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Abstract

Ostwald ripening and chemotaxis are two different mechanisms that describe
particle motion throughout a domain. Ostwald ripening describes the redis-
tribution of a solid solution due to energy potentials while chemotaxis is a
cellular phenomenon where organisms move based on the presence of chem-
ical gradients in their environment. Despite the two systems coming from
disparate fields, they are connected by the late-stage dynamics of interfacial
motion.

For the Ostwald ripening system we consider the case of N droplets in
the asymptotic limit of small radii ri � 1. We first derive a system of ODEs
that describe the motion of the droplets and then improve this calculation by
including higher order terms. Certain properties, such as area preservation
and finite time extinction of certain droplets are proved and a numerical
example is presented to support the claims.

In the chemotaxis model we look at the asymptotic limit of diffusive
forces being small compared to that of chemotactic gradients. We use a
boundary-fitted coordinate system to derive an equation for the velocity of
an arbitrary interface and analyze a few specific examples. The asymptotic
results are also explored and confirmed using the finite element and level set
methods.

Our analysis reveals the mechanism of movement to be motion by cur-
vature in Ostwald ripening and a surface diffusion law in chemotaxis. The
governing rules of motion may be different in the two systems but the end
result is typically characteristically similar- exchange of mass and smoothing
in favor of a larger and more stable configuration of drops.
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Chapter 1

Introduction

1.1 Ostwald Ripening

Ostwald ripening, colloquially known as ’survival of the fattest’, is a coars-
ening process that describes the change of an inhomogeneous structure over
time. Similar particles separate into groups throughout a domain and ex-
change mass with each other, favoring larger regions over smaller ones. The
result is an increase in size and a decrease in the overall number of individ-
ual groups. Mass diffuses against concentration gradients in order to reduce
interfacial energy (the mean curvature of all interfaces). By the Gibbs-
Thomson condition, this reduces the gradient of the chemical potential and
thus the driving force for the diffusion (see [2]). Ostwald ripening can be
seen in an oil and water emulsion separating over time and typically occurs
after a phase transformation such as spinodal decomposition.

Spinodal decomposition is a form of phase separation in which a ho-
mogenous solution separates into regions of distinct concentration; that is,
uniform within the region. Spinodal decomposition may occur when an al-
loy composed of only two metals is sufficiently heated and then quenched
(rapidly cooled) into an unstable state. After this metastable equilibrium is
reached, the stage is set for coarsening and particles diffuse to reach a static
equilibrium.

The form of phase separation described above has been modeled by the
nonlinear Cahn-Hilliard equation, first proposed in [4]. The ground work for
this model comes from an earlier work by John W. Cahn and John E. Hilliard
in [5] where a measure for total free energy in a binary medium is derived.
From this free energy functional one can derive the chemical potential and
apply the diffusion equation to obtain a model of phase separation. Much
like how Ostwald ripening occurs after a phase transformation, a Mullins-
Sekerka free boundary problem can be derived from the late stages (t� 1)
of the Cahn-Hilliard equation that describes this coarsening process. This
is quite remarkable and gives credence to the belief that the Cahn-Hilliard
equation is an accurate model for phase separation.

In the literature review below, we present the Cahn-Hilliard equation and

1



1.1. Ostwald Ripening

its derivation along with some interesting asymptotic results from [23]. We
employ matched asymptotic expansions and multiple time scales to derive
the aforementioned Mullins-Sekerka problem that will eventually lead to
Ostwald ripening.

1.1.1 Literature Review

We begin with the concentration u(x, t) of one phase in a binary mixture
contained in a domain Ω ⊆ Rn, and a function F that is a measure of bulk
free energy density. Performing a Taylor expansion of this function F , we
see

F (u,∇u,∇2u, . . .)

= F (u) +
∑
i

∂uxiF∂xiu+
∑
i,j

α1
ij∂

2
xixju+ 1

2

∑
i,j

α2
ij∂xiu∂xju+ . . . ,

where α1,2
ij are defined by

α1
ij = ∂F/∂(∂2u/∂xi∂xj), α2

ij = ∂2F/∂(∂u/∂xi)∂(∂u/∂xj).

We assume the solution to be isotropic, which allows us to discard the
’off diagonal’ terms i 6= j. This means that there is no favored direction;
everything diffuses as one would expect. Assuming isotropy also means the
free energy needs to be symmetric under reflection and rotation of axes,
which allows us to conclude that the polarization vector (second term in the
Taylor expansion) must be zero. Thus, we have

∂uxiF = 0,

α1
ii = α1 = [∂F/∂∇2u],

α2
ii = α2 = [∂2F/(∂|∇u|)2].

Upon integrating over the domain, we obtain∫
Ω

[F (u) + α1∇2u+ α2|∇u|2 + . . .] dV.

Applying Green’s first identity to the second term in the integral, where the
boundary terms vanish due to imposed Neumann conditions, we have∫

Ω
α1∇2u dV = −

∫
Ω
∇α1 · ∇u dV.

2



1.1. Ostwald Ripening

Realizing that ∇α1 = (∂α1/∂u)∇u and letting 1
2ε

2 = α2 − (∂α1/∂u) with
ε � 1, we arrive at the free energy functional, a measure of free energy of
u(x, t) in Ω, as derived in [5]

I[u] =

∫
Ω
F (u) + 1

2ε
2|∇u(x)|2 dx. (1.1)

The second term in the functional is motivated by the thought that
higher surface tension will increase the free energy in a system. F (u) is
chosen to be a double welled quartic polynomial. This double welled struc-
ture is known as the ’Flory-Huggins’ free energy density and, with its shape,
spinodal decomposition can occur (see [27]).

um− us− us+ um+
u

fm

F ′(u)

Figure 1.1: u±m denote max and min concentrations respectively and fm is
the equilibrium free energy level

Now, we take the variational derivative to derive the chemical potential

µ =
δI

δu
= lim

δ→0

I[u+ δv]− I[u]

δ
.

We calculate,

I[u+ δv] =

∫
Ω
F (u+ δv) + 1

2ε
2|∇u(x) + δv|2 dx

=

∫
Ω
F (u) + F ′(u)δv + . . .+ 1

2ε
2(|∇u(x)|2 + 2|∇u · ∇(δv)|+ . . .) dx.

3



1.1. Ostwald Ripening

Thus, we have ∫
Ω
F ′(u)δv + ε2∇u · ∇δv dx.

Now, applying Green’s first identity with Neumann boundary conditions
and with δv being arbitrary, we have

µ = F ′(u)− ε2∆u. (1.2)

Finally, we apply the diffusion equation to above to obtain the Cahn-Hilliard
equation

ut = ∆µ = ∆(F ′(u)− ε2∆u),

n · ∇µ = 0, x ∈ ∂Ω; n · ∇u = 0, x ∈ ∂Ω.

Energy Decay

Here we prove that dI[u]/dt ≤ 0, which implies that the energy will decay
as t→∞ and thus the system will eventually reach an equilibrium concen-
tration. Taking a derivative of the free energy functional given in equation
(1.1), we see that

dI[u]

dt
=

∫
Ω

(
dF (u)

dt
+ 1

2ε
2 d

dt
|∇u|2

)
dx =

∫
Ω

(
F ′(u)ut + ε2∇u · ∇ut

)
dx.

Applying Green’s first identity, we have∫
Ω

(
ε2∇u · ∇ut

)
dx =

∫
∂Ω

(
ut
∂u

∂n

)
dx−

∫
Ω

(
ε2ut∆u

)
dx.

Where the boundary term vanishes by the imposed boundary conditions.
Thus, we have

dI[u]

dt
=

∫
Ω
ut(−ε2∆u+ F ′(u)) dx =

∫
Ω

∆µ(−ε2∆u+ F ′(u)) dx.

Now, with µ defined in (1.2), we substitute µ into the equation above
and apply Green’s first identity once again. As before, the boundary terms
vanish due to the imposed boundary conditions and we obtain

dI[u]

dt
= −

∫
Ω
|∇µ|2 dx ≤ 0.

4



1.1. Ostwald Ripening

Thus, we conclude that the energy decays in time and we will eventually
reach an equilibrium solution.

After Internal Layer Equilibration

At this point many different directions can be taken with the Cahn-Hilliard
equation. [23] first looks at the behavior on a very fast (T2 = t/ε2) time
scale. Instead of following this route we will restrict the analysis to consider
the normal t scale and, in this way, derive a limiting system characterizing
Ostwald ripening.

First, we define the front Γ, that moves in time and divides Ω into two
separate regions Ω+ and Ω−. We also assume that Γ does not intersect the
boundary of Ω and that u reaches the maximum concentration in Ω+ and
the minimum in Ω−.

Most of the behavior in which we are interested occurs near Γ. In order
to accurately characterize u and µ near this front we define a new variable,
z, that measures the stretched normal distance from the front.

z =
φ(x, t)

ε
,

where φ(x, t) is the signed distance from Γ to a point x, φ > 0 if x ∈ Ω+,
φ < 0 if x ∈ Ω−.

One thing to note is that if a function depends upon (z,x, t) and x
changes in a direction normal to Γ with z held fixed then the function
should remain unchanged, up to terms of O(ε). That is, w(z,x, t) = w(z,x+
δ∇φ(x, t), t) for small real δ.

We also need to define

n = ∇φ(x, t); κ = ∇ · n; V = ∂tφ(x, t).

Here n is the unit normal to Γ pointing towards Ω+, κ is the mean curvature
of the interface, positive when the center of curvature is in Ω− and V is the
normal velocity of the front, positive when moving towards Ω−.

With the new variable definition, v(x, t) = w(z,x, t) = w(φ(x,t)
ε ,x, t), the

derivatives change in the following way

∇v = ∇xw +
1

ε
n∂zw,

∆v = ∆xw +
1

ε
κ∂zw +

1

ε2
∂zzw,

∂tv = ∂tw +
1

ε
V ∂zw.

(1.3)

5



1.1. Ostwald Ripening

There is no ∂z∇xw · ∇φ term in the second equation above because we
require that the function be unchanged when z is held fixed and you move in
a direction normal to the front. Continuing with the asymptotic expansion,
we expand µ and u near the front as

µ̃ = µ̃0 + εµ̃1 + ε2µ̃2 + . . . ; ũ = ũ0 + εũ1 + ε2ũ2 + . . . .

Expanding terms of the Cahn-Hilliard equation to the lowest order yields

0 = ∂zzµ̃0 = ∂zz(F
′(ũ0)− ∂zzũ0),

V ∂zũ0 = ∂zzµ̃1 + κ∂zµ̃0.

Integrating the equation for µ̃0 we see that

F ′(ũ0)− ∂zzũ0 = a0z + a1,

but we assume ũ0 must be bounded as z → ±∞ and thus a0 = 0.
For a1 we look at far field values of z, z � 0 or z � 0. Here, since the

phase transformation has ended and we are in a state of quasi-equilibrium,
we expect that the values of ũ0 will be constant in space; that is, ũ0 = um+
or ũ0 = um− . Thus, ∂zzũ0 = 0 for z � 0 or z � 0 and, assuming u is smooth,
we determine that a1 = F ′(ũ0(±∞)) = fm (see figure 1.1 for an example of
the structure of F ′). Thus, the equation to solve is

µ̃0 = F ′(ũ0)− ∂zzũ0 = fm. (1.4)

Without loss of generality, we take F ′(ũ0) = ũ3
0− ũ0 and as a result fm =

0, which centers the bulk chemical potential about 0 and has the maximum
and minimum concentrations of u normalized to 1 and −1, respectively. The
problem becomes

ũ3
0 − ũ0 = ∂zzũ0

lim
z→±∞

ũ0(z) = ±1, ũ0(0) = 0.

Now, let W = ∂zũ0, thus ∂zzũ0 = Wz = WWũ0 . This gives us a separable
equation that we can integrate as

(ũ3
0 − ũ0)dũ0 = WdW −→ ũ4

0

4
− ũ2

0

2
+ c0 =

W 2

2
.

By using the fact that ũ0(±∞) = ±1 and that the derivative is zero in the
far field as we are in phase equilibrium, we see that c0 = 1/2, which gives us
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1.1. Ostwald Ripening

1

2
(ũ2

0 − 1)2 = (∂zũ0)2.

Choosing the negative square root we obtain another separable equation

∂ũ0

(1− ũ2
0)

=
∂z√

2
=⇒ arctanh(ũ0) =

z√
2

+ c1.

To match the boundary condition ũ0(0) = 0 we set c1 = 0. The other
two boundary conditions are already satisfied and we obtain an interface
that connects the two phases smoothly. Thus, the planar front profile is

ũ0(z) = tanh

(
z√
2

)
.

This can be easily adapted to fit any F of this type. To conclude this section
we define the front profile as U = ũ0 and U satisfies the planar front profile
equation given by

F ′(U)− ∂zzU = fm (1.5)

Late-Stage Dynamics

Next, we provide a formal derivation of the Mullins-Sekerka free boundary
problem that gives us the equations used in [2]. We assume the solution
is at equilibrium on the O(1) time scale and define a slower time variable,
τ = εt. To continue with the matching, µ1 and µ2 are necessary. The higher
order expansions of µ are given by

µ =F ′(u0 + εu1 + ε2u2 + . . .)− ε2∆(u0 + . . .)

=F ′(u0) + εF ′′(u0)u1 + ε2(F ′′′(u0)u2 + 1
2F
′′(u0)u2

1 −∆u0) +O(ε3)

By writing µ = µ0 + εµ1 + εµ2 + . . . we identify that

µ0 = F ′(u0), µ1 = F ′′(u0)u1, µ2 = F ′′′(u0)u2 + 1
2F
′′(u0)u2

1 −∆u0.

This gives us these three equations

0 = ∆µ0 = ∆F ′(u0),

∂τu0 = ∆µ1 = ∆F ′′(u0)u1,

∂τu1 = ∆µ2 = ∆(F ′′(u0)u2 + 1
2F
′′′(u0)u2

1 −∆u0).
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1.1. Ostwald Ripening

These equations, as before, have Neumann boundary conditions and the
interfacial matching conditions come from matching to the inner solution.
The next step is to proceed with the inner expansion, now on the τ timescale.
The derivative with respect to τ for an arbitrary function v(x, t) = w(z,x, εt)
is

∂tv = ε∂τw + V ∂zw.

As with the outer expansion, we need to develop more information about
the inner equations. The change in the spatial derivatives for the inner
functions µ̃ and ũ are the same as in (1.3). When we substitute these spatial
derivative changes with the asymptotic expansion into (1.2) we obtain

µ̃0 = F ′(ũ0)− ∂zzũ0, (1.6a)

µ̃1 = F ′′(ũ0)ũ1 − ∂zzu1 − κ∂zũ0, (1.6b)

µ̃2 = F ′′(ũ0)ũ2 − ∂zzũ2 − κ∂zũ1 + 1
2F
′′′(ũ0)−∆xũ0. (1.6c)

Using this information we expand ∂tu = ∆µ as on the t = O(1) time
scale. Since our lowest order term involving time is O(1) and the lowest
order term for spatial derivatives is O(ε−2), the time derivative term only
arises in the third equation. We obtain,

0 = ∂zzµ̃0, (1.7a)

0 = ∂zzµ̃1 + κ∂zµ̃0, (1.7b)

V ∂zũ0 = ∂zzµ̃2 + κ∂zµ̃1 + ∆xµ̃0. (1.7c)

The equation for µ̃0 has already been solved on the t = O(1) time scale
and thus µ̃0 = fm from (1.4). This is to be expected as to leading order the
solution should still be in equilibrium.

For the equation at the next order, we integrate it twice in z and sub-
stitute for µ̃1 as defined in (1.6b) to arrive at

b0z + b1 = µ̃1 = F ′′(U)ũ1 − ∂zzu1 − κU ′(z). (1.8)

To determine the constants b0 and b1 we need to derive the matching
conditions for µ. Roughly speaking, for a point x on Γ, the value of the
chemical potential near this point can be described as x + εzn. Thus, to
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1.1. Ostwald Ripening

derive boundary conditions, as z → 0± in the outer expansion and z → ±∞
in the inner, the chemical potentials need to agree. We require

(µ0 + εµ1 + . . .)(x + εzn, t) ∼ (µ̃0 + εµ̃1 + . . .)(z,x, t). (1.9)

For the left hand size we take z → 0± and for the right z → ±∞. Performing
a Taylor expansion (for z → 0+),

µ+
0 + ε(µ+

1 + zDnµ
+
0 ) + ε2(µ+

2 + zDmµ
+
1 + 1

2z
2D2

mµ
+
0 ) + . . . , (1.10)

where Dn is the directional derivative along n. The same argument can
be made for z → 0−. With this in hand we can describe the matching
conditions for the chemical potential by collecting terms of the same order
from (1.9) and (1.10).

µ±0 (x, t) = µ̃±0 (z,x, t), (1.11a)

(µ±1 + zDmµ
±
0 )(x, t) = µ̃±1 (z,x, t), (1.11b)

(µ±2 + zDmµ
±
1 + 1

2z
2D2

mµ
±
0 )(x, t) = µ̃±2 (z,x, t), (1.11c)

where for everything on the right hand side we are taking limz→±∞.
Now, with these matching conditions in hand, we can solve for b0 in

equation (1.8). Since we know that ∂zµ̃1 = b0(x, t) from (1.8), we can a take
partial derivative of the matching condition for µ̃1 given in (1.11b) with
respect to z to determine b0. This leads us to

n · ∇µ±0 = ∂zµ̃1, as z → ±∞.
Since µ0 must match µ̃0 near the front from (1.11a), and µ̃0 = fm from
(1.4), we know that, near the front, ∇µ0 = 0 because fm is a constant. This
implies that the far field behavior of ∂zµ̃1 = 0 from the equation above and
thus b0 = 0. To determine b1(x, t) in (1.8) we first rearrange the equation
slightly and substitute in for b0, yielding

b1 + κU ′(z) = F ′′(U)ũ1 − ∂zzu1.

We now multiply this by U ′ and integrate from −∞ to ∞. This gives us

∫ ∞
−∞

(
b1U

′ + κU ′2
)
dz =

∫ ∞
−∞

[
(F ′′(U)U ′ũ1 − U ′∂zzũ1

]
dz. (1.12)
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1.1. Ostwald Ripening

Upon integrating the second term on the right hand side of the expression
by parts twice, we see that

∫ ∞
−∞

U ′∂zzũ1 dz = U ′∂zũ1

∣∣∣∞
−∞
− ∂zU ′∂zũ1

∣∣∣∞
−∞

+

∫ ∞
−∞

∂zzU
′ũ1 dz.

The boundary terms vanish because U is the equilibrium planar front
solution and so the derivatives in the far field are zero. Substituting this
information into (1.12) we have∫ ∞

−∞

(
b1U

′ + κU ′2
)
dz =

∫ ∞
−∞

[
(F ′′(U)U ′−̃U ′′′

]
ũ1 dz. (1.13)

Now consider taking a partial derivative with respect to z of equation (1.5).
This tells us that

F ′′(U)U ′ − U ′′′ = 0.

Combining the above information with (1.13) we determine that

b1

∫ ∞
−∞

U ′dz = −κ(x, τ)

∫ ∞
−∞

U ′2 dz,

which yields

b1 = −κ(x, τ)
S

[U ]
,

with

S =

∫ ∞
−∞

U ′2 dz, [U ] = U(∞)− U(−∞).

