applications in the study of controlled-release drug therapy. To solve this stronglylocalized domain perturbation problem, we would consider an eigenvalue expansion for c(x; t; ")of the form c(x; t; ") = 1Xj=0 aje��jt�j(x; "): (7.39)To obtain asymptotic estimates for large time t, we need to study the eigenvalues �j . Inparticular, the resulting eigenvalue problem for the �rst eigenpair (�0; �0) is a slight variationon the second-order eigenvalue problem in Ward et al [57]. Thus, we can formulate this leakycontainer problem so that we may apply the hybrid method.The last application of the hybrid method that we mention here is in the �eld of electrochem-istry. Lucas et al. [35] studied a reaction-di�usion problem with a periodic array of circularmicroelectrodes on the surface of a uid. Their interest was in calculating the steady-state111



Chapter 7. Other Applications of the Hybrid Methodcurrent ow due to chemical processes at the electrodes, which is proportional to the con-centration ux of the chemical species. The governing equation for the concentration of thechemical species in their model is the modi�ed Helmholtz equation, having the form of (2.1a)with c = 1 and N(x;�;r�) = �2�, for some positive constant �. The boundary conditionsare of mixed type, which �t into the framework of (2.1b) and (2.1c). Thus, the hybrid methodcould be applied to a variation of this electrochemistry problem that would allow for arbitraryshape and location of the many microelectrodes on the uid surface.We have called attention to some possible applications of the hybrid method to mathematicalmodels that occur in many di�erent �elds. The problems that we mentioned include modelsof uid ow at low Reynolds number, vibration of thin plates with small holes, small defectstructures on chemically active surfaces and low frequency scattering of light.
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Chapter 8Conclusions
The goal of this thesis was to demonstrate a hybrid asymptotic-numerical method for treatingtwo-dimensional singular perturbation problems whose asymptotic solution involves reciprocallogarithms of the small perturbation parameter, ". In Chapter 1, we illustrated the di�cultyof slow convergence of an in�nite expansion S(") of the formS(") � 1Xj=1 aj �� 1log "�j�1 ; "! 0: (8.1)The purpose of this hybrid method is to treat the slow convergence problems of asymptoticexpansions of this form (since, for the problems that we considered in this thesis, we believethere is su�cient evidence of convergence of these expansions for small enough ") and to im-prove the accuracy of approximate solutions. The hybrid method uses the method of matchedasymptotic expansions to exploit the asymptotic structure to reduce the problem to one thatis asymptotically related but easier to solve than the original. In general, one must solve thisrelated problem numerically.The hybrid related problem contains the entire in�nite logarithmic expansion in its solution,which circumvents the task of obtaining each coe�cient in successive terms individually, asone would have to do using only the method of matched asymptotic expansions. Since thehybrid solution essentially sums the in�nite expansion of reciprocal logarithms, the error of theapproximation is smaller than any power of (�1= log ").An important feature of the hybrid related problem is that it is non-sti�, which means that itdoes not su�er from the di�culty of applying full numerics to the original problem of resolvingthe rapidly varying scale structure. Another advantage of the hybrid method solution is thatthe parameter dependence of the problem is reduced from that of the original. Using the hybridmethod solution, one can compute an "-curve of the solution for a given number and locationof removed subdomains, where " is a measure of the subdomain cross-sectional size. The shapeof the subdomain enters into the hybrid method solution through a single parameter d = d(b),where b is the coe�cient of the Dirichlet component of the subdomain boundary condition. Insome problems, the parameter dependence is further reduced with " and d occurring only interms of their product, ("d). This exploits Kaplun's equivalence principle, which states thatthere is an asymptotic equivalence between subdomains of di�erent cross-sectional shape, basedon an e�ective radius, ("d), of the cross-section. The reduction in parameter dependence meansthat the hybrid method solution is less computationally intensive than a full numerical solution,113



Chapter 8. Conclusionsin which one would have to restructure the solution grid for each change in size or shape of thesubdomains.We have shown that singular perturbation problems containing in�nite logarithmic expansionsarise in a wide variety of contexts. We dedicated four chapters of this thesis to the detailedapplication of the hybrid method to such singular perturbation problems occurring in uid owin a straight pipe with a core, skeletal tissue oxygenation from capillary systems, heat transferconvected from small cylindrical objects, and low Reynolds number uid ow past a cylinderthat is asymmetric to the uniform free-stream.In the previous chapter, we remarked on possible extensions to the general framework of ap-plicable problems. We briey discussed applications in black body radiation, multi-body lowReynolds number uid ow, vibration of thin plates with small holes or concentrated masses,localized non-linear reactions on catalytic surfaces, low frequency scattering of light, di�usionof a chemical species out of an almost impervious container, and steady-state current ow frommicroelectrodes. All told, we have drawn attention to hybrid method applications on problemsthat are steady or unsteady, linear or non-linear, second-order or fourth-order, and eigenvalueproblems. Although we are at the end of this thesis, there are many more applications of thehybrid asymptotic-numerical method for future studies.
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