From (1.8) and the fact that b0 = 0 we know that b1 = µ̃1. Using this
as the matching condition to the outer equation for the chemical potential,
we have arrived at a free boundary Mullins-Sekerka problem that describes
the late-stage dynamics of the Cahn-Hilliard equation, and, as we will soon
see, Ostwald ripening. The system is formulated as

∆µ1 = 0, x ∈ Ω+ and Ω−,

µ1 = −κ(x, τ)
S

[U ]
, x ∈ Γ,

n · ∇µ1 = 0, x ∈ ∂Ω.

(1.14)
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1.2. Chemotaxis

The physical interpretation is that on this time scale (t = O(ε−1)) the
chemical potential is in equilibrium and we have steady state diffusion. The
Gibbs-Thomson condition appears on the interface, relating the mean cur-
vature to the chemical potential. Finally, we derive how the front evolves
in time by looking at equation (1.7c). Since µ̃0 and µ̃1 are constant with
respect to x and z respectively, the equation reduces to

V ∂zũ0 = ∂zzµ̃2.

Upon integrating both sides of the equation from z = −∞ to z = ∞ we
have

V = [U ]−1∂zµ̃2

∣∣∣∞
−∞

(1.15)

We can substitute in the matching condition for µ̃2 from (1.11c) after taking
the derivative of it with respect to z. This tells us that

n · ∇µ±1 (x, τ) = ∂zµ̃2(z,x, τ) as z → ±∞,
which, when substituted into (1.15), yields

V (x, τ) =
[n · ∇µ1(x, τ)]±

[U ]
.

Note that a very similar calculation can be done on an O(1) timescale,
which shows the front velocity to be zero at this order. In this case V is
related to the jump in the normal derivative of µ0 instead of µ1. Since we
have already shown µ0 = fm, it is easy to see that the normal derivative
must be zero.

In summary, the late-stage dynamics characterizing the coarsening phe-
nomena for the Cahn-Hilliard equation is given by the limiting system (1.14).

1.2 Chemotaxis

Chemotaxis is a biological phenomenon in which organisms move about their
environment due to the presence of a chemical concentration. Bacteria such
as E. coli move seemingly randomly, switching between periods of swimming,
characterized by aligned flagella (arm-like appendages) resulting in straight
motion, and tumbling, where the flagella spread out and the bacteria rotates
into a new direction. In the presence of an attractive chemical gradient, E.
coli will swim in this direction and tumble when realignment with the gradi-
ent is necessary. They preference their movement along increasing amounts
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1.2. Chemotaxis

of this chemical attractant (see [3]). Sperm cells also exhibit chemotactic
behavior, moving towards the oocyte due to a compound released from its
outer wall. Chemotaxis need not be attractive; some organisms sense poi-
sonous molecules (such as carbolic acid for E. coli) and direct their movement
away.

Aggregation of cells has been seen since the early use of microscopes but
it wasn’t until 1881 with the work of Theodor Engelmann and later in 1884
with the work of Wilhelm Pfeffer that an accurate description of chemotaxis
was made. By the 1930s the significance of chemotaxis was widely accepted.
Since then, much progress has been made, advancing the field not only
biologically but also mathematically.

The mathematical study of chemotaxis dates back to the 1950s with
work by Patlak in [22] and later in the 1970s with the work of Keller and
Segel [15]. Although there have been other attempts, the Patlak-Keller-
Segel (PKS) model is the prevailing one. This is due to the intuitive nature
of the equations, tractability, and clear representation of sought-after phe-
nomenon. The derivation is reasonable and clear; the assumptions made
are both biologically and mathematically logical. There is a strong connec-
tion between the source of the assumptions and how they manifest in the
equations. The general model is

ut = ∇ · (k1(u, v)∇u− k2(u, v)u∇v) + k3(u, v),

vt = Dv∆v + k4(u, v)− k5(u, v)v,

where u is the organism concentration/density in a domain Ω ∈ Rn and
v is the concentration of the chemical signal. k1 represents the diffusivity
of the organism modeled by u and k2 is the chemotactic sensitivity. As
the gradient of v increases, advection of u increases. k3 is a cell kinematic
term for u, measuring growth and death. k4, and k5 are chemical signal
kinematics, representing production and degradation. We see that v obeys
a basic diffusion equation with an additional growth/death factor while u is
slightly different, involving diffusion and advection.

The original model, seen in [22] and later in [15], referred to as the
’minimal model’ in [12], is

ut = ∇ · (Du∇u− χuu∇v); vt = Dv∆v + µu− δv,
with zero-flux boundary conditions imposed on the outer walls of the domain
Ω and some specified initial concentration. Diffusivity (Du, Dv), chemotactic
sensitivity (χu), and cell kinematic factors (µ, δ) are assumed to be constant.
Assuming that chemical kinematics occur on a much larger time scale or
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1.2. Chemotaxis

possibly do not occur during aggregation, we can also ignore k3. This is
a reasonable assumption in many cases (see [12]). For the chemical signal,
kinematics are taken to be linear. There is an additional condition that the
model has, namely mass conservation.

∂

∂t

∫
Ω
u dx =

∫
Ω
ut dx =

∫
Ω
∇ · (Du∇u− χuu∇v) dx

=

∫
∂Ω

(Du∇u− χuu∇v) · n dx = 0,

due to the zero-flux boundary condition. Thus, we see that mass in con-
served as ∫

Ω
u(x, t) dx =

∫
Ω
u0(x) dx = M.

The model can be nondimensionalized to have a homogeneous steady
state such that (us, vs) = (1, 1) and M = 1.

During the 1990s and early 2000s a series of papers (see [14]) proved
that the minimal model has a major deficiency. In 2D and 3D domains,
global existence depends on a threshold level of initial mass. If there is too
much mass in the system we see finite time blow-up. The cells in the model
aggregate to a spot with infinite density, which is obviously not biologically
feasible. Since, for a typical application, the initial mass lies above this
threshold, regularizations of the model are necessary. Initial aggregation is
only one small part in chemotaxis and thus, there is a need for a model
that allows for longer time scales without blow-up. We present a few of
these regularizations but focus specifically on the volume-filling case in this
paper.

1.2.1 Literature Review

Considering the simplified system of PDEs,

ut = ∇ · (D(u)∇u−A(u)B(v)u∇v) + f(u),

vt = ∆v + g(u)u− v.
Below is a table outlining the choices of functions for each of the regulariza-
tions considered.
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1.2. Chemotaxis

Model D(u) A(u) B(v) f(u) g(u)

Minimal D u χ 0 1
Nonlinear Diffusion Dun u χ 0 1
Volume Filling D u

(
1-uγ
)

χ 0 1

Signal Dependent Sensitivity D u χ
(1+αv)2

0 1

Cell Kinematics D u χ ru(1− u) 1
Saturated Signal Production D u χ 0 1

1+φu

This list is certainly not exhaustive. There are more covered in [12] and
even more that they mention as being left out. These excluded variations
have such properties as nonlinear gradient functions, nonlocal terms, or even
zero diffusion models.

We will now work through the details of each model individually, ex-
plaining the reasoning behind the regularization and the impact it has on
the behavior.

The Minimal Model

For completeness and ease of comparison, we present the details of the min-
imal model as well as the derivation. We consider the movement of each cell
as modeled by a biased random walk, where the bias is due to the chemo-
tactic gradient. This allows for an easier transition from microscopic to
macroscopic behavior.

Consider an infinite 1D lattice where particles may instantaneously jump
a constant distance h to the left or the right. Assuming the particles do
not interact directly, we have the following continuous-time discrete space
system for the particle density u(x, t) given by

∂u(x, t)

∂t
= T+

x−hu(x− h, t) + T−x+hu(x+ h, t)− (T+
x + T−x )u(x, t).

T±x is a probability function that gives a chance per unit time for a
particle at x to make a jump to x± h. In the model, at each time step, we
have possible contributions from the point to the left and the right, x − h,
and x+h, respectively. This is represented by T+

x−h and T−x+h. There is also
loss from the currently position as particles jump away, which is indicated
by T+

x and T−x .
As stated before, the chemotactic sensitivity is incorporated through the

bias in the random walk, which we see in the T function. We want to bias the
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1.2. Chemotaxis

jump with regards to a local spatial gradient of v, which we do by specifying
T±x as

T±x = a+ b(v(x± h, t)− v(x, t)),

where a and b are positive constants. The probability to jump in a given
direction increases if the concentration of the chemical is larger in that direc-
tion. Substituting this into the equation and performing a Taylor expansion
of the right hand side, we obtain

ut = h2(aux − 2buvx)x +O(h4).

Now, we scale time by the transformation t = λt̂. This results in

ut̂ = λh2(aux − 2buvx)x +O(h4),

where we assume that the limits limh→0,λ→∞ aλh
2 = Du and limh→0,λ→∞2bλh2 =

χu, which results in a continuous space and time equation. Dropping the
hat for convenience, we arrive at

ut = (Duux − χuuvx)x.

We assume the equation for v is a standard diffusion equation with linear
kinetics. Thus, in higher dimensions we have the following system of PDEs
with zero-flux boundary conditions on the outer wall of the domain Ω

ut = ∇ · (Du∇u− χuu∇v); vt = Dv∆v + µu− δv.
As mentioned previously, the minimal model can be nondimensionalized

to have mass, M , equal to 1 and the number of parameters reduced. In
one dimension, we have global existence of solutions, which was recently
proved in [20]. In two dimensions the model has finite time blow-up when
the initial mass is over some threshold level, which is why we employ these
regularizations. This result can be found in [14].

Nonlinear Diffusion

The nonlinear diffusion model considered is

ut = ∇ · (Dun∇u− χu∇v),

with the equation for v given as before. Thus, the only change is the non-
linear dependence on cell density for the diffusion term. As stated in [12],
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this dependence is neglected in cell movement but crops up in ecological ap-
plications such as population-induced insect movement. Hillen and Painter
suggest that, although most applications assume a constant diffusion co-
efficient, a nonlinear dependence is much more likely. This specific case,
involving un, was studied by Kowalczyk in [16] and Eberl in [9] as a model
for biofilm growth.

Much like the minimal model, after nondimensionalization the nonlinear
diffusion model has a homogeneous steady state of (u, v) = (1, 1). Kowal-
czyk proved in [16] that this model has global existence of solutions in n
dimensions. The Lyapunov function

Lnonlinear(u) =
D

n(n+ 1)χ
un+1

is used for this result.

Volume Filling

The effects of volume filling are explored in [11]. Since this model is of
particular importance to this paper we will go through the derivation of the
volume effects; that is, how and at what stage of the model they crop up.
Higher concentrations of cells should inhibit the ability for other cells to
move into a given region, creating a hard cap on the density in a given area.
This is modeled by a function q(u) that gives the probability of finding space
based on the local density u. We want q to be a positive and decreasing
function. One such choice is q(u) = 1 − u/γ, γ > 1, with u having a
maximum density of γ. Now, the jump function T becomes

T±x = q(u(x± h))(a+ b(v(x± h)− v(x))).

Following the same steps as before, we arrive at

ut = ∇ · (D(q − uqu)∇u− χuq(u)∇v); vt = Dv∆v + µu− δv.

With q(u) given as q(u) = 1− u/γ, the equation for u reduces to

ut = ∇ ·
(
D∇u− χu

(
1− u

γ

)
∇v
)
.

The volume filling approach is intuitive and easy to implement. Global
existence is achieved, as expected, and was proved in [10, 30] using the
Lyapunov function
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Lvolume(u) =
D

χ

(
u log(u) + γ

(
1− u

γ

)
log

(
1− u

γ

))
.

Signal-dependent Sensitivity

The signal-dependent sensitivity model, also referred to as the receptor
model, is

ut = ∇ ·
(
D∇u− χu

(1 + αv)2
∇v
)
,

with v given as before (diffusion & linear kinetics).
The model is motivated by in vivo experimentation and observation.

Chemotactic response is controlled first by signal detection, through bind-
ing of the chemical to exterior receptors, followed by transduction, where
a change takes place in the internal receptor component. This not only
causes a change in movement but may also affect receptor production and
degradation. We want to build these effects into the model and thus add a
signal-dependent sensitivity function, specifically, the receptor form

B(v) =
χ

(1 + αv)2
.

At high concentrations of v we see that B(v) decreases, indicating that,
in a sense, the receptors on a cell are full and can no longer impact move-
ment. This is only one such model for signal-dependent sensitivity and there
are others that employ slightly different assumptions. Global existence of
solutions for this model was proved only very recently in [29].

Cell Kinematics

As stated previously, it is occasionally reasonable to ignore cell growth and
death. Dictyostelium discoideum, for instance, halts cell proliferation during
aggregation stages. In other cases the movement takes place on a much faster
time scale than growth, also allowing us to ignore those additional terms.
This is not always the case and with most bacteria these time scales match
up. Using a standard logistic growth models, we derive a cell kinematics
model given by

ut = ∇ · (D∇u− χu∇v) + ru(1− u).

Global existence of solutions in the cell kinematic model in n dimensions
is proved in[30].
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Saturated Signal Production

The basis for saturated signal production comes from what was mentioned
previously about receptor binding and saturation effects. Since, biologi-
cally, a receptor binding to a site on the cell has other affects not limited
to movement but also influences signal production, the model is changed
accordingly. A saturated signal production model tries to correct the overly
simplistic assumption of linear kinetics through the term

g(u) =
1

1 + φu
,

which decays as u → ∞. Thus, the production of chemical saturates the
environment and slows to a halt when cell density increases. The resulting
model is

ut = ∇ · (D∇u− χu∇v); vt = ∆v +
u

1 + φu
− v.

Global existence of solutions in n dimensions was proved in [13]. Thus,
we have global existence for all models considered with the exception of the
minimal model.

Stability

The survey by Hillen and Painter ([12]) gives a brief rundown of one di-
mensional linear analysis, which we summarize here. We assume the model
in question has a spatially homogeneous steady state solution, (ū, v̄) and
linearize around this solution, which gives us

Ut = D(ū)Uxx −A(ū)B(v̄)Vxx + f ′(ū)U,

Vt = Vxx + (g(ū) + ūg′(ū))U − V.
We now define Ā = A(ū), B̄ = B(v̄), f̄ = f(ū), ḡ = g(ū). We take U and V
to be the typical small perturbation function to derive the stability matrix
whose eigenvalues tell us the stability of the linear homogeneous solution.

M =

(
−k2D̄ + f̄ ′ k2ĀB̄

ḡ + ūḡ′ −k2 − 1

)
On a closed interval [0, L] with Neumann boundary conditions we have k =
nπ/L, n = 0, 1, 2, . . .. If the eigenvalues have positive real part then the
homogeneous solution is unstable and we expect pattern formation due to
the global existence of solutions for each model in one dimension. This gives
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us the following necessary conditions for instability in each of the models
considered

Model Necessary Conditions Unstable Modes k

Minimal χ > D k2 < χ
D − 1

Nonlinear Diffusion χ > D k2 < χ
D − 1

Volume Filling χ
(
1− 1

γ

)
> D k2 <

χ
(

1− 1
γ

)
D − 1

Signal Dependent Sensitivity χ > D(1 + α)2 k2 < χ
D(1+α)2

− 1

Cell Kinematics χ > (
√
D +

√
r)2 k2 ∈ (k1, k2)

Saturated Signal Production χ > D(1 + φ)2 k2 < χ
D(1+φ)2

− 1

where k1,2 = χ−D−r
2D ± 1

2D

√
(D + r − χ)2 − 4rD. We see that in all models

considered the spatially homogeneous solution has a region of instability and
patterns may develop.

Numerical Results

In this section we present numerical results from [12] for the models con-
sidered and additional results from [11] for the volume-filling model. This
is to show the many different solutions that can arise. We provide extra
information on the volume-filling case to give evidence of coarsening as well
as comment on the parameter values that bring about these long transients.

In figure 1.2 we see the myriad solutions that not only arise from the dif-
ferent way the model was regularized but also the different parameter values
inherent in each of these regularizations. The asterisk indicates, as in [11], a
”plateau” solution. We see that aggregation, when it transpires, can occur
in many different ways although qualitatively the results behave similarly
(grouping around a high concentration of the chemical signal). Figure 1.3
is similar to 1.2 but depicts the solution over longer time scales. Finally,
figures 1.4 through 1.6 show coarsening effects for select regularizations.

This concludes the literature review and introduction. Next, we move on
to a more in depth look at Ostwald ripening where new results are presented.
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Fig. 1 (M1) Numerical simulation of minimal model showing evolution of cell density (solid line) and
chemical concentrations (dash-dot line) to the steady state. (M2)–(M8) Numerical results for the regu-
larised models, showing steady state cell distributions (solid line) at different values of the regularisation
parameter. For comparison, the steady state distribution of the minimal model is plotted as the dash-dotted
line. The cell distributions marked with an asterisk have been classified (numerically) as plateau type—all
others are spikes. For all numerics, the same model set-up is considered: parameters D and χ are set at 0.1
and 5.0, respectively; initial conditions are set to be u(x, 0) = 1 and v(x, 0) = 1 + 0.1 exp(−10x2); 201
discretisation points are employed on a domain of length 1
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Figure 1.2: 1D simulations for the models considered. Minimal model is
given at different times where as others have varying relevant parameters.
The solid line is the adapted model where as the dot-dash line is the minimal
model steady state solution. In order, the models are: minimal, signal-
dependent sensitivity, volume-filling, non-linear diffusion, saturating signal
production, and cell kinetic. D = .1, χ = 5. ICs: u(x, 0) = 1, v(x, 0) =
1 + .1 exp(−10x2).
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Fig. 2 Numerical simulations of models (M1)–(M8) on a larger domain from unbiased initial data. For
all numerical simulations the following conditions are employed: parameters D and χ are set at 0.1 and
2.0, respectively; initial data u(x, 0) = 1 and v(x, 0) = 1.0 + r(x) where r(x) is a 1% random spatial
perturbation of the steady state; domain [0, 20] with 401 grid parameters

minimal model displays finite-time blow up. A summary of the global existence results
for the various models (M2)–(M8) was given in Sect. 3.

Numerical simulations on the unit square are plotted in Fig. 3. For the minimal
model, solutions quickly evolve into a blow-up. Following a critical time, which we
classify as numerical blow-up, we are unable to track the solution any further, there-
fore a plot of the cell density is shown just prior to this point in the appropriate plot
of Fig. 3a.

Results from the numerical simulations of models (M2)–(M8) are displayed in the
remaining plots of Fig. 3a. The result for both forms of (M2) are somewhat ambig-
uous: for the model (M2a) (receptor) a steady state distribution in the cell density is
achieved, yet the aggregation is highly concentrated and we should query as to whether
the numerical scheme is sufficiently accurate at such steep gradients. A similar ambi-
guity appears for model (M2b) (logistic); global existence has been proved by Biler
[7] for β > 0, whereas for β = 0 global existence has only been determined below
a threshold (see 6.1.1 in [40]). The numerical results here, for β = 0 and above the
threshold in [40], lead to numerical blow-up at time t = 1.13. To fully resolve the
nature of these solutions it will be necessary to develop more sophisticated numerical
schemes, for example an adaptive-meshing algorithm similar to that developed by
Budd et al. [9]. The remaining cases, (M3)–(M8), are less ambiguous and the mod-
els have globally existing solutions. The temporal evolution of the cell density at the
aggregation peak is tracked in Fig. 3b. Two cases deserve special attention. Firstly, for
the nonlinear diffusion model (M5), the cell density aggregate appears to form a com-
pact mass with SHARP fronts. Secondly, for the cell kinetics model (M8), solutions
initially lie close to those of the minimal model before cell kinetics dominate and the
peak density drops to a steady state profile.

123
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Figure 1.3: One dimensional numerical simulations for the models consid-
ered, now on a larger domain. Models appear in the same order as the
previous figure. D is given to be .1 and χ = 2. Initial conditions are set at
u(x, 0) = 1, v(x, 0) = 1 + r(x) where r(x) is a random spatial perturbation
of the steady state, .01 ≤ r(x) ≤ .01. We see that in most cases a coarsening
process occurs and what initially started as a multi-peak structure evolves
into fewer and fewer regions of concentration. This is not the case in the
cell kinematics regularization as we see a continual emergence of cells and
decay of peaks.

A user’s guide to PDE models for chemotaxis 207

Fig. 4 a Numerical simulation of the 2D model for chemotaxis incorporating receptor binding (with
α = 0.5), volume-filling (γ = 10), non-linear diffusion (n = 1.0) and saturating chemical produc-
tion (φ = 1.0). b As for (a), but with the addition of logistic cell growth (r = 0.1). For both sets of
numerics we let D = 0.1, χ = 5.0 on a domain of size 20 × 20 with initial data u(x, y, 0) = 1 and
v(x, y, 0) = 1.0 + r(x, y), where r(x, y) is a 1% random spatial perturbation of the steady state

to the 1D findings. Here the average wavelength between peaks roughly remains the
same.

5.3 3D numerics

The properties for the various models in higher dimensions are less well understood.
Due to the computationally exhaustive nature of 3D simulations we restrict our numer-
ical exploration to just 2 cases: the minimal model (M1), for which finite time blow-up
occurs in 3D, and the volume-filling model (M3a), which is known to have globally
existing solutions [36,110]. As expected, 3D numerical simulations of the minimal
model (not shown) demonstrate a rapid evolution to a blow-up. For the volume-filling
model, however, solutions evolve into a stable spherical aggregation of cells, Fig. 5a

123

Figure 1.4: Here is an example of a 2D simulation. This is a time evolution of
a combination of a few regularizations, namely signal-dependent sensitivity
(α = .4), volume-filling (γ = 10), non-linear diffusion (n = 1) and saturating
chemical production (φ = 1). D = .1, χ = 5, Ω = [0, 20] × [0, 20]. ICs:
u(x, y, 0) = 1, v(x, y, 0) = 1 + r(x, y), where r(x, y) is the 2D analog from
the previous figure. We once again see a coarsening process as time goes on.
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FIGURE 5: (a) Early evolution of a multi-peak pattern for Model (1)
with χ(u, v) = χ0(1−u) and with initial cell density of 0.5 shown at T=0
(dot), 20 (dot-dash) and 100 (solid). (b) Initial density = 0.2, at T=0
(dot), 50 (dot-dash) and 100 (solid). (c) Initial density = 0.8, at T=0
(dot), 50 (dot-dash) and 100 (solid). (d) Long time evolution for initial
cell density of 0.5 showing coarsening to a single half-peak pattern. (e)
q(u) = 1 − uγ for γ = 4.0 (solid), 1.0 (dot) and 0.25 (dash). We use a
domain of length 20 and parameters Du = 0.25 and χ0 = 4.0 Data is
plotted at T = 500. (f) q(u) = exp(−γu) for γ = 1.0 (dot, T = 300.0),
3.0 (dot-dash, T = 5000) and 5.0 (solid, T = 5000).

5.2 Pattern formation: simulations in one-dimension

5.2.1 Zero Cell Kinetics We consider the volume-filling chemotaxis
system, given by Model (1) with cell kinetics f(u, v) = 0 and χ(u, v) =
χ0(1 − u), χ0 > 0 a constant. Unless stated otherwise, throughout
the following sections we shall assume chemical kinetics take the form
g(u, v) = u − v, and zero flux boundary conditions. Initial conditions
will be set at the homogeneous steady states, but spatially perturbing
the chemical concentration by a small random amount.

For initial conditions u(x, 0) = us (constant) the homogeneous steady
state is (u∗, v∗) = (us, vs). The results of the linear stability analysis

Figure 1.5: A 1D time evolution picture that shows coarsening occurring on
a log time scale for the volume-filling model. In this case, initial cell density
is set at .5 with D = .25 and χ = 4.
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FIGURE 10: Coarsening process in the two-dimensional model with no
cell kinetics. Top row u(x, y, 0) = 0.5, Middle row: u(x, y, 0) = 0.25,
Bottom row: u(x, y, 0) = 0.75. Colourscale shows cell density (black
= low cell density, white = high cell density). Parameters are Du =
0.25,χ = 4.0 on the domain [0, 25] × [0, 25].
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FIGURE 11: Two dimensional patterns generated using the quo-
rum/chemical mediated approaches of Section 2. Here, depending on
the system parameters, we can see the formation of ring structures.

Figure 1.6: Coarsening of the volume filling model. The top row has initial
concentration of u = .5 and the bottom has u = .25. As above, D = .25,
χ = 4. Here, the domain, Ω = [0, 25] × [0, 25]. In this picture black is low
cell density where white is high cell density.
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Chapter 2

Ostwald Ripening

We begin this chapter with a deeper look at Ostwald ripening. From the
introduction, we left off with the free boundary Mullins-Sekerka problem
seen in (1.14). The problem has been rewritten slightly as

∆u = 0, x ∈ Ω \ Γ,

u = −κ, x ∈ Γ;
∂u

∂n
= 0, x ∈ ∂Ω,

V = −
[
∂u

∂n

]
, x ∈ Γ.

(2.1)

Here, the variable has been changed to u and has been scaled so that only
κ, the mean curvature, shows up on the interface.

As mentioned in the introduction, the next step is to draw the connection
between this and the equations that govern Ostwald ripening. There are
many ways to do this, one of which can be seen in [2]. Instead, we will
present a matched asymptotic approach to arrive at a system of ODEs that
describe the motion of each drop.

2.1 Mullins-Sekerka to Ostwald Ripening
Dynamics

We start by considering an arbitrary domain Ω ⊂ R2 with a collection of N
small circular droplets inside the domain whose boundaries are described by
Γi = |x − xi| = ri for i = 1, 2, . . . , N , where ri is the radius of the droplet
and xi the center. The interface between the two regions, Γ, is given as
Γ =

⋃
Γi. Since we assume the droplets are small, ri = ερi for ε � 1 and

ρi = O(1). The droplets are expected to move in time so ri and ρi depend
upon t. Since the interfacial velocity V is negative for a shrinking drop by
convection,

V = −dri
dt

= −εdρi
dt
,
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for a given i. We also know the mean curvature, κ, for a circular drop, is
given by

κ =
1

ri
=

1

ερi
.

Inside each drop we know that u− = 1/ri(0), a constant, which means
that ∂nu− = 0 on Γi. This tells us[

∂u

∂n

]
=
∂u

∂n

∣∣∣
+
− 0 =

∂u

∂r

∣∣∣
r=ri

=
1

ε

∂u

∂ρ

∣∣∣
ρ=ρi

.

We know from (2.1) that the jump in the normal derivative given above is
also equal to the velocity V . Therefore,

ε2
dρi
dt

=
∂u

∂ρ

∣∣∣
ρ=ρi

.

Collecting this information, the problem that we need to solve can be rewrit-
ten as

∆u = 0, x ∈ Ω \ Γ,

u =
1

ερi
, x ∈ Γi;

∂u

∂n
= 0, x ∈ ∂Ω,

with the droplet dynamics satisfying

ε2
dρi
dt

=
∂u

∂ρ

∣∣∣
ρ=ρi

.

Determining u means we obtain a system of ODEs that describe the
motion of each drop throughout the domain. We can scale u by 1/ε to
simplify the problem and remove the ε that appears on the boundary of
each interface. Note that this also causes an additional power of ε to appear
in our system of ODEs.

Proceeding with the asymptotic analysis, we expand u as

u = u0 + νu1 + ν2u2 + . . . ,

where u0 is readily seen as an unknown constant that is determined as a
solvability condition in later expansion and ν is the order of the subsequent
terms, also to be determined. For u1, the problem to solve is

∆u1 = 0, x ∈ Ω \ {x1, . . . ,xN},
∂u1

∂n
= 0, x ∈ ∂Ω; u1 ∼ ?, as x→ xj , for j = 1, . . . , N.

(2.2)
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To figure out this singularity condition as x→ xj , we move to an inner
expansion. We define y = ε−1(x − xj) near the jth droplet and U be the
inner u function. Now, we have

U = U0 + νU1 + . . .

As with all matched asymptotic expansions, we require the outer solution
and inner solution agree as x→ xj and as |y| → ∞ respectively. So we must
have U0 → u0 as |y| → ∞. The first two inner equations to solve are

∆yU0 = 0, y 6∈ Γj ,

U0 =
1

ρj
, y ∈ Γj ; U0 ∼ u0, as |y| → ∞. (2.3)

∆yU1 = 0, y 6∈ Γj ,

U1 = 0, y ∈ Γj ; U1 ∼ ?, as |y| → ∞. (2.4)

Both equations can be solved by switching to polar coordinates and
looking for a radially symmetric solution. The corresponding solutions are

U0 =
1

ρj
+B0,j(log(ρ)− log(ρj)), (2.5a)

U1 = B1,j(log(ρ)− log(ρj)), (2.5b)

for constants B0,j and B1,j . To determine B0,j and B1,j , we look to the
matching condition for the inner and outer solution. Near the jth droplet,
we must have (as x→ xj and as |y| → ∞)

u0 + νu1 + ν2u2 ∼ U0 + νU1 + . . .

Substituting in for U0 and U1 from (2.5) and switching to a common variable,
we see that

u0 + νu1 + ν2u2 ∼
1

ρj
+B0,j(log(|x− xj |)− log(ε)− log(ρj))

+ νB1,j(log(|x− xj |)− log(ε)− log(ρj)) + . . .

In order to keep the order of the right hand side and left hand side con-
sistent, the log(ε) term must vanish. This tells us that Bi,j = Cij/ log(ε) for
some arbitrary constant Cij , where j corresponds to the droplet in question.
This also specifies ν = −1/ log(ε). Rearranging terms, we now have
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2.1. Mullins-Sekerka to Ostwald Ripening Dynamics

u0 + νu1 ∼
1

ρj
+ C0j + ν[C0j(log(|x− xj |)− log(ρj)) + C1j ] +O(ν2).

Since u0 = 1/ρj + C0j , we see that C0j = u0 − 1/ρj which tells us the
singularity condition for u1, specifically, u1 ∼ (u0 − 1/ρj) log(|x − xj |) as
x → xj , for j = 1, . . . , N since there are no other terms to match on O(ν).
We can substitute this into equation (2.2) and rewrite it as

∆u1 = 2π
N∑
j=1

(
u0 −

1

ρj

)
δ(x− xj), x ∈ Ω,

∂u1

∂n
= 0, x ∈ ∂Ω.

Here, u0 is still undetermined. We use the divergence theorem to reveal that

u0N =

N∑
j=1

1

ρj
,

and thus

u0 =

∑N
j=1

1
ρj

N
=

1

ρharm
,

where ρharm is the harmonic mean. This also tells us that C0j = 1/ρharm −
1/ρj .

At this point we can conclude with a leading order expansion for the
dynamics of each droplet and the resulting system of ODEs. We substitute
B0,j = −νC0j into (2.5a) and take a derivative with respect to ρ to determine
that

U0 = ν

[
1

ρharm
− 1

ρj

]
1

ρ
,

and since, to leading order, u ∼ U0 as x→ xj (ρ→ ρj), we have

dρj
dt

=
ν

ε3
∂u

∂ρ

∣∣∣
ρ=ρj

≈ ν

ε3

[
1

ρharm
− 1

ρj

]
1

ρj
, j = 1, . . . , N.

Principal Result 2.1: Consider the 2-D free boundary Mullins-Sekerka
problem given below.
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2.2. Properties of the System

∆u = 0, x ∈ Ω \ Γ,

u = −κ, x ∈ Γ;
∂u

∂n
= 0, x ∈ ∂Ω,

V = −
[
∂u

∂n

]
, x ∈ Γ.

where u is the chemical potential, κ the curvature and V is the interfacial
velocity. In the case where Γ is the boundary of a collection of small circles
(radius ∼ O(ε), ε� 1), the following system of ODEs describes, to leading
order, the coarsening phenomenon present.

dρj
dt

=
ν

ε3
∂u

∂ρ

∣∣∣
ρ=ρj

≈ ν

ε3

[
1

ρharm
− 1

ρj

]
1

ρj
, j = 1, . . . , N,

where ν = −1/ log(ε) and ρharm is the harmonic mean.

2.2 Properties of the System

Here we will derive a few properties of the system before moving on to a
higher order expansion. These properties are (i) the system is area preserv-
ing, (ii) the perimeter of droplets is non-increasing and (iii) the smallest
droplet will vanish in finite time.

2.2.1 Area Preserving

Consider the area of a given droplet, πρ2
i , and total area of the system

π
∑N

i=1 ρ
2
i , the sum of all the individual areas. We proceed by taking a

derivative with respect to time of the total area.

d

dt

N∑
i=1

ρ2
i = 2

N∑
i=1

ρiρ
′
i = 2

N∑
i=1

ρi

(
1

ρharm
− 1

ρi

)
1

ρi

ν

ε3

=
2ν

ε3

(
N∑
i=1

1

ρharm
−

N∑
i=1

1

ρi

)
=

2ν

ε3

(
N

ρharm
−

N∑
i=1

1

ρi

)

=
2ν

ε3

 N
N∑N
i=1

1
ρi

−
N∑
i=1

1

ρi

 = 0.
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2.2. Properties of the System

As a result the total area of the system is unchanged and the droplets
exchange mass with each other without any loss. The initial mass is the
same as the mass at any future time.

2.2.2 Perimeter Reducing

Consider the perimeter of a given droplet, 2πρi. The total perimeter of the
system will be the sum of all the individual perimeters. We take a derivative
with respect to time of the total perimeter to determine that

d

dt

N∑
i=1

ρi =
ν

ε3

N∑
i=1

(
1

ρiρharm
− 1

ρ2
i

)
=

ν

ε3

[(
N∑
i=1

1

ρi

)
1

ρharm
−

N∑
i=1

1

ρ2
i

]

=
ν

ε3

 1

N

(
N∑
i=1

1

ρi

)2

−
N∑
i=1

1

ρ2
i

 .
Since ν/ε3 is positive it suffices to show that

∑N
i=1 α

2
i ≥ (

∑N
i=1 αi)

2/N .
This result means the derivative is negative signifying that the perimeter
decreases. We begin with

0 ≤
N∑
i=1

N∑
j=1

(αi−αj)2 =

N∑
i=1

N∑
j=1

(α2
i +α2

j−2αiαj) = 2N

N∑
i=1

α2
i −2

(
N∑
i=1

αi

)2

,

and thus

N

N∑
i=1

α2
i ≥

(
N∑
i=1

αi

)2

.

The perimeter therefore decreases in time and the system moves to a
configuration with a smaller total perimeter.

2.2.3 Finite Time Extinction

Here we wish to prove that, for the particles in the system, all but the
largest go extinct in finite time. We are assuming that the timescale has
been adjusted to remove ν/ε3 on the right hand side of the ODE equation.
To do this, we assume ρ1(0) ≤ ρ2(0) ≤ . . . ≤ ρN (0) and show that for the
smallest particle, ρ1, there exists a time T1 such that ρ1(T1) = 0 and
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2.2. Properties of the System

ρ1(0)3

3
≤ T1 ≤

Nρ1(0)3ρN (0)

ρN (0)− ρ1(0)
.

This is sufficient because the calculation can then be repeated for the next
smallest particle. Consider the system of ODEs derived in principal result
2.1

dρ1

dt
=

1

ρ1

[
1

ρharm
− 1

ρ1

]
≥ − 1

ρ2
1

, (2.6)

where the inequality arises from discarding the first term on the right. Now,
we have

ρ2
1

dρ

dt
≥ −1.

If we separate the equation and integrate, we wind up with

ρ1(t)3 ≥ −3t+ ρ1(0)3 ≥ 0, t ≤ 1

3
ρ1(0)3.

Thus ρ1 is greater than zero for all t less than the value shown above and
thus the extinction time must satisfy T1 ≥ ρ1(0)3/3. For the upper bound,
we again look to the system of ODEs. First, consider

1

ρharm
− 1

ρ1
=

1

N

(
1

ρ2
− 1

ρ1
+ . . .+

1

ρN
− 1

ρ1

)
≤ 1

N

(
1

ρN
− 1

ρ1

)
. (2.7)

From (2.6) we can see that

ρ2
1

dρ1

dt
= ρ1

[
1

ρharm
− 1

ρ1

]
.

Combining this and (2.7) we see that

ρ2
1

dρ

dt
≤ 1

N

(
ρ1 − ρN
ρN

)
≤ 1

N

(
ρ1(0)− ρN (0)

ρN (0)

)
.

The last inequality arises because 1/ρN ≤ 1/ρharm ≤ 1/ρ1 which means
ρ′N ≥ 0 and ρ′1 ≤ 1. This means the difference between ρ1 and ρN will grow
in time and is smallest when t = 0.

We can integrate the above equation as with the lower bound to show
that
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2.3. Summing the Logarithmic Terms

ρ1(t)3 ≤ t

N

(
ρ1(0)− ρN (0)

ρN (0)

)
+ ρ1(0)3 ≤ 0, t ≥ Nρ1(0)3ρN (0)

ρN (0)− ρ1(0)
.

This shows that p1 is less than zero (extinct) for t greater than the value
given above. We conclude with

ρ1(0)3

3
≤ T1 ≤

Nρ1(0)3ρN (0)

ρN (0)− ρ1(0)
.

2.3 Summing the Logarithmic Terms

In this section we go back to our leading order approximation for the droplet
evolution and make further progress, calculating the asymptotic solution for
all terms of O(νk) for any k. We begin by taking another look at the inner
expansion for u. We can rewrite U , this inner expansion, as

U =
1

ρj
+ νBj(ν)U1 + εU2 + . . . , (2.8)

for functions Bj(ν), j = 1, 2, . . . , N to be found. The equation U1 satisfies
is the same as in (2.4) and thus has the same form: U1 = log(ρ) − log(ρj).
Bj(ν) is taking the place of B0,j and B1,j from equation (2.5). Notice that
we have separated logarithmic dependence from U0 in (2.5a) and rearranged
it to lie within U1 and Bj(ν).

The idea is that all terms of logarithmic order can be captured by one
function for each droplet. Since this captures the terms of all logarithmic
orders it will result in a more accurate solution. Switching to the outer
coordinate, we have

U =
1

ρj
+ νBj(ν)

[
log |x− xj |+

1

ν
− log(ρj)

]
+ . . . (2.9)

The matching works very similarly to the leading order case but we now
group u0 and u1 as one function, uH . The equation uH satisfies is

∆uH = 0, x ∈ Ω \ {x1, . . . ,xN},
∂uH
∂n

= 0, x ∈ ∂Ω,

uH ∼
1

ρj
+Bj(ν) + νBj(ν)[log |x− xj | − log(ρj)], as x→ xj , for j = 1, . . . , N.
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2.3. Summing the Logarithmic Terms

This can be solved by making use of the Neumann Green’s function
G(x; xj) which satisfies

∆G =
1

|Ω| − δ(x− xj), x ∈ Ω,

∂G

∂n
= 0, x ∈ ∂Ω;

∫
Ω
Gdx = 0,

G(x; xj) ∼ −
1

2π
log |x− xj |+Rjj + o(1), as x→ xj ,

where Rjj is the regular (non-singular) part of the jth Neumann Green’s
function and depends upon the domain Ω. Thus, uH can be written as

uH = −2π

N∑
j=1

Bj(ν)G(x; xj) + u0. (2.10)

As before, u0 is an arbitrary constant to be found. This system has N+1
unknowns (Bj(ν) and u0) but only N equations. To resolve this issue we
impose the area preserving condition

N∑
j=1

Bj(ν) = 0

To determine the rest of the unknowns we expand (2.10) as x → xj ,
giving us

uH ∼ νBj(ν) log |x− xj | − 2π

Bj(ν)Rjj + ν
∑
i 6=j

Bi(ν)Gji

+ u0,

where Gji is the ith Green’s function evaluated at xj . Now, we match this
with the singularity behavior determined from the inner solution in equation
(2.9). After canceling the log |x− xj | term in (2.9) and above, we wind up
with

−2π

Bj(ν)Rjj + ν
∑
i 6=j

Bi(ν)Gji

+ u0 =
1

ρj
Bj(ν)− νBj(ν) log(ρj),

for j = 1, 2, . . . , N .
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2.3. Summing the Logarithmic Terms

We can rewrite this as a linear algebraic system for the unknowns Bj(ν)
and u0.

−2πνGB + u0e = ρ0 + B− νPB, (2.11)

where G, e, ρ0 B and P are given as

G =

R11 Gij
. . .

Gji Rnn

 ; P =

log(ρ1) 0
. . .

0 log(ρN )

 ,

e =

1
...
1

 ; ρ0 =


1
ρ1
...
1
ρN

 ; B =

B1(ν)
...

BN (ν)

 .

If we multiply (2.11) on the left by eT , we realize that by the area
preserving condition on Bj(ν), eTB = 0. We are left with

−2πνeTGB +Nu0 = eTρ0 − νeTPB,

and therefore,

u0 =
1

N

[
2πνeTGB + eTρ0 − νeTPB

]
.

We can now return to (2.11) and substitute in for u0. Since u0 is a
constant, we can swap which side of e it appears on. Thus,

−2πνGB + 2πνEGB + Eρ0 − νEPB = ρ0 + B− νPB, (2.12)

where E is given by

E =
1

N

1 . . . 1
...

. . .
...

1 . . . 1

 .

Finally, we can rearrange (2.12) to give us the following result:

[I + ν(I−E)(2πG − P)]B = (E− I)ρ0.

Recall that the components of B are Bj(ν). Therefore, when this system
is solved, we will determine the system of ODEs that describes the motion of

32



2.4. Two Droplet Example

each droplets. We substitute Bj(ν) and U1 into (2.8) and take a derivative
with respect to ρ, giving us

dρj
dt

=
ν

ε3
∂u

∂ρ

∣∣∣
ρ=ρj

≈ ν

ε3
Bj(ν)

ρj
, j = 1, . . . , N.

Principal Result 2.2: Consider the 2-D free boundary Mullins-Sekerka
problem given below.

∆u = 0, x ∈ Ω \ Γ,

u = −κ, x ∈ Γ;
∂u

∂n
= 0, x ∈ ∂Ω,

V = −
[
∂u

∂n

]
, x ∈ Γ.

where u is the chemical potential, κ the curvature and V is the interfacial
velocity. In the case where Γ is the boundary of a collection of small cir-
cles (radius ∼ O(ε), ε � 1), the following system of ODEs describes, to
logarithmic order, the coarsening phenomenon present.

dρj
dt

=
ν

ε3
∂u

∂ρ

∣∣∣
ρ=ρj

≈ ν

ε3
Bj(ν)

ρj
, j = 1, . . . , N,

where ν = −1/ log(ε) and Bj(ν) comes from the solution to the linear alge-
braic system given in (2.12).

As stated before, this will be more accurate than the previous example
as it contains higher order correction terms; in particular, it contains all of
the terms of O(νk).

2.4 Two Droplet Example

In this section we look at a specific example of the system above with only
two droplets. This serves as a check to ensure that everything behaves as
expected.

Let Ω ⊂ R2 be a circle of radius 1 centered at the origin. That is,
Ω = {x||x| ≤ 1}. Let ε = .05, r1(0) = .025, r2(0) = .05 which gives
ρ1(0) = 1/2 and ρ2(0) = 1. The droplets will be centered at x1 = (−1/2, 0)
and x2 = (2/3, 0), along the x-axis.

In order to solve the algebraic system from the previous section we need
to first solve for the Green’s function that arises for this domain and bound-
ary condition. Once again, the problem to solve is:
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2.4. Two Droplet Example

∆G =
1

|Ω| − δ(x− xj), x ∈ Ω

∂G

∂n
= 0, x ∈ ∂Ω;

∫
Ω
Gdx = 0,

G(x; xj) ∼ −
1

2π
log |x− xj |+Rjj + o(1) as x→ xj .

The domain was chosen in this example so that the Green’s function is
well-known. It is

G(x,xj) =
1

2π

[
− log(|x− xj |)− log

(∣∣∣∣x|xj | − xj
|xj |

∣∣∣∣)+
1

2
(|x|2 + |xj |2)− 3

4

]
,

with regular part

R(x,xj) =
1

2π

[
− log

(∣∣∣∣x|xj | − xj
|xj |

∣∣∣∣)+
1

2
(|x|2 + |xj |2)− 3

4

]
.

Plugging in the given parameters, we determine that

R11 ≈ −.0338; R22 ≈ .04492; G12 = G21 ≈ −.1344.

Now we must go through the steps of solving the 2× 2 algebraic system.
We know that

I−E =
1

2

(
1 −1
−1 1

)
; 2πG−P =

(
2πR11 − log(ρ1) 2πG12

2πG21 2πR22 − log(ρ2)

)
.

Thus, we solve

AB = ρ0,

where

A =

(
1 + νπ(R11 −G21)− ν

2 log(ρ1) νπ(G12 −R22) + ν
2 log(ρ2)

νπ(G21 −R11) + ν
2 log(ρ1) 1 + νπ(R22 −G12)− ν

2 log(ρ2)

)
,

B =

(
B1(ν)
B2(ν)

)
; ρ0 =

1

2

(
1
ρ2
− 1

ρ1
1
ρ1
− 1

ρ2

)
.
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Figure 2.1: Here is a plot of the solutions to the system of ODEs that come
from both the leading order expansion as well as the one that includes all
of the logarithmic terms. You can clearly see in both cases that the system
is area preserving and the smallest drop extinguishes in finite time.

Since the system is 2 × 2 it is trivial to invert. We use MATLAB’s
ODE23s to solve the resulting system of ODEs. The first step was to scale t
so that the RHS of the system is O(1). We let t = τε3/ν, a slow timescale.
As you can see from figure 2.1, the larger drop grows at the expense of the
smaller drop and we see the area preservation property as well as finite time
extinction.
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Chapter 3

The Chemotaxis Model

Now we return to our volume-filling chemotaxis model as mentioned in the
introduction. As we will see, the chemotaxis model has very similar be-
havior to that of Ostwald ripening, with surface diffusion replacing motion
by curvature but still maintaining a coarsening effects. This is the link be-
tween the two different systems- the mechanism for exchange of mass may
be different but the phenomena is qualitatively similar.

The system will be nondimensionalized and then studied in a general two-
dimensional domain with the use of a boundary-fitted coordinate framework.
After deriving the velocity equation that governs the interfacial motion we
will look at a few specific cases to verify intuition and motivate numerical
studies.

3.1 Nondimensionalization

With the model in hand we can begin nondimensionalization to simplify our
equations and highlight key parameters. The full model is

ut = ∇ ·
(
Du∇u− χu

(
1− u

γ

)
∇v
)
, x ∈ Ω (3.1a)

vt = Dv∆v + αu− βv, x ∈ Ω (3.1b)

∂u

∂n
= 0, x ∈ ∂Ω.;

∂v

∂n
= 0, x ∈ ∂Ω. (3.1c)

We make the following variable changes

x̂ =
x

L
; t̂ =

t

T
; û =

u

u∗
.

Dividing by χ in equation (3.1a) and β in equation (3.1b), we have
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3.2. Boundary Fitted Coordinate Expansion

u∗ût̂
χT

=
1

L2
∇x̂ ·

(
Duu

∗

χ
∇x̂û− u∗û

(
1− u∗

γ
û

)
∇x̂v

)
,

vt̂
βT

=
Dv

βL2
∆x̂v +

α

β
u− v.

We choose u∗ = γ, T = γL2/χ and define

D1 =
Du

χ
; D2 =

Dv

βL2
; τ =

χ

γβL2
; σ =

α

β
.

The hats over the variables are dropped for convenience and we assume
that D1 � 1 as the diffusion strength, Du, is typically much smaller than
the chemotactic sensitivity, χ. We rename D1 as ε and remove the subscript
from D2, relabeling it as D. The nondimensionalized system is

ut = ∇ · (εu− u(1− u)∇v),

τvt = D∆v + σ − v,
∂u

∂n
= 0, x ∈ ∂Ω.;

∂v

∂n
= 0, x ∈ ∂Ω.

(3.2)

3.2 Boundary Fitted Coordinate Expansion

Motivated by numerical results and other similar situations where this ap-
proach has been fruitful, we switch to a boundary fitted coordinate system.
The idea is to describe points in space by their distance from an interface
wall instead of standard cartesian coordinates. The derivation of the coor-
dinate system can be seen in appendix A.

We begin the calculation by unraveling the nondimensionalized chemo-
taxis model (3.2) into this boundary fitted coordinate framework. The equa-
tions become

ut = ε

[
uηη −

κ

1− κηuη +
1

1− κη∂s
(

us
1− κη

)]

−f(u)

[
vηη −

κ

1− κηvη+
1

1− κη∂s
(

vs
1− κη

)]

− f ′(u)

[
usvs

(1− κη)2
+ uηvη

]
,
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3.2. Boundary Fitted Coordinate Expansion

Figure 3.1: A depiction of the boundary fitted coordinate system. Ω is the
outer domain and can be partitioned into two regions, Ω− (η > 0) and Ω+

(η < 0) with Γ representing the interface between them. Note the inward
normal and sign convention for η.

Ω
η < 0, Ω+

n

Γ

η > 0, Ω−

η > 0, Ω−

η > 0, Ω−

τvt = D

[
vηη −

κ

1− κηvη +
1

1− κη∂s
(

vs
1− κη

)]
+ σu− v,

where f(u) = u(1 − u). We solve these two PDEs in some domain Ω
with Neumann boundary conditions on the outer wall. We define Ω− to be
regions where u has value 1 and Ω+ = Ω \ Ω−. Γ, known as the front or
interface, is the boundary of Ω−.

Now we expand near the front, using the inner variable η̂ = η/ε. We
obtain

τVt = D

[
1

ε2
Vη̂η̂ −

1

ε

(
κ

1− κη̂ε

)
Vη̂ +

1

1− κη̂ε∂s
(

Vs
1− κη̂ε

)]
+ σu− V.

Expanding V as V = V0 + εV1 + ε2V2 + . . ., we determine that for t = O(1),
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3.2. Boundary Fitted Coordinate Expansion

τ∂tV0 = D

[
1

ε2
∂η̂η̂V0 +

1

ε
∂η̂η̂V1 + ∂η̂η̂V2−

κ

ε
∂η̂V0 − κ∂η̂V1

− κ2η̂∂η̂V0 + ∂ssV0

]
+ σu− V0 + . . .

We can see from above that the leading order equation is

∂η̂η̂V0 = 0,

which has solution

V0 = A0(s)η̂ +B0(s). (3.3)

Since v is bounded, V0 cannot grow linearly as η̂ → ±∞ and thus A0(s) ≡
0. Thus, we set V0 = V0(s). This also tells us that ∂η̂V0 = 0 which gives the
following first correction equation

∂η̂η̂V1 = 0,

with solution

V1 = A1(s) +B1(s). (3.4)

where in this case we cannot make any conclusions about the growth of η̂
yet.

Now we apply the same treatment to the inner equation for U . Expand-
ing U as U = U0 + εU1 + . . ., we arrive at the following equation

∂tU0 = ε

[
1

ε2
∂η̂η̂U0 +

1

ε
∂η̂η̂U1 −

κ

ε
∂η̂U0 + ∂ssU0

]
−f(U0)

[
1

ε2
∂η̂η̂V0 +

1

ε
∂η̂η̂V1 + ∂η̂η̂V2 −

κ

ε
∂η̂V0 − κ∂η̂V1 − κ2η̂∂η̂V0 + ∂ssV0

]
− f ′(U0 + εU1)

[
∂sU0∂sV0 +

1

ε2
Vη̂Uη̂

]
+ . . .

(3.5)
The 1

ε2
f ′(U0 + εU1)Vη̂Uη̂ that is left unexpanded is of particular impor-

tance and produces many terms; we shall focus on this now. Note that
∂η̂V0 = 0 and as a result can be eliminated from the equation. We calculate,
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3.2. Boundary Fitted Coordinate Expansion

1

ε2
f ′(U0 + εU1)Vη̂Uη̂ ≈

1

ε
f ′(U0)∂η̂U0∂η̂V1 + f ′(U0)∂η̂U1∂η̂V1

+ f ′′(U0)U1∂η̂U0∂η̂V1 + f ′(U0)∂η̂U0∂η̂V2.

Since we know that ∂η̂η̂V0 = ∂η̂η̂V1 = 0 they can be eliminated from
equation (3.5). Additionally, we can replace instances of ∂η̂V with A1(s).
Substituting this information and the above equation into (3.5), the full
expansion becomes

∂tU0 = ε

[
1

ε2
∂η̂η̂U0 +

1

ε
∂η̂η̂U1 −

κ

ε
∂η̂U0 + ∂ssU0

]
− f(U0) [∂η̂η̂V2 − κA1(s) + ∂ssV0]

−f ′(U0)

[
∂sU0∂sV0 +

1

ε
∂η̂U0A1(s)+∂η̂U1A1(s) + ∂η̂U0∂η̂V2

]
−f ′′(U0)U1∂η̂U0A1(s) + . . .

(3.6)
Our goal is to derive an equation for the motion of the front, that is,

an equation that η′(t) satisfies. Supposing that the front changes slowly in
time, η = η(T ), where T = εpt. The change to ut becomes

ut = uη̂ε
p−1η′(T ). (3.7)

We let η̇ = η′(T ) be the normal velocity to Γ where η̇ > if Γ is expanding. p
is chosen to be 1 to match the slow evolution assumption and first correction
term.

Since the front evolves slowly, the leading order equation does not change
in time and is

∂η̂η̂U0 − f ′(U0)∂η̂U0A1(s) = 0,

which can be written as

[∂η̂U0 − f(U0)A1(s)]η̂ = 0.

After integrating once, we have a term depending on s on the right
hand side. Since we will have to integrate once more and can’t have growth
as η̂ → ∞, this term must be zero. We now have a 1-D profile equation
parametrized by s.

∂η̂U0 − f(U0)A1(s) = 0,

U0 −→ 0 as η̂ → −∞; U0 −→ 1 as η̂ → +∞. (3.8)
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3.2. Boundary Fitted Coordinate Expansion

To identify A1(s) we consider the matching condition between the inner
and outer expansion for V . Returning to (3.3) and (3.4), the two-term inner
expansion for V is

V = A0(s) + ε[A1(s)η̂ +B1(s)] + . . . (3.9)

In the outer region (to leading order), we have that u ∼ 1 in Ω− and
u ∼ 0 in Ω+, which tells us that the outer problem for v is

vt = D∆v − v + σ

{
1 : x ∈ Ω−
0 : x ∈ Ω+

,

∂v

∂n
= 0, x ∈ ∂Ω.

(3.10)

Now, if the initial condition for v is such that v|Ω| = σ|Ω−|, where |Ω| is
the area of Ω, then we expect that v is near its steady-state and will evolve
slowly in time. Hence, v(x, 0) = σ|Ω−|/|Ω| for v satisfying (3.10).

If we expand the outer equation for v as x → x0(s) (as η → 0), where
x0(s) is a point on the interface Γ, approaching from the ± direction, we
have (by Taylor’s theorem)

v = v
∣∣
Γ

+∇v
∣∣
Γ
· (x− x0) + . . .

Recall from the boundary fitted coordinate system that

∇v =
vs

1− κη t + vηn; x = x0(s) + ηn(s).

Thus, we derive that

v = v
∣∣
Γ

+ ηvη
∣∣
η=0

+ . . .

as x→ x0. Recalling that η̂ = η/ε and noting (3.9), we have that

v
∣∣
Γ

+ ηvη
∣∣
η=0

+ . . . ∼ A0(s) + ε[A1(s)
η

ε
+B1(s)] + . . .

We conclude that

A0(s) = v
∣∣
Γ
; A1(s) = vη

∣∣
η=0

= ∇v · n
∣∣
Γ
.

To summarize, in the outer region on the long timescale inherent to the
evolution of the front where vt = εvT , v solves
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3.2. Boundary Fitted Coordinate Expansion

D∆v − v = −σ
{

1 : x ∈ Ω−
0 : x ∈ Ω+

,

∂v

∂n
= 0, x ∈ ∂Ω,

and with a given Γ, A0(s) = v
∣∣
Γ

and A1(s) = ∇v · n
∣∣
Γ
.

Returning to the 1-D profile equation for U0 (3.8), we can write the exact
solution as

U0 =
U0(0)

U0(0) + (1− U0(0))e−η̂A1(s)
,

where U0(0) is some arbitrary value of U0 on Γ. If A1(s) > 0 then as η̂ →∞,
which is inside of Γ, U0 → 1. Likewise, as we move outside of Γ (η̂ → −∞),
U0 → 0.
Conjecture 3.1: Consider the outer problem (3.10) for v. The solution of
(3.10) is such that

A1(s) = ∇v · n
∣∣
Γ
> 0.

For now we just assume this to be the case. Under this assumption we may
set U0(0) = 1/2, the mid-value, which gives a precise definition of Γ.

Now we return to equation (3.6). From (3.7) we have

∂η̂U0η̇ = ∂η̂η̂U1−κ∂η̂U0 − f(U0)∂η̂η̂V2 + κf(U0)A1(s)

− f(U0)∂ssV0 − f ′(U0)∂sU0∂sV0 − f ′(U0)∂η̂U0∂η̂V2

− f ′(U0)∂η̂U1A1(s)− f ′′(U0)U1∂η̂U0A1(s).
(3.11)

From the leading order equation for U given in (3.8), we know that
∂η̂U0 = f(U0)A1(s) so we can cancel those terms in the above equation. We
now define the operator L, such that

Lφ = φη̂η̂ − f ′(U0)A1(s)φη̂ − f ′′(U0)A1(s)∂η̂U0φ. (3.12)

Thus, (3.11) becomes

∂η̂U0η̇ = LU1−f(U0)∂η̂η̂V2−f(U0)∂ssV0−f ′(U0)∂sU0∂sV0−f ′(U0)∂η̂U0∂η̂V2.
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3.2. Boundary Fitted Coordinate Expansion

This can be written this more elegantly as

∂η̂U0η̇ = LU1 − (f(U0)∂η̂V2)η̂ −
(
∂η̂U0∂sV0

A1(s)

)
s

. (3.13)

We want to eliminate the terms contained in L so we need to determine
the adjoint operator L∗. We look for L∗ such that (Lφ, ψ) = (φ,L∗ψ) After
rewriting (3.12), we have

(Lφ, ψ) =

∫ ∞
−∞

[
φη̂η̂ −

(
f ′(U0)A1(s)φ

)
η̂

]
ψ dη̂.

Upon integrating the first term in the integral by parts twice and the
second term once, with the boundary terms vanish due to imposed boundary
conditions, we obtain

(φ,L∗ψ) =

∫ ∞
−∞

[
ψη̂η̂ + f ′(U0)A1(s)ψη̂

]
φdη̂,

and therefore,

L∗ψ = ψη̂η̂ + f ′(U0)A1(s)ψη̂.

Lemma 3.1: Suppose that

Lφ = φη̂η̂ − f ′(U0)A1(s)φη̂ − f ′′(U0)A1(s)∂η̂U0φ,

on −∞ < η̂ <∞, with φ→ 0 as η̂ → ±∞. Then for ψ bounded as η̂ → ±∞,
we have ∫ ∞

−∞
ψLφdη̂ =

∫ ∞
−∞

φL∗ψ dη̂,

as the boundary terms cancel. Here,

L∗ψ = ψ′′ −A1f
′(U0).

The function in the kernel of L∗ is just a constant function. Without loss
of generality, we say the kernel is 1. Thus, using this solvability condition, we
multiply everything in (3.13) by 1 and integrate from −∞ to∞ with respect
to η̂. This eliminates the terms in L (due to the boundary conditions and
adjoint operator kernel) and we are left with

∫ ∞
−∞

∂η̂U0η̇ dη̂ = −
∫ ∞
−∞

[
(f(U0)∂η̂V2)η̂ +

(
∂η̂U0∂sV0

A1(s)

)
s

]
dη̂.
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We can immediately integrate the left hand side and apply the fact that
U0 → 1 as η̂ → ∞ and U0 → 0 as η̂ → −∞, leaving us with η̇. Note that
η̇ does not depend upon η̂ and can be factored out of the integral. Since V0

and A1(s) only depend on s, we can switch the order of the derivatives in
the second term of the right hand side and integrate ∂η̂U0 as we did on the
left hand side. This leaves us with

η̇ = −
∫ ∞
−∞

(f(U0)∂η̂V2)η̂ dη̂ −
(
∂sV0

A1(s)

)
s

.

The final integral becomes∫ ∞
−∞

(f(U0)∂η̂V2)η̂ dη̂ = f(U0)∂η̂V2

∣∣∣∞
−∞

.

Recall that f(U0) = U0(1−U0) and that U0 → 1 or U0 → 0 as η̂ → ±∞,
respectively. Thus, the integral vanishes and we are left with our key result,

η̇ = −
(
∂sV0

A1(s)

)
s

.

Principal Result 3.1: Let Γ be a simple closed smooth curve and let T = εt
with T = O(1). Consider the outer solution v defined by the quasi-steady
problem

D∆v − v = −σ
{

1 : x ∈ Ω−
0 : x ∈ Ω+

,

∂v

∂n
= 0, x ∈ ∂Ω,

and Γ evolves on the slow timescale εt. The normal velocity η̇(T ) to Γ on
the long timescale T satisfies the surface diffusion law

η̇ = −
(
∂sV0

A1(s)

)
s

, (3.14)

where s is the arc length of Γ, V0 = A0 = v
∣∣
Γ

and A1 = ∇v · n
∣∣
Γ

. Note that
η̇ > 0 if the interface is expanding.

3.3 Specific Domain Choices

In order to analyze principal result 3.1 and verify some intuition about the
behavior of the system, we take a closer look at a few specific examples.
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The first example is the case of two concentric circles, where the domain
is the unit disk (Ω = {x||x| ≤ 1}) and Γ, the interface that separates Ω+ and
Ω−, is a circle. Next, we analyze the effects of a small perturbation to this
circular interface, where Γ = r0 + δh(θ), h(θ) periodic, for δ � 1. Finally,
we examine the case of many circular interfaces and how they interact with
each other as well as a brief look at the effects of small perturbations to
these many circular interfaces. In all of these examples we highlight how
the velocity from principal result 3.1 changes.

3.3.1 Concentric Circles

In our first example, we assume the initial amount of mass in the system
is small and choose the outer domain to be the unit disk; that is, Ω =
{x : |x| ≤ 1}. We also assume that the initial aggregation phase for u has
already occurred and we are in a metastable state of two concentric circles.
We have u = 1 for x ∈ Ω− and u = 0 for x ∈ Ω+, where Ω− = {x : |x| ≤ δ},
Ω+ = {x : |x| > δ}, and Γ = {x : |x| = δ}, for some constant δ.

Consider M , the initial mass of u. Since u is uniform within Ω+ and Ω−,
we have

M =

∫
Ω
u dx =

∫
Ω−

1 dx = πr2 = πδ2,

and therefore,

δ =

√
M

π
,

which means δ = O(
√
M). Since we assume M is small (M � 1), we must

also have δ � 1.
We suspect that in this case, due to the radial symmetry of the domain,

the solution will be radially symmetric and therefore not depend upon s,
the arc length of Γ. Since the solution will be independent of s, the velocity
from principal result 3.1 and (3.14) will be zero and we are actually in the
case of a stable equilibrium, not a metastable one.

The reduced problem we have to solve is

D∆v − v = −σ
{

1 : 0 ≤ |x| ≤ δ
0 : δ < |x| ≤ 1

,

∂v

∂n
= 0, |x| = 1.

(3.15)
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Expanding v in terms of δ as v = v0 + µ(δ)v1 + . . . and substituting in,
we have the following leading order equation.

D∆v0 − v0 = 0, |x| ≤ 1,

∂v0

∂n
= 0, |x| = 1,

which has solution v0 = 0. The O(µ(δ)) equation is

D∆v1 − v1 = 0, |x| ≤ 1,x 6= 0,

∂v1

∂n
= 0, |x| = 1; v1 ∼ ?, as x→ 0,

where the singular behavior of v1 as x → 0 is determined by matching to
the inner expansion around 0. Now, consider the inner variable y = x/δ and
the inner v function V . Using this change of variables for equation (3.15),
our inner equation to solve becomes

D
∆V

δ2
− V = −σ

{
1 : |y| ≤ 1
0 : |y| > 1

.

We now scale V as V = δ2W and expand W as

W = log(δ)W0 +W1 + . . . (3.16)

The choice of the log(δ) term will be made clear shortly. Substituting
in this scaling and expansion, we wind up solving the following O(log(δ))
equation for W0,

∆W0 = 0,

W0 bounded as y→∞,
which implies that W0 = C0, a constant that will be determined by matching
to the outer solution. The O(1) equation is

∆W1 = − σ
D

{
1 : |y| ≤ 1
0 : |y| > 1

This equation can be solved by switching to polar coordinates and using the
fact that the solution must be radially symmetric. With ρ = |y| we have

∂ρρW1 +
1

ρ
∂ρW1 = − σ

D

{
1 : ρ ≤ 1
0 : ρ > 1

,
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3.3. Specific Domain Choices

with W1 well-behaved as ρ→ 0. Solving in each region separately, we have

W1 =

{
− σ
D

(
1
4ρ

2 +A0

)
: ρ ≤ 1

B0 log(ρ) + C1 : ρ > 1

We impose continuity and differentiability at ρ = 1 to patch together the
two solutions together and solve for the unknown constants. The solution is

W1 =

{
− σ
D

(
1
4ρ

2 − C1
σ − 1

4

)
: ρ ≤ 1

−1
2
σ
D log(ρ) + C1 : ρ > 1

.

where C1 is undetermined and comes from matching to higher order terms
in the outer expansion. To proceed with matching the inner and outer
solutions and determining C0 and C1, we examine the behavior of W as
ρ → ∞. Adding together W0 and W1 and switching to the outer radial
coordinate, r = ρ/δ, we see that

W ∼ log(δ)C0 −
σ

2D
log(r) +

σ

2D
log(δ) + C1 + . . .

As ρ → ∞, W has an unmatchable log(δ) term. This explains why we
expanded W as in (3.16) and forces C0 = −σ/2D to cancel this term. As a
result, for ρ > 1, W becomes

W = − σ

2D
log(δ)− σ

2D
log(ρ) + C1 + . . .

Since V = δ2W , for |y| ≤ 1 (ρ ≤ 1), we have

V = δ2

[
− σ

2D
log(δ)− σ

D

(
1

4
|y|2 − C1D

σ
− 1

4

)
+ . . .

]
, (3.17)

and for |y| > 1 (ρ > 1), we have

V = δ2
[
− σ

2D
log(δ)− σ

2D
log(|y|) + C1 + . . .

]
. (3.18)

Now, as y → ∞, we must have the inner and outer solutions match.
Switching to the outer variable in (3.18), we have

µ(δ)v1 + . . . ∼ δ2
[
− σ

2D
log(|x|) + C1 + . . .

]
,

which means µ(δ) = δ2 and determines the problem v1 satisfies as
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D∆v1 − v1 = 0, |x| ≤ 1,x 6= 0,

∂v1

∂n
= 0, |x| = 1; v1 ∼ −

σ

2D
log(|x|) + C1, as x→ 0.

This equation can be solved by once again switching to polar coordinates
and leveraging the radial symmetry of the domain. The problem becomes

∂rrv1 +
1

r
∂rv1 − λ2v1 = 0, r < 1,

∂rv1 = 0, r = 1; v1 ∼ −
σ

2D
log(r) + C1, r → 0,

where λ = 1/
√
D. This ODE has solution

v1 =
σ

2D
K0(rλ) +

σK1(1)

2I1(1)
I0(rλ),

where I0 and K0 are modified Bessel functions of the first and second kind
respectively. As r → 0, using [1] for the asymptotic expansions of K0(r), v1

becomes

v1 ∼
σ

2D
(− log(rλ) + log(2)− γ) +

σK1(1)

2DI1(1)
= − σ

2D
+ C1,

where γ is the Euler-Mascheroni constant. We can see that C1 must be

C1 =
σ

2D

(
log(2)− γ +

K1(1)

I1(1)

)
. (3.19)

Finally, since v = δ2v1 + . . ., the solution to equation (3.15) is

v = δ2

(
σ

2D
K0(|x|λ) +

σK1(1)

2DI1(1)
I0(|x|λ)

)
+ . . . (3.20)

As suspected, due to the symmetry of the domain the solution v, to
O(δ2), has no dependence on θ and thus is independent of s. This means
the derivatives with respect to s in (3.14) will be 0 and there is no movement.

As a check, we verify our asymptotic results numerically. For this choice
of domain Ω and interface Γ, the solution can be found exactly by expressing
equation (3.15) in polar coordinates, using radial symmetry, and imposing
continuity and differentiability on the interface. The solution is

v =

{
σ +AI0(|x|λ) : |x| ≤ δ

BI0(|x|λ) + CK0(|x|λ) : δ < |x| ≤ 1
, (3.21)
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with A, B, and C given as

A = C

[
(K0(δ)− σ)I1(1) +K1(1)I0(δ)

I1(1)I0(δ)

]
,

B = C
K1(1)

I1(1)
; C =

I1(δ)σ

W(K0(δ), I0(δ))
,

where W(a, b) = ab′ − ba′ is the Wronskian.
The two figures below compare the asymptotic and exact solution. We

chose σ = 1 and D = 1. Figure 3.2 compares (3.21) to (3.20) for 0 < r ≤ 1.
In figure 3.3, we compare the exact solution (3.21) and the inner asymptotic
solution given in (3.17) at r = 0 for changing values of δ. In figure 3.3 we
plot against 1− δ.
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3.3. Specific Domain Choices

Figure 3.2: Asymptotic solution plotted with the exact solution for 0 < r ≤
1. Here, δ = .05. We can see that for everywhere except very close to r = 0,
they are in almost complete agreement.
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3.3.2 Circular Domain with Perturbed Circular Interface

In this example we look at the case where the interface is a near annulus.
Once again, Ω is the unit disk and Γ at time t = 0 is the curve

r = r0 + δh(θ), with h(θ) + 2π) = h(θ),

for 0 < r0 ≤ 1 and 0 < δ � 1.
The question to ask is how does Γ evolve for near-circular initial inter-

faces. Since we don’t assume the interfaces themselves are small, we don’t
have an inner variable but instead two comparably sized solutions in which
we impose continuity and differentiability where they meet. The problem to
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3.3. Specific Domain Choices

Figure 3.3: Asymptotic solution plotted with the exact solution for r = 0.
Here, δ ranges from .5 to .01. As δ → 0, the approximation becomes more
accurate but is surprisingly accurate for fairly large values of δ.
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solve is

D∆v+ − v+ = 0, r0 + δh(θ) < r ≤ 1,

D∆v− − v− = −σ, 0 < r ≤ r0 + δh(θ),

v,
∂v

∂n
continuous across r = r0 + δh(θ); v regular as r → 0,

vr = 0, r = 1,

where v+ indicates the solution in the outer region and v− is the solution in
the inner region.

The first thing we will do is unravel the inward normal for this interface.
In polar coordinates, the gradient and level surface, φ = 0, are
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3.3. Specific Domain Choices

∇v = vrr +
1

r
vθθ; φ = r − (r0 + δh(θ)).

As a result,

∂v

∂n
= −∇v · ∇φ‖∇φ‖ = −vrφr + 1

r2
vθφθ√

φ2
r +

φ2θ
r2

.

At this point we can substitute in φr = 1, φθ = −δh′(θ), and r = r0 + δh(θ)
is φ = 0 to derive

∂v

∂n
= − vr − ωvθ√

1 + δh′(θ)ω
, (3.22)

with ω given as

ω =
δh′(θ)

(r0 + δh(θ))2
.

Now we will do a perturbation calculation by starting with

∆v+ − 1

D
v+ = 0, r0 + δh(θ) < r ≤ 1,

v+
r = 0, r = 1,

(3.23)

∆v− − 1

D
v− = 0, 0 < r ≤ r0 + δh(θ),

v− non-singular as r → 0,
(3.24)

and we have the transmission and continuity conditions on r = r0 + δh(θ)

v+ = v−;
∂v+

∂n
=
∂v−

∂n
, (3.25)

with the normal derivative defined as in (3.22). The goal is to calculate
A0(θ) = v+

∣∣
Γ
, A1(θ) = ∂nv

+
∣∣
Γ

with Γ = r0 + δh(θ) for the velocity in
equation (3.14).

The inner and outer equations are expanded in polar coordinates as

v+ = v+
0 + δv+

1 + δ2v+
2 + . . . ; v− = v−0 + δv−1 + δ2v−2 + . . . ,

and we use
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v+(r0 + δh(θ), θ) = v+(r0) + δh(θ)v+
r (r0) +

δ2h(θ)2

2
v+
rr(r0) + . . . ,

to gives us our radially symmetric leading order problem

∆v+
0 −

1

D
v+

0 = 0, r0 < r ≤ 1; ∆v−0 −
1

D
v−0 = − σ

D
, 0 < r ≤ r0,

v+
0 = v−0 , r = r0; ∂rv

+
0 = ∂rv

−
0 , r = r0,

v−0 non-singular as r → 0; ∂rv
+
0 = 0, r = 1.

This is precisely the problem specified in (3.15), which was solved exactly
in section 3.3.1. Written compactly, the solution is

v+
0 (r) = C0

K0(λr) + K1(λ)
I1(λ) I0(λr)

K0(λr0) + K1(λ)
I1(λ) I0(λr0)

, r0 < r < 1,

v−0 (r) = σ + (C0 − σ)
I0(λr)

I0(λr0)
, 0 < r < r0,

(3.26)

where λ = 1/
√
D, K0 and I0 are once again modified Bessel Functions and

C0 comes from enforcing differentiability at r = r0. To determine C0, we
will define τ1 and τ2 as

τ1(r) = K0(λr) +
K1(λ)

I1(λ)
I0(λr); τ2(r) = I0(λr), (3.27)

which gives us

v+
0 (r) = C0

τ1(r)

τ1(r0)
; v−0 (r) = σ + (C0 − σ)

τ2(r)

τ2(r0)
.

Imposing differentiability on r = r0, we calculate that

C0

(
τ ′1(r0)

τ1(r0)
− τ ′2(r0)

τ2(r0)

)
= −στ

′
2(r0)

τ2(r0)
.

If we multiply both sides of the above equation by τ1(r0)τ2(r0) we obtain

C0W(τ2, τ1) = −στ ′2(r0)τ1(r0),
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where W(τ2, τ1) is the Wronskian of τ2 and τ1. It is not hard to work out
that W(τ2, τ1) = W(I0(λr),K0(λr)) and, since W(I0(z),K0(z)) = −1/z by
Abel’s identity, we determine that

C0 = r0στ
′
2(r0)τ1(r0), (3.28)

with τ1 and τ2 given in (3.27).
This tells us that the leading order approximation of A0 is

A0 = v+
0

∣∣
∂Γ

+O(δ) = C0, (3.29)

and we calculate ∂rv
−
0 (r0) to determine A1 as

A1 = ∂rv
+
0 (r0) = −∂rv−0 (r0) = λ(σ − C0)

I ′0(λr0)

I0(λr0)
+O(δ), (3.30)

with C0 defined as in (3.28).
Notice that A1 is independent of θ and as a result, independent of arc

length s along Γ. Thus, A1 can be used in the denominator of the surface
diffusion law in equation (3.14). We must show that A1 > 0 to ensure we
have the correct sign of the velocity. Note that this was conjectured in
section 3.1, conjecture 3.1; with this specific case we can make asymptotic
and numerical progress. Substituting C0 from (3.28) into (3.31) we are left
with

A1 = λσ(1− r0τ
′
2(r0)τ1(r0))

I ′0(λr0)

I0(λr0)
. (3.31)

Since I0(z) and I ′0(z) > 0 ∀z, we only need to focus on the terms in the
parenthesis above. Now, consider β given by

β(r0) = r0τ
′
2(r0)τ1(r0). (3.32)

Determining the sign of A1 reduces to showing that β < 1 for 0 < r0 < 1.
First we consider the case when r0 → 0. Here, τ1(r0) = O(− log(r0))

and τ ′2(r0) = O(r0) due to the fact that, as z → 0, we have

K0(z) ∼ −[log( z2) + γe]

(
1 +

z2

4
+ . . .

)
; I0(z) ∼ 1 +

z2

4
+ . . . ,

which implies β = O(r2
0(− log(r0))) and thus β → 0 as r0 → 0. Now, when

r0 = 1, we have
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β(1) = λ[K0(λ)I ′0(λ)−K ′0(λ)I0(λ)] = −λW(I0,K0) = 1,

by Abel’s identity.
What is left to prove is that β is monotone increasing for 0 < r0 < 1. For

now all we can do is conjecture that this is the case and provide numerical
evidence for a few values of λ in figure 3.4.

Figure 3.4: A plot of β as given in (3.32) showing monotonicity for a few
values of λ.
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We now make progress to determine the O(δ) and O(δ2) contributions.
First we take a closer look at our transmission and continuity conditions
(3.25). Recall

v+(r0 + δh(θ), θ) = v+
∣∣
0

+ δh(θ)v+
r

∣∣
0

+
δ2h(θ)2

2
v+
rr

∣∣
0

+ . . .

where f
∣∣
0

= f(r0, θ). We expand v+ as

v+ = v+
0 + δv+

1 + δ2v+
2 + . . .
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Combining these two equations we arrive at

v+(r0+δh, θ) = v+
0

∣∣
0
+δ(v+

1

∣∣
0
+h∂rv

+
0

∣∣
0
)+δ2(v+

2

∣∣
0
+h∂rv

+
1

∣∣
0
+
h2

2
∂rrv

+
0

∣∣
0
)+. . .

From this equation we can determine the O(δ) and O(δ2) continuity
condition. They are

O(δ) : v+
1

∣∣
0
− v−1

∣∣
0

= h(∂rv
−
0

∣∣
0
− ∂rv+

0

∣∣
0
) = 0, (3.33a)

O(δ2) : v+
2

∣∣
0
− v−2

∣∣
0

= h(∂rv
−
1

∣∣
0
− ∂rv+

1

∣∣
0
) +

h2

2
(∂rrv

−
0

∣∣
0
− ∂rrv+

0

∣∣
0
),

(3.33b)

where the O(δ) equation is simplified in that way since we already know
∂rv

+
0

∣∣
0

= ∂rv
−
0

∣∣
0

from the leading order equation. Next we examine the
second condition in (3.25) using (3.22). Since the denominator in (3.22) is
independent of v it plays no role in the transmission condition and thus we
can ignore it and label

D =

√
1 +

δh′

r0 + δh

2

.

We can also expand 1/(r0 + δh)2 as

1

(r0 + δh)2
∼ 1

r2
0

(
1 +

δh

r0

)−2

∼ 1

r2
0

(
1− 2δh

r0
+ . . .

)
.

Using the above, (3.22) gives

∂v

∂n
= − 1

D

[
v+
r (r0 + δh, θ)− δh′

r2
0

(
1− 2δh

r0
+ . . .

)
v+
θ (r0 + δh, θ)

]
, (3.34)

where v+
θ (a partial derivative, not total derivative) can be expanded as

v+
θ = v+

θ (r0, θ) + δhv+
θr(r0, θ) + . . .

We can now substitute this and the fact that v+
0 is radially symmetric in to

(3.34) while also expanding v+ as v+ = v+
0 + δv+

1 + δ2v+
2 + . . . to derive
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∂v

∂n
=− 1

D

[
∂rv

+
0

∣∣
0

+ δ(∂rv
+
1

∣∣
0

+ h∂rrv
+
0

∣∣
0
)

+ δ2

(
∂rv

+
2

∣∣
0

+ h∂rrv
+
1

∣∣
0

+
h2

2
∂rrrv

+
0

∣∣
0
− h′

r2
0

∂θv
+
1

∣∣
0

)]
.

With the transmission condition given as v+
n = v−n , we can see that,

to leading order, ∂rv
+
0

∣∣
0

= ∂rv
−
0

∣∣
0

(as expected). The O(δ) transmission
equation is

∂rv
+
1

∣∣
0
− ∂rv−1

∣∣
0

= h(∂rrv
−
0

∣∣
0
− ∂rrv+

0

∣∣
0
), (3.35)

and O(δ2) gives

∂rv
+
2

∣∣
0
− ∂rv−2

∣∣
0

= h(∂rrv
−
1

∣∣
0
− ∂rrv+

1

∣∣
0
) +

h2

2
(∂rrrv

−
0

∣∣
0
− ∂rrrv+

0

∣∣
0
)

+
h′

r2
0

(∂θv
+
1

∣∣
0
− ∂θv−1

∣∣
0
).

(3.36)

We combine (3.23), (3.24), (3.33a), and (3.35) to obtain theO(δ) problem

∆v+
1 −

1

D
v+

1 = 0, r0 < r ≤ 1; ∆v−1 −
1

D
v−1 = 0, 0 < r ≤ r0,

∂rv
+
1 = 0, r = 1; v−1 non-singular as r → 0,

v+
1

∣∣
0

= v−1
∣∣
0
; ∂rv

+
1

∣∣
0
− ∂rv−1

∣∣
0

= h(∂rrv
−
0

∣∣
0
− ∂rrv+

0

∣∣
0
).

The O(δ2) problem can be found by combining (3.23), (3.24), (3.33b),
and (3.36) to give us

∆v+
2 −

1

D
v+

2 = 0, r0 < r ≤ 1; ∆v−2 −
1

D
v−2 = 0, 0 < r ≤ r0,

∂rv
+
2 = 0, r = 1; v−2 non-singular as r → 0,

v+
2

∣∣
0
− v−2

∣∣
0

= −h
2

2
(∂rrv

−
0

∣∣
0
− ∂rrv+

0

∣∣
0
),

with transmission condition

∂rv
+
2

∣∣
0
− ∂rv−2

∣∣
0

= h(∂rrv
−
1

∣∣
0
− ∂rrv+

1

∣∣
0
) +

h2

2
(∂rrrv

−
0

∣∣
0
− ∂rrrv+

0

∣∣
0
)

+
h′

r2
0

(∂θv
+
1

∣∣
0
− ∂θv−1

∣∣
0
).
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The main goal is to find terms of A0 that include θ and breaks the radial
symmetry. We have

A0(θ) = v+
∣∣
∂Γ

= v+
0 (r0) + δ(∂rv

+
0 (r0) + v+

1 (r0, θ)) +O(δ2). (3.37)

which upon taking a derivative with respect to θ gives

A′0(θ) = δ(∂rv
+
0 (r0)h′(θ) + ∂θv

+
1 (r0, θ)) + . . .

This shows that our goal is to calculate ∂θv
+
1 (r0, θ) and despite developing

the equations for the O(δ2) correction term, it may, in principle, not be
necessary.

We return our focus to the O(δ) equation, which can be rewritten as

∆v+
1 − λ2v+

1 = 0, r0 < r ≤ 1; ∆v−1 −
1

D
v−1 = 0, 0 < r ≤ r0,

∂rv
+
1 = 0, r = 1; v−1 non-singular, as r → 0,

v+
1

∣∣
0

= v−1
∣∣
0
; ∂rv

+
1

∣∣
0
− ∂rv−1

∣∣
0

= hγ0,
(3.38)

with γ0 = ∂rrv
−
0 (r0)−∂rrv+

0 (r0). In order to solve this PDE we first assume
that h(θ) has a complex Fourier series expansion; that is,

h(θ) =
∞∑

n=−∞
hne

inθ; hn =
1

2π

∫ 2π

0
h(θ)e−inθ dθ.

Since the problem (3.38) is linear and the only inhomogeneous term is from
the jump in the right hand side, we can write the solution as

v1 = γ0

∞∑
n=−∞

hnFne
inθ, (3.39)

where Fn solves

F ′′n +
1

r
F ′n −

n2

r2
Fn −

1

D
Fn = 0, 0 < r ≤ 1; F ′n(1) = 0,

Fn non-singular as r → 0; F ′n(r+
0 )− F ′n(r−0 ) = 1, r = r0.

Fn is very similar in form to the solution for v0 given in (3.26) and once
again involves modified Bessel functions. The solution is
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Fn =


τ̂n

Kn(λr)−K
′
n(λ)
I′n(λ) In(λr)

Kn(λr0)−K
′
n(λ)
I′n(λ) In(λr0)

r0 < r ≤ 1

τ̂n
In(λr)
In(λr0) 0 < r ≤ r0

,

where τ̂n = τ̂n(r0) is determined by imposing F ′n(r+
0 ) − F ′n(r−0 ) = 1. To

impose this condition, let us first define τ1(r, n) and τ2(r, n) in an analogous
fashion to τ1 and τ2 from (3.27). We have

τ1(r, n) = Kn(λr)− K ′n(λ)

I ′n(λ)
In(λr); τ2(r, n) = In(λr).

The derivative jump condition for Fn is then

F ′n(r+
0 )− F ′n(r−0 ) = τ̂n

(
τ ′1(r0, n)

τ1(r0, n)
− τ ′2(r0, n)

τ2(r0, n)

)
= 1.

Multiplying both sides by τ1(r0, n) and τ2(r0, n), we obtain

τ̂nW(τ2(r0, n), τ1(r0, n)) = τ1(r0, n)τ2(r0, n).

Once again, it is not hard to see thatW(τ2(r0, n), τ1(r0, n)) =W(In(λr0),K0(λr0))
and thus again using Abel’s identity we have

τ̂n = −r0τ1(r0, n)τ2(r0, n), (3.40)

which fully determines the solution for v1 in (3.39). With this information
in hand we can now analyze how a perturbation to a circle evolves in time.

Recall the velocity equation

η̇ = −
(
∂sA0

A1

)
s

, (3.41)

and since A1 is independent of s, we can write this as

η̇ ∼ − 1

A1
∂ssA0 +O(δ).

To translate the arc length derivatives in polar coordinates we use the fact
that

ds

dθ
=
√

(r0 + δh)2 + δ2h′2 ∼ r0 + δh+O(δ2).

Thus,
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∂θA0 = ∂sA0
ds

dθ
; ∂θθA0 = ∂ssA0

(
ds

dθ

)2

+ ∂sA0
d2s

dθ2
.

But, since ds/dθ ∼ r0 + δh, we have that d2s/dθ2 ∼ O(δ). This gives us

∂θθA0 = ∂ssA0r
2
0 +O(δ)∂sA0.

This can be substituted into (3.41) along with the expression for A0(θ) given
in (3.37) to obtain

η̇ ∼ − δ

A1r2
0

(
∂rv

+
0 (r0)h′′(θ) + ∂θθv

+
1 (r0, θ)

)
.

Recalling that on this order A1 = −∂rv−0 (r0) and that v+
0 (r0) = v−0 (r0).

Using this, we can simply the above expression to be

η̇ ∼ δ

r2
0

h′′(θ)− δ

A1r2
0

∂θθv
+
1 (r0, θ).

Substituting in v1 from (3.39) and the fact that Fn(r0) = τ̂n, we now have

η̇ ∼ − δ

r2
0

∞∑
n=−∞

n2hne
inθ +

δγ0

A1r2
0

∞∑
n=−∞

n2hnτ̂ne
inθ =

δ

r2
0

∞∑
n=∞

(
τ̂nγ0

A1
− 1

)
n2hne

inθ,

where γ0 = ∂rrv
−
0 (r0) − ∂rrv+

0 (r0). This can easily be calculated from the
ODE that v0 satisfies. This ODE is

∂rrv
−
0 +

1

r
∂rv
−
0 −

1

D
v−0 = − σ

D
,

∂rrv
+
0 +

1

r
∂rv

+
0 −

1

D
v+

0 = 0.

Taking the limit as r → r+
0 and r → r−0 and then subtracting the v+

0 equation
from the v−0 one (noting the use of continuity and differentiability), we arrive
at

γ0 = ∂rrv
−
0 − ∂rrv+

0 = − σ
D
.

After substituting in A1 from (3.31) and γ0 from above, the velocity becomes

η̇ ∼ − δ

r2
0

∞∑
n=−∞

(
λτ̂nI0(λr0)

(1− β)I ′0(λr0)
+ 1

)
n2hne

inθ.
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Note that the velocity is independent of σ. We can substitute in for τ̂n from
(3.40) to isolate terms that depend upon n. The velocity becomes

η̇ ∼ − δ

r2
0

∞∑
n=−∞

(
1− λr0I0(λr0)Cn

(1− β)I ′0(λr0)

)
n2hne

inθ,

with Cn given by

Cn = In(λr0)Kn(λr0)− K ′n(λ)

I ′n(λ)
In(λr0)2.

We remark that β is simply

β(r0) = r0λI
′
0(λr0)

[
K0(λr0)− K ′0(λ)

I ′0(λ)
I0(λr0)

]
and that we showed numerical evidence that 0 < β < 1 ∀ r0 in 0 < r0 < 1,
∀λ > 0.

To analyze how a perturbed initial interface evolves in time we look to
a specific example with h(θ) = cos(nθ) for some choice of n. Thus, we have
that h±n = 1/2 and all other terms are zero. The only terms that remain
are

η̇ ∼ − δ

r2
0

(
1− λr0I0(λr0)

(1− β)I ′0(λr0)
Cn

)
n2 cos(nθ). (3.42)

Notice that the negative sign in front is trying to make η̇ < 0 when
cos(kθ) > 0, which means a bulge will flattens out. The second term, due
to the Cn, has an unknown sign which we will now investigate further. To
do this we consider a few limiting cases.

Case 1: Suppose λ→∞, i.e. D → 0 and r0 � D. The following identities
can be found in [1]. As z →∞, we have

In(z) ∼ ez√
2πz

(
1− 4n2 − 1

8z

)
; Kn(z) ∼

√
π

2z
e−z

(
1 +

4n2 − 1

8z

)
,

I ′n(z) ∼ ez√
2πz

(
1− 4n2 + 3

8z

)
; K ′n(z) ∼

√
π

2z
e−z

(
1 +

4n2 + 3

8z

)
,

In(z)Kn(z) ∼ 1

2z

(
1− 4n2 − 1

8z2

)
,

(3.43)
which tells us that
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K ′n(z)

I ′n(z)
∼ −πe−2z

(
8z + 4n2 + 3

8z − 4n2 − 3

)
∼ −πe−2z

(
1 +

4n2 + 3

4z

)
,

and thus

K ′n(λ)

I ′n(λ)
In(λr0)2 ∼ −πe−2λ

(
1 +

4n2 + 3

4λ

)
e2λ

2πλ

(
1− 4n2 − 1

8λ

)2

∼ − 1

2λr0
e−2λ(1−r0)

(
1 +O( 1

λ)
)
.

(3.44)

We can combine (3.43) and (3.44) together to determine Cn as

Cn ∼
1

2λr0

(
1− 4n2 − 1

8λ2r2
0

)
+O

(
e−2λ(1−r0)

λ

)
.

The second term is exponential small which means it can safely be ignored.
The conclusion is that

Cn ∼
1

2λr0

(
1 +O

(
1
λ2

))
, as λ→∞.

What remains is to estimate β and I ′0(λr0)/I0(λr0).

β(r0) = r0λ

[
I ′0(λr0)K0(λr0)− K ′0(λ)

I ′0(λ)
I0(λr0)I ′0(λr0)

]
∼ r0λ

[
eλr0√
2πλr0

√
π

2λr0
e−λr0

(
1− 3

8λr0

)(
1− 1

8λr0

)
+O

(
e−2λ(1−r0)

λ

)]

∼ r0λ

[
1

2λr0

(
1− 1

2λr0

)
+O

(
e−2λ(1−r0)

λ

)]
∼ 1

2

[
1− 1

2λr0

]
, as λ→∞.

For I0(λr0)/I ′0(λr0) we have

I0(λr0)

I ′0(λr0)
∼

eλr0√
2πλr0

(
1 + 1

8λr0

)
eλr0√
2πλr0

(
1− 3

8λr0

) ∼
(

1 + 1
8λr0

)
(

1− 3
8λr0

) ∼ 1 +
1

2λr0
,

which leads us to our end result for this case
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λr0I0(λr0)

(1− β)I ′0(λr0)
Cn ∼

λr0[
1− 1

2

(
1− 1

2λr0

)] (1 +
1

2λr0

)(
1

2λr0

)(
1 +O

(
1
λ2

))

∼

(
1 + 1

2λr0

)
2
(

1
2 + 1

4λr0

) (1 +O
(

1
λ2

))
∼ 1 +O

(
1
λ2

)
,

and therefore

1− λr0I0(λr0)

(1− β)I ′0(λr0)
Cn ∼ O

(
1
λ2

)
,

as λ→∞.
As λ → ∞ we see that the velocity η̇ � 1 but the sign of the O(1/λ2)

term has yet to be determined. What is clear is that if there is any instability
it will be very weak.

Case 2: Suppose n is fixed and λ→ 0 which corresponds to large diffusive
forces. For n ≥ 1 and z → 0 we have the following identities

In(z) ∼ 1

n!

(z
2

)n
; Kn(z) ∼ (n− 1)!

2

(z
2

)−n
,

I ′n(z) ∼ 1

2(n− 1)!

(z
2

)n−1
; K ′n(z) ∼ −n!

4

(z
2

)−(n+1)
,

which tells us

In(λ)Kn(λ) ∼ 1

2n
.

Now,

K ′n(λ)

I ′n(λ)
In(λr0)2 ∼ −

n!
4

(
λ
2

)−(n+1)

1
2(n−1)!

(
λ
2

)n−1

1

(n!)2

(
λr0

2

)2n

∼ −r
2n
0

2n

and thus for λ→ 0 we have Cn > 0 and

Cn ∼
1

2n
(1− r2n

0 ).

To finish off this case we again need to estimate β and I0(λr0)/I ′0(λr0)
as λ→ 0. For the Bessel functions we have
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I0(λ)

I ′0(λ)
∼ 2

λ
,

and for β

β(r0) = r0λ

[
I ′0(λr0)K0(λr0)− K ′0(λ)

I ′0(λ)
I0(λr0)I ′0(λr0)

]
∼ r0λ

[
λr0

2
O(log(λ))−

1
λ
λ
2

λr0

2

]
∼ r0λ

[
O(λ log(λ)) +

r0

λ

]
∼ r2

0.

From this we can conclude that

λr0I0(λr0)

(1− β)I ′0(λr0)
Cn ∼

λr0

1− r0

(
2

λr0

)(
1− r2n

0

2n

)
∼ 1− r2n

0

n(1− r2
0)
.

Therefore for (3.42) in this limit, we obtain

η̇ ∼ − δ

r0

(
1− 1− r2n

0

n(1− r2
0)

)
n2 cos(nθ). (3.45)

We conclude that as D → ∞, perturbations will stabilize. To see this, we
define

f(k) = n− 1− kn
(1− k)

,

where k = r2
0. Since 0 < r0 < 1, the second term in f(k) can be represented

as

1− kn
(1− k)

= (1 + k + . . .+ kn−1).

Now, consider f(0) = n− (1 + 0 + . . .+ 0) > 0 if n > 1. We also have that
f(1) = n−(1+. . .+1) = n−n = 0. Now, since f ′(k) is monotone decreasing
on 0 < k < 1, we have that f(k) cannot have a zero in 0 < k < 1. This
means the velocity in (3.45) is negative when cos(nθ) > 0, i.e. a perturbation
returns to a circle.
Case 3: Now, we consider the case where r0 � 1 but λ = O(1). We have

β(r0) = r0λ

[
I ′0(λr0)K0(λr0)− K ′0(λ)

I ′0(λ)
I0(λr0)I ′0(λr0)

]
.

64



3.3. Specific Domain Choices

Now, as r0 → 0, we have

B(r0) ∼ r0λ[O(r0 log(r0)) +O(r0)]→ 0, as r0 → 0.

Thus,

λr0I0(λr0)

(1− β)I ′0(λr0)
Cn ∼

2λr0

λr0
Cn ∼ 2Cn, as r0 → 0,

since I0(λr0) ∼ 1 and I ′0(λr0) ∼ λr0 in this limit. What is left is to compute
Cn. For n ≥ 1, as r0 → 0, we have

In(λr0)Kn(λr0) ∼ 1

2n
.

Also,

K ′n(λ)

I ′n(λ)
In(λr0)2 = O(rn0 ), as r0 → 0.

Thus,

λr0I0(λr0)

(1− β)I ′0(λr0)
Cn ∼

1

n
.

We conclude that for r0 � 1, that

η̇ ∼ − δ

r2
0

(
1− 1

n

)
n2 cos(nθ). (3.46)

Assuming that r0 � O(δ), with r = r0 +δ cos(nθ), this law suggests that
a bulge flattens out with velocity proportional to O(δ/r2

0),

Case 4: Finally, we consider the case where λ and r0 are fixed and let
n→∞. We want to establish is the interface is stable to a ‘high frequency’
perturbation cos(nθ) for n� 1.

The only term that requires estimation is Cn. Recall that Cn is given as

Cn = In(λr0)Kn(λr0)− K ′n(λ)

I ′n(λ)
In(λr0)2

For n→∞ we use

In(z) ∼ 1√
2πn

( ez
2n

)n
; Kn(z) ∼

√
π

2πn

( ez
2n

)−n
,

and therefore,
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In(z)Kn(z) ∼ 1

2n
, as n→∞.

For the derivative terms we have

I ′n(z) ∼ n√
2πn

( ez
2n

)n−1 e

2n
=

N

z
√

2πn

( ez
2n

)n
,

K ′n(z) ∼ −n
√

π

2πn

( ez
2n

)−(n+1) e

2n
= −n

z

√
π

2πn

( ez
2n

)−n
.

This gives us

K ′n(λ)

I ′n(λ)
∼ −π

(
eλ

2n

)−2n

,

so

K ′n(λ)

I ′n(λ)
In(λr0)2 ∼ − 1

2n

(
eλ

2n

)−2n(eλr0

2n

)2n

∼ −r
2n
0

2n
.

Combining these results we can see that for n� 1, we have

Cn ∼
1− r2n

0

2n
,

but since 0 < r0 < 1, we have Cn ∼ O(1/n). In the asymptotic limit of
n� 1, we conclude that

η̇ ∼ − δ

r2
0

(
1− λr0I0(λr0)

(1− β)I ′0(λr0)

1

2n

)
n2 cos(nθ). (3.47)

Since

η̇ ∼ − δ

r2
0

(
1−O

(
1

n

))
n2 cos(nθ),

it follows that a bulge flattened out rather quickly.
Remark 3.3.2.1: Consider Gn(r0, λ) given by

Gn(r0, λ) = 1− λr0

1− β(r0)

I0(λr0)

I ′0(λr0)
Cn.

Note that Gn(r0, λ) is the term with an undetermined sign that appears in
(3.42). In figure 3.5, we plot Gn(r0, λ) versus r0 for a few values of λ and
n. For each pair of λ and n, Gn crosses the r0-axis for a certain critical
value of r0. We believe that this sign change is not an instability but comes
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from boundary effects. The Neumann boundary conditions on the outer wall
create a mirroring effect, attracting the perturbed drop to its image outside
the domain.

3.3.3 Many Circular Interfaces

We now consider the case where Γ is initially a collection of N disjoint disks
of radii δri, i = 1, . . . , N so that

Ωδ =
N⋃
i=1

Ωδi ; Ωδi = {x : |x− xi| ≤ δri}.

We then must solve

D∆v − v = −σ
{

1 : x ∈ Ωδ

0 : x ∈ Ω \ Ωδ
,

∂v

∂n
= 0, x ∈ ∂Ω.

(3.48)

We will assume that δ � 1. In our original analysis we used ε � 1,
so here we need to assume ε � δ � 1 so that the profile for u across a
cross-section of one drop is as in figure 3.6.

Now from our previous analysis we know that the normal velocity of
∂Ωδj (the boundary of the jth droplet) is

η̇j = −
(
∂sjV0

Aj(sj)

)
sj

, x ∈ ∂Ωδj , (3.49)

where sj is the arc length of the boundary of the jth drop and Aj(sj) is
given as

Aj(sj) = ∇v · n
∣∣
∂Ωδj

,

and

V0 = v
∣∣
∂Ωδj

.

For a circular drop of radius δrj , we have sj = δrjθ, where θ is a local polar
coordinate.

We will use strong localized perturbation theory to calculate a high-order
approximation for v. We begin by looking at the inner region near the jth

drop, where we let
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(c) G4 for λ = .2, 1, 5
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Figure 3.5: Gn(r0, λ) for n = 2, 3, 4, 5, λ = .2, 1, 5 on 0 < r0 < .95. In
each plot it is clear that there is a critical r0 value such that Gn < 0 and
thus η̇ > 0 when cos(nθ) > 0, signifying growth of the perturbation and an
instability.

68



3.3. Specific Domain Choices

Figure 3.6: Profile for u across a cross-section of one drop centered at xi,
where the drop is of size O(δ).

|x− xi|

u

1

O(ǫ)

O(δ)

V (y) = v(xj + δy), y =
x− xj
δ

,

Then,

D

δ2
∆yVj − Vj = −σ

{
1 : |y| ≤ rj
0 : |y| > rj

.

This suggests that we expand Vj as

Vj = δ2 log(δ)W0,j + δ2W1,j + . . .

We substitute to obtain that W0,j is a constant and that

∆yW1,j = − σ
D

{
1 : |y| ≤ rj
0 : |y| > rj

. (3.50)

To solve this equation we look for a radially symmetric solution and obtain,
upon imposing W1,j is C1 across ρ = |y| = rj , that

W1,j =

{
− σ

4Dρ
2 + Cj + σ

4Dr
2
j : ρ ≤ rj

kj log
(
ρ
rj

)
+ Cj : ρ > rj

, (3.51)
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where kj = −σr2
j/2D and Cj is an arbitrary constant to be found from

matching to the outer solution. Note that kj is found by imposing differen-
tiability across ρ = rj .
Remark 3.3.3.1: Suppose that (3.50) was such that Ωδj was an arbitrary
closed region. Then we could not solve as in (3.51) but we could still calcu-
late kj and show it is constant. Let Ωj = Ωδj/δ so that Ωj has area that is
O(1). The analogous W1,j equation is

∆yW1,j = − σ
D

{
1 : |y| ∈ Ωj

0 : |y| 6∈ Ωj
.

Now, as |y| → ∞ it still follows that W1,j ∼ kj log(|y|) for some constant kj
to be determined. Using the fact that W1,j is C1 we have from the divergence
theorem that

lim
R→∞

∫
BR

∆W1,j dy = 2π lim
R→∞

R
∂W1,j

∂|y|

∣∣∣∣∣
|y|=R

= 2πkj ,

where BR = {y : |y| ≤ R} with R large enough to contain Ωj . However,
since ∆W1,j = −σ/D inside Ωj , we also have

lim
R→∞

∫
BR

∆W1,j dy = − σ
D
|Ωj | = 2πkj ,

and thus,

kj = −σ|Ωj |
2πD

,

where |Ωj | is the area of Ωj . Notice that if |Ωj | = πr2 as for a circle, then
kj = −σr2

j/2D as derived for equation (3.51). We conclude that the solution
to

∆yW1,j = − σ
D

{
1 : |y| ∈ Ωj

0 : |y| 6∈ Ωj
, (3.52)

has the far field behavior as |y| → ∞ given by

W1,j ∼ kj log(|y|) + Cj + o(1), as y→∞.
Here, Cj is an arbitrary constant. We observe that since a constant solves
(3.52) then Cj is a constant that is undetermined from the inner problem
and will be found by matching to the outer solution.
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Returning to the circular drop case, recall that the inner expansion is
given as

Vj = δ2 log(δ)W0,j + δ2W1,j + . . .

In terms of the outer variable ρ = |x − xj |/δ, the far field behavior for the
inner expansion is

Vj ∼ δ2 log(δ)W0,j + δ2[kj log(|x− xj |)− kj log(δ)− kj log(rj) + Cj ] + . . .

Rearranging the above equation,

Vj ∼ δ2 log(δ)[W0,j−kj ] + δ2[kj log(|x−xj |)−kj log(rj) +Cj ] + . . . , (3.53)

with kj = −σr2
j/2D.

Here, we see that W0,j must be

W0,j = kj , j = 1, . . . , N.

If W0,j was not chosen in this way, the outer solution, a second-order elliptic
PDE, would be forced to satisfy a point constraint (v = δ2 log(δ)v∗, v∗(xj) =
W0,j − kj), which is ill-posed.

It follows that in the outer region we must expand the outer solution as

v = δ2v1 + . . .

Upon substituting this expansion into (3.48), we obtain that v1 solves

∆v1 − λ2v1 = 0, x ∈ Ω \ {x1, . . . ,xN},
∂v1

∂n
= 0, x ∈ ∂Ω,

v1 ∼ kj log(|x− xj)| − kj log(rj) + Cj , as x→ xj , for j = 1, . . . , N.
(3.54)

As before, λ = 1/
√
D.

To solve (3.54), we introduce the reduced-wave Green’s functionGλ(x; xj),
which satisfies,

∆Gλ − λ2Gλ = −δ(x− xj), x ∈ Ω;
∂Gλ
∂n

= 0, x ∈ ∂Ω.
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We can decompose Gλ(x; xj) globally in Ω as

Gλ(x; xj) = − 1

2π
log(|x− xj |) +Rλ(x; xj), (3.55)

for some globally defined C1 function Rλ(x; xj). As x→ xj , we have,

Rλ(x; xj) ∼ Rλj +∇Rλ
∣∣
xj
· (x− xj) +O(|x− xj |2 log(|x− xj |)),

where Rλj = Rλ(xj ; xj) is the regular part of the reduced-wave Green’s
function in (3.55). Additionally,

∇Rλ
∣∣
xj

= ∇Rλ(x; xj)
∣∣
x=xj

.

We can now write v1 globally in Ω by introducing singular Dirac forces
as

∆v1 − λ2v1 = 2π

N∑
i=1

kiδ(x− xj), x ∈ Ω;
∂v1

∂n
= 0, x ∈ ∂Ω.

The solution to this PDE can be represented as the superposition

v1 = −2π
N∑
i=1

kiGλ(x; xj).

Now we expand as x→ xj to obtain

v1 ∼ −2πkj

[
− 1

2π
log(|x− xj |) +Rλj +∇Rλ

∣∣
xj
· (x− xj)

]
− 2π

N∑
i 6=j

ki

[
Gλji +∇Gλ

∣∣
xj
· (x− xj)

]
,

which can be rearranged into

v1 ∼ kj log(|x− xj |)− 2π

[
kjRλj +

N∑
i 6=j

kiGλji + kj∇Rλ
∣∣
xj
· (x− xj)

+
N∑
i 6=j

ki∇Gλ
∣∣
xj
· (x− xj)

]
.
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This long expression can be written more compactly as

v1 ∼ kj log(|x− xj |)− 2π

kjRλj +
N∑
i 6=j

Gλji

+ aj · (x− xj), (3.56)

as x → xj and with v ∼ δ2v1. In this equation, aj is a vector-quantity
defined by

aj = −2π

kj∇Rλ∣∣xj +
N∑
i 6=j

ki∇Gλ
∣∣
xj

 . (3.57)

Ignoring aj · (x−xj) in (3.56) for the moment and matching (3.56) with
the required behavior in (3.53), we obtain that

Cj − kj log(rj) = −2π

kjRλj +
N∑
i 6=j

kiGλji

 , for j = 1, . . . , N,

which yields

Cj = kj log(rj)− 2π

kjRλj +

N∑
i 6=j

kiGλji

 .
This can be written in matrix form as

(P − 2πGλ)k = C, (3.58)

where

P =

log(ρ1) 0
. . .

0 log(ρN )

 ; Gλ =

Rλ1 Gλij
. . .

Gλji RλN

 ,

k =

k1(ν)
...

kN (ν)

 ; C =

C1(ν)
...

CN (ν)

 .

Remark 3.3.3.2:
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(i) With Cj determined by (3.58), the inner solution for O(δ2) is determined
from (3.51).

(ii) By Remark 3.3.3.1, with Cj determined by (3.58), the O(δ2) term for
the inner problem for W1,j is a well-posed problem for an arbitrary
shape Ωj . In particular, if xj is any point in Ωδj , then we must solve
uniquely the following problem.

∆yW1,j = − σ
D

{
1 : y ∈ Ωj

0 : y 6∈ Ωj
,

W1,j ∼ kj log(|y|) + Cj + o(1), as |y| → ∞,
where Cj is found from (3.58) and kj = −σ|Ωj |/(2πD). For this
general problem, we can set rj = 1 in P so that P = 0 since in
(3.51), we would write W1,j ∼ kj log(|y|) + Cj as |y → ∞ and put
|y| = |x− xj |/δ. Thus, for the general problem, −2πGλk = C.

Remark 3.3.3.3: We now compare our theory with results obtained for
the annulus δ < |x| < 1 with r = |x|. For the annulus, we can find an
exact solution. Note that this has already been found in (3.21). Expressed
differently, the exact solution is

v =


(vE − σ) I0(λr)

I0(λδ) + σ : 0 < r < δ

vE
K0(λr)−K0(λ)

I′0(λ)
I0(λr)

K0(λδ)−
K′0(λ)
I′0(λ)

I0(λδ)
: δ < r < 1

,

with vE given as

vE = λσδ

[
I ′0(λδ)K0(λδ)− K ′0(λ)

I ′0(λ)
I0(λδ)I ′0(λδ)

]
.

Now, in the outer region with rj = 1, j = 1, we have

v ∼ −2πδ2
(
− σ

2D

)
Gλ(x; 0) =

πσδ2

D
Gλ(x; 0),

where for the unit disk the Green’s function is given as

Gλ(x; 0) =
1

2π

[
K0(λr)− K ′0(λ)

I ′0(λ)
I0(λr)

]
.

Since K0(z) ∼ − log(z/2)− γ as z → 0 with γ as Euler’s constant, we have
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Gλ(x; 0) ∼ − 1

2π
log(r)− 1

2π

[
log

(
λ

2

)
+ γ +

K ′0(λ)

I ′0(λ)

]
+ o(1), as r → 0.

Thus,

Rλ1 = − 1

2π

[
log(λ)− log(2) + γ +

K ′0(λ)

I ′0(λ)

]
,

is the regular part of Gλ at x = 0. In the inner region with Rλ1 given above,
we have from (3.58) that

C1 =

(
log(λ)− log(2) + γ +

K ′0(λ)

I ′0(λ)
]

)
k1, k1 = − σ

2D
.

Note that with D = 1, we can see that this is exactly the constant found in
(3.19). Thus, in the inner region, we have for r = O(δ) that

V1 ∼ k1δ
2 log(δ) + δ2

{
− σr2

4Dδ2
+ C1 + σ

4D : r ≤ δ
k1 log(r)− k1 log(δ) + C1 : r ≥ δ .

We can see that this is the exact inner expansion derived in section 3.3.1
(equations (3.17) and (3.18)) and our analysis for many droplets reduces to
a single drop when N = 1.

Now we return to the case of N circular drops and we go to higher order
to determine non-radially symmetric contributions that result in a non-zero
normal velocity.

We return to (3.56), and notice that there is an unmatched term due to
the gradient effects. We write the outer solution as (with x→ xj),

v ∼ δ2

kj log(|x− xj |)− 2π

kjRλj +
N∑
i 6=j

kiGλji

+ aj · (x− xj)

 ,
where aj is given in (3.57).

Note that all the terms except for aj ·(x−xj) have already been matched.
In the inner variable this unmatched term can be expressed as δ3[aj ·y+o(1)].
This suggests that in the inner region near the jth drop we must expand

V = δ2 log(δ)kj + δ2W1,j + δ3W2,j + . . .
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Upon substituting into (3.48) we obtain that in all of y ∈ R2 that

∆yW2,j = 0, y ∈ R2; W2,j ∼ aj · y + o(1), as |y| → ∞. (3.59)

The o(1) condition at infinity eliminates constant terms and thus, to have a
smooth solution in R2 we must have that W2,j is linear in y. Thus, we have
exactly in R2 that

W2,j = aj · y.
With this solution we have the three term inner expansion near the jth drop
as

V = δ2 log(δ)kj + δ2

{ − σ
4Dρ

2 + Cj + σ
4Dr

2
j : ρ ≤ rj

kj log(ρ)− kj log(rj) + Cj : ρ ≥ rj
+ δ3aj · y + . . .

(3.60)
This is the key result that will allow us to predict the interface motion

starting from an initial configuration of N circular small disjoint droplets of
radii δr1, . . . , δrN .

The question we are trying to answer is how do the droplets move ini-
tially. We know theoretically that for all time t > 0 we have that the area
of each droplet is preserved in time since

d

dt

∫
Ωj

1 dx =

∫
∂Ωj

η̇j ds = −
(
∂sjV0

Aj(sj)

) ∣∣∣
∂Ωj

= 0,

by periodicity.
We now return to (3.49). The normal velocity with sj = δrjθ is

η̇ = − 1

δ2r2
j

∂θθV0

Aj
,

where we have used that, to a first order approximation, Aj is a constant
independent of θ. Now we use the inner solution to calculate Aj . Recall,

Aj(sj) = ∇v · n
∣∣
∂Ωδj

= −vr
∣∣
r=δrj

= −δ2kj
1

r

∣∣
r=δrj

= δ
kj
rj
.

Now we write the non-radially symmetric terms of v as

v = (. . .) + δ3[aj1ρ cos(θj) + aj2ρ sin(θj)],
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where (. . .) encapsulates the radially symmetric terms and θj is the local
polar coordinate measured with respect to y = 0 (x = xj). Thus, we have

∂θθV0 ∼ −δ3rj [aj1 cos(θj) + aj2 sin(θj)], ρ = rj .

Substituting in for Aj and ∂θθV0, we see that

η̇j = − 1

δ2r2
j

−δ3rjaj · eθj
−δ kjrj

,

where eθj = (cos(θj), sin(θj)). Simplifying, we have

η̇ = −aj · eθj
kj

.

Substituting in for kj , we arrive at the non-zero normal velocity

η̇ =
2Daj · eθj

σr2
j

, (3.61)

where aj is given in (3.57).
This result shows that the normal velocity to the interface is asymp-

totically independent of the radius O(δ). We can write equation (3.61)
equivalently as

η̇ = 2π

∇Rλ∣∣xj +

N∑
i 6=j

ri
rj
∇Gλ

∣∣
xj

 · eθj . (3.62)

This is the main result for this section. The initial motion of a collection
of small circular droplets of radii δr1, . . . , δrN is on an O(1) timescale (recall
η̇ is on an O(1/ε) for the general PDE) and is critically influenced by the
configuration of all the other drops. Notice the radius factor ri/rj . If rj is
large compared to the other drops, then the jth drop moves essentially by
∇Rλ

∣∣
xj

.

Remark 3.3.3.4:

(i) Suppose x1, . . . ,xN are such that equation (3.62) is identically zero for
each j. These locations are an equilibrium state for the dynamics and,
in particular, if ri = rc ∀ i, then the equilibria would be to put N small
disks of a common radius at the roots of unity on a ring concentric
within the unit disk. There are other ‘symmetric configurations’ that
can be found. These will be touched upon shortly.
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(ii) The result (3.62) shows that an initial configuration of N small circular
drops will not remain circular as time increases and the boundary of
∂Ωj will change as t increases.

(iii) In (3.62), the first term measures the self interaction with the boundary
of the domain, ∂Ω. The second term is larger when ri/rj is large, i.e. if
a small drop of radius rj is surrounded by larger drops of radii ri > rj ,
the small drop will deform the most due to the other drops.

(iv) To determine the direction which the drops move, we first consider a
previous result on spot dynamics for the Gray-Scott model as derived
in [7]. There, a 1-spot solution with center at x0 ∈ Ω ⊂ R2 satisfies
x0(t) with

x′0 = −ε2k∇Rλ(x; x0)
∣∣
x=x0

,

for some k > 0.

A collection of N spots with centers x0, . . . ,xN−1 satisfies

x′j = −εkj

Sj∇Rλ(x; xj)
∣∣
x=xj

+
N−1∑
i 6=j

Si∇Gλ(x; xj)
∣∣
x=xj

 ,
for j = 0, . . . , N − 1, and some kj > 0, Sj > 0 (see principal result 3.1
in [7]). The dynamics are known to be a repulsive interaction. For a
single spot, x0 → x0e in Ω as t → ∞, where x0e is the minimum of
Rλ(x; x0). Thus, the boundary is repelling and spots too close together
are pushed away.

Our result, in (3.62), has the opposite sign. Thus, for one droplet
aligned with the x-axis in the unit disk we have

η̇1 = 2π
[
∂xRλ

∣∣
x=(x1,0)

]
cos(θj).

The bracketed term is positive from results in [7] if x1 > 0. Thus,
for cos(θj) > 0, we have η̇ > 0 and η̇ < 0 for cos(θj) < 0. Here,
droplet interactions are attractive in the sense that they will deform to
each other. In the single droplet case the droplet deforms towards the
boundary due to the ”mirror” effect of Neumann boundary conditions.
A depiction of this can be seen in figure 3.7.
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Figure 3.7: A depiction of the results for the case described in Result 3.3.3.4
(iv). We see that the opposite sign for the velocity in the chemotaxis model
causes the attractive behavior and thus, a circle off the center deforms and
moves towards the boundary.

Deformation to boundary

Initial configuration

(v) In part (i) of this remark we discussed equilibrium locations for a col-
lection of droplets. To find alternative configurations, we must find
points x1, . . . ,xN for given radii r1, . . . , rN , that satisfy η̇ = 0, where
η̇ is given in (3.62). This can be done numerically by evolving the
system of ODEs

x′j = −

r2
j∇Rλ

∣∣
xj

+
N∑
i 6=j

r2
i∇Gλ

∣∣
xj

 , j = 1, . . . , N,

with the given initial positions and radii. Due to the negative sign and
analogy with spot dynamics, we will have xj → xje as t → ∞, where
xje is the equilibrium location and satisfies η̇ = 0.

3.3.4 Arbitrary Shaped Initial Droplet Pattern

We now discuss the case where the initial droplet pattern has N small drops
of ‘radius’ O(δ) but arbitrary shape. Let xj ∈ Ωδj be any point in Ωδj and
all such points are O(δ) close together.

Let Ω denote the entire region with holes included. We must solve
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∆v − λ2v = − σ
D

{
1 : x ∈ Ωδ

0 : x ∈ Ω \ Ωδ
,

∂v

∂n
= 0, x ∈ ∂Ω.

We now solve this problem by a matched asymptotic expansion. In the
inner region, near the jth drop, we have

V ∼ δ2 log(δ)kj + δ2W1,j + δ3aj · y, (3.63)

where W1,j now satisfies (as described in Remark 3.3.3.2),

∆yW1,j = − σ
D

{
1 : y ∈ Ωj

0 : y 6∈ Ωj
,

W1,j ∼ kj log(|y|) + Cj + o(1), as |y| → ∞,
(3.64)

where

kj = −σ|Ωj |/(2πD); Cj = −2π(Gλk)j .

Here, the j subscript for ((G)k)j signifies the jth entry of the vector. The
solution to this problem is unique since Cj is specified and was found by
matching to the outer solution. Since it is found by solving C = −2πGλk,
it involves all other droplets.

Note that in (3.63) the O(δ3) term is precisely the same as for the N
circular droplets. This results from the fact that the problem for W2,j (3.59)
is independent of Ωj . The one key new feature is that we must solve (3.64)
for an arbitrary Ωj and then determine how the shape changes under the
surface diffusion law given by equation (3.49). The solution for W1,j can be
decomposed as

W1,j = Φj + Cj , (3.65)

where Φj(y) is the unique solution to

∆yΦj = − σ
D

{
1 : y ∈ Ωj

0 : y 6∈ Ωj
,

Φj ∼ kj log(|y|) + o(1), as |y| → ∞.
(3.66)

The o(1) condition above is the condition that makes the PDE uniquely
determined. A key feature here is that Φj is a local problem in the sense that
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it is independent of any interaction with the other drops. The interaction
effect with other droplets is simply additive in (3.65).
Lemma 3.3: The solution to (3.66), with ds = ds1ds2, is given as

Φj(y) = − σ

2πD

∫
Ωj

log(|y − s|) ds

Proof: We let Gf = − log(|s − y|)/2π satisfy, in the s-plane, the equation
for the free space Green’s function, ∆sGf = −δ(s− y). Now,

∆yΦj = − σ
D

{
1 : s ∈ Ωj

0 : s 6∈ Ωj
,

Φj ∼ kj log(|s|) + o(1), as |s| → ∞.
(3.67)

We have

lim
R→∞

∫
BR

(Gf∆sΦj − Φj∆sGf ) ds = lim
R→∞

∫
∂BR

(
Gf

∂Φj

∂n
− Φj

∂Gf
∂n

)
ds,

(3.68)
where Br = {s : |s| = R}. The left hand side is

lim
R→∞

(∫
BR

Gf∆sΦj ds + Φj(y)

)
= Φj(y)− σ

D

∫
Ωj

Gf ds

= Φj(y) +
σ

2πD

∫
Ωj

log(|s− y|) ds

(3.69)
Now, the right hand side of (3.68) is

lim
R→∞

∫
∂BR

(
Gf

∂Φj

∂n
− Φj

∂Gf
∂n

)
ds =

= lim
R→∞

∫
∂BR

(
− kj

2πR
log(|y − s|)− (kj log(R) + o(1))

∂Gf
∂n

)
ds.

But,

log(|s− y|)
∣∣
s=R
∼ log(R) +

y · s
|s|2 +O

(
1

R2

)
, for |s| = R� 1,

and
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∂Gf
∂n

∣∣
s=R

= − 1

2π
∂|s| log(|s− y|)

∣∣
s=R

= − 1

2π
∂|s|

(
log(|s|)− y · s

|s|2
)
,

which yields

∂Gf
∂n

∣∣
s=R
∼ − 1

2πR
+O

(
1

R2

)
Substituting this information into the right hand side of (3.68), we obtain
with s = Rθ

lim
R→∞

∫
∂BR

(
Gf

∂Φj

∂n
− Φj

∂Gf
∂n

)
ds =

= 2π lim
R→∞

[(
− kj

2πR
log(R) + (kj log(R) + o(1))

1

2πR

)
R

]
In the right hand side of this equation we see that the log(R) terms cancel.
Note that it is critical that the additional term on the right hand side be
o(1) to ensure the boundary integral vanishes. Thus, since the right hand
side of this equation vanishes we obtain the desired result from (3.69).

Φj(y) = − σ

2πD

∫
Ωj

log(|y − s|) ds.

We now conclude that

W1,j =
σ

2πD

∫
Ωj

log(|s− y|) ds + Cj ,

the exact solution of (3.64).
Remark 3.3.4.1: We would like to verify directly that Φj satisfies (3.67).
First note that if y 6∈ Ωj , then ∆y log(|s− y|) = 0 so ∆yΦj = 0. If y ∈ Ωj ,
we have

∆yΦj = − σ

2πD

∫
Ωj

∆y log(|s− y|) ds = − σ
D

∫
Ωj

δ(s− y) ds = − σ
D
.

To establish the far-field behavior of Φj(y) we let |y| → ∞ and write

log(|y−s|) =
1

2
log(|y−s|2) =

1

2
log[(y−s)·(y−s)] =

1

2
log[yyT−sTy−yT s+ssT ]
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Since sTy = yT s, we have

log(|y − s|) =
1

2
log[|y|2 − 2y · s + |s|2]

=
1

2
log

[
|y|2

(
1− 2y · s

|y|2 +
|s|2
|y|2

)]
= log(|y|) +

1

2
log

(
1− 2y · s

|y|2 +
|s|2
|y|2

)
.

Noting that log(1− z) ∼ −z if z → 0, we have

log(|y − s|) ∼ log(|y|) +
y · s
|y|2 +O

(
1

|y|2
)
, for |y| → ∞.

Thus, for |y| � 1,

Φj(y) = − σ

2πD

∫
Ωj

log(|y−s|) ds ∼ − σ

2πD

∫
Ωj

(
log(|y|) +

y · s
|y|2 +O

( |s|2
|y|2

))
ds.

So,

Φj(y ∼ −
|Ωj |σ
2πD

log(|y|)− σy

2πD|y|2 ·
∫

Ωj

s ds.

The second term is indeed o(1) as y→∞ and in fact

Φj(y) ∼ kj log(|y|) + o(1), as |y| → ∞.

In summary, the exact solution to (3.64) is simply

W1,j =
σ

2πD

∫
Ωj

log(|s− y|) ds + Cj . (3.70)

To determine the local change to the interface due to W1,j we write

η̇ = −
(
∂sjV0

Aj

)
sj

, x ∈ ∂Ωδj .

We put sj = δŝj , with ŝj ∈ (0, |∂Ωj |), which is the length of ∂Ωj mea-
sured in the y-variable. This yields

η̇ = − 1

δ2

(
∂ŝjV0

Aj

)
ŝj

, x ∈ ∂Ωδj . (3.71)
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We have

∂ŝjV0 ≈ δ2∂ŝjW1,j

∣∣
∂Ωj
∼ −δ2 σ

2πD

∂

∂ŝj

∫
Ωj

log(|y(sj)− s|) ds,

Aj = ∇xv · n =
1

δ
∇yv · n ∼ −

1

δ
δ2∂W1,j

∂n
.

Substituting these into the velocity equation (3.71), we obtain

η̇ ∼ −1

δ

(
∂ŝjW1,j

∂nW1,j

)
ŝj

,

which shows that η̇ = O(1/δ). This means the interface responds quickly to
an initial deformation of the non-circular initial shape. This deformation is
only due to the drop itself and not the other drops.
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Chapter 4

Numerical Results for the
Chemotaxis Model

In this chapter we discuss numerical solutions for the volume filling model.
This serves as a verification of the analytic results for geometries in which
asymptotic analysis is not possible as well as a way to see interface evolution.
We solve the quasi-steady problem discussed in previous chapter, where the
organism has aggregated into regions of uniform concentration. The problem
to solve is

D∆v − v = −σ
{

1 : x ∈ Ω−
0 : x ∈ Ω+

,

∂v

∂n
= 0, x ∈ ∂Ω,

(4.1)

where Ω ⊂ R2 is some domain and Ω− is some initial configuration of cell
colonies. The inner region may be a single mass or a collection of disjoint
groups. Each of these inner regions represent the initial aggregation of the
cells in the system and the interface is the boundary of Ω−, given by Γ.

The main goal is to use the finite element method to solve the steady
state equation of the chemical potential and then to calculate the velocity
on each interface using our asymptotic results (principal result 3.1). We
then pass this information to a level set framework where the velocity is
extended in a narrow band around each interface and then evolved in time.
With the new location of the interface Γ, the steady state problem is solved
once again and the process is repeated.

The level set method was chosen for many reasons. It is known for
its ability to easily handle complicated domain evolution where merging or
splitting may occur (see [26]). It has been successfully used in applications
such as Stefan problems, flame front evolution, and computer vision. Since
the chemotaxis equations devolve into a moving boundary problem it seems
like the natural framework with which to view it.
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4.1. Steady State Solution Using the Finite Element Method

4.1 Steady State Solution Using the Finite
Element Method

The first step is to solve the steady state problem in (4.1) so the velocity
may be calculated. The finite element method was chosen so we can easily
fit the mesh to complicated interfaces. Since the forcing term in the problem
is a step function it is desirable to have the tessellation respect the inner
and outer regions. To achieve this we use two different tessellations, one for
the inner and and one for the outer regions, that share the same nodes on
their common interface (see figure4.1).

For the tessellation, Per-Olof Persson’s distmesh (see [24]) package was
used. The first step is to construct Ω+ and Ω− separately. We then marry
the two tessellations together by adjusting the triangle node numbering in
a consistent fashion and appending the additional nodes and triangles onto
the original lists. This gives us a single tessellation of Ω with a ‘tight’ hold
on the interface. Note that around the interface we adaptively refine the
triangulation for improved accuracy in calculating the velocity.

Figure 4.1: An example of a tessellation generated using distmesh and the
described methodology.
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The steady state problem is solved in a standard manner. We construct
the weak form by first assuming that if v solves (4.1), then for any u we
have ∫

Ω
D∆vu dx−

∫
Ω
vu dx = −σ

∫
Ω−

u dx.

Applying Green’s identity to the first term on the left hand side, we now
have

−
∫

Ω
(D∇v · ∇u+ uv) dx +

∫
∂Ω
u
∂v

∂n
dx = −σ

∫
Ω−

u dx.

Since v is subject to Neumann boundary conditions, the boundary integral
vanishes and we obtain the following weak form of (4.1).∫

Ω
(D∇v · ∇u+ uv) dx = σ

∫
Ω−

u dx.

where u is an arbitrary ‘trial’ function in H1(Ω), the Sobolev space given as
H1(Ω) = {u ∈ L2(Ω) : ux1 , ux2 ∈ L2(Ω)}.

We use a Galerkin approximation to approximate v and u as

v(x, y) =
N∑
i=1

viNi(x, y); u(x, y) =
N∑
i=1

uiNi(x, y),

where Ni are finite element basis functions. Since u is arbitrary we can set
each ui = 1 in turn. The problem to solve, for each i, is

[∫
Ω

(D∇Ni(x, y) · ∇Nj(x, y) +Ni(x, y)Nj(x, y)) dx

]
vi = σ

∫
Ω−

Nj(x, y) dx.

(4.2)
We approximate the solution by using quadratic basis functions over

mapped triangles. For mapped triangles that lie on ∂Ω or Γ, we use an
isoparametric mapping to improve the accuracy with which these curves are
represented (see figure 4.2).

The integrals in (4.2) are evaluated by mapping the basis functions to a
reference element (see figure 4.2). For a given triangle, the reference map is
defined by

x = F1(ω, ξ) =

6∑
i=1

xiN̂i(ω, ξ); y = F2(ω, ξ) =

6∑
i=1

yiN̂i(ω, ξ), (4.3)
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where xi and yi are the vertices of the triangle that correspond to the node
where the basis function Ni(ω, ξ) is one and (ω, ξ) are the reference element
coordinates. On the reference element the basis functions can be written
explicitly as

N̂1 = (1− ω − ξ)(1− 2ω − 2ξ); N̂2 = ω(2ω − 1); N̂3 = ξ(2ξ − 1),

N̂4 = 4ωξ; N̂5 = 4ξ(1− ω − ξ); N̂6 = 4ω(1− ω − ξ).
(4.4)

Applying the map from (4.3) to the integrals in (4.2), we have (for a mapped
triangle K and corresponding reference triangle K̂),

D

∫
K
∇Ni · ∇Nj dA = D| det(J)|

∫
K̂

(J−T ∇̂N̂i) · (J−T ∇̂N̂j) dA,∫
K
NiNj dA = |det(J)|

∫
K̂
N̂iN̂j dA;

∫
K
Nj dA = | det(J)|

∫
K̂
N̂j dA,

where J is the Jacobian of the map given in (4.3), which can be written
explicitly as

J =

(
∂ω
∑6

i=1 xiN̂i(ω, ξ) ∂ξ
∑6

i=1 xiN̂i(ω, ξ)

∂ω
∑6

i=1 yiN̂i(ω, ξ) ∂ξ
∑6

i=1 yiN̂i(ω, ξ)

)
. (4.5)

Once on the reference element we use 10-point Gauss quadrature to
evaluate the integrals.

x, y
ω, ξG(x, y)

F (ω, ξ)

(0,0) (1,0)

(0,1)

(x1, y1)

(x2, y2)

(x3, y3)

1 2

3

45

6

Figure 4.2: A depiction of a triangle with a mapped edge and the reference
triangle in ω, ξ space. The dotted line indicates the previously unmapped
quadratic or possibly linear triangle edge. G(x, y) is the equivalently written
as F−1(ω, ξ).
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Initially, we tried piecewise linear elements but they were not sufficiently
accurate for our purposes. Since the velocity on the interface depends upon
the arc length of Γ, accuracy of the initial solution and representation of
the interface is very important. Quadratic elements were also tried before
implementing isoparametric quadratics. Since the interface will typically
be curved and not polygonal, mapping the triangle edges that lie on the
interface gives us smooth tangent and normal vectors as well as a more
accurate representation of the forcing term in (4.1). Since the domain is
discretized with special care taken at the interface and boundary, we are
able to handle the forcing term properly and maintain O(h3) accuracy in
the L2 norm.

As a check, we consider problem (4.1) with Ω = {x : |x| ≤ 1}, the unit
disk, Ω− = {x : |x| ≤ .25}, σ = 1 and D = 1. With this given droplet
configuration the exact solution, v, can be found and is given in (3.21). The
solution is

v =

{
σ +AI0(|x|λ) : |x| ≤ δ

BI0(|x|λ) + CK0(|xλ|) : δ < |x| ≤ 1
,

with A, B, and C given as

A = C

[
(K0(δ)− σ)I1(1) +K1(1)I0(δ)

I1(1)I0(δ)

]
,

B = C
K1(1)

I1(1)
; C =

I1(δ)σ

W(K0(δ), I0(δ))
,

where δ = .25, σ = 1 and λ = 1.
We calculate the numerical solution, V , with quadratic and isoparametric

quadratic elements and create a log-log plot of the L2 error ‖V − v‖L2

against the mesh edge length h. Clearly the isoparametric elements are
more accurate and converge faster (O(h3) for isoparametric and O(h2) for
quadratic), as seen in figure 4.3. A surface plot of the numerical solution
can be seen in figure 4.4.

4.1.1 Comparison to Asymptotics

The next step is to ensure that the numerical and asymptotic results agree.
To this end, we investigate the case where Ω is a circular domain with
many circular interfaces analyzed in section 3.3.3. The problem we solve
is given in equation (4.1) with Ω = {x : |x| ≤ 1}, σ = 1, D = 1 and
Ω− = {x : |x − (−.15,−.45)| ≤ δ} ∪ {x : |x − (.25, .25)| ≤ 2δ}. Since the
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Figure 4.3: Log-log plot of the L2 error versus mesh size. The isoparametric
mapping improves accuracy and leads to a higher convergence rate indicated
by the steeper slope. The slopes are 3.67 for the isoparametric elements and
2.02 for quadratic.

problem is solved asymptotically in the limit δ → 0, we analyze the error
for decreasing δ on a fixed initial mesh size h = .015.

The derivation of the asymptotic solution can be found in section 3.3.3
and is given as

v ≈ −δ22π
N∑
i=1

kiGλ(x; xj),

where Gλ is the reduced-wave Green’s function that solves

∆Gλ − λ2Gλ = −δ(x− xj), x ∈ Ω;
∂Gλ
∂n

= 0, x ∈ ∂Ω.

When Ω is a unit disk, as in this case, the reduced-wave Green’s function
can be found explicitly and is given in appendix B. A surface plot of the
numerical solution using this reduced-wave Green’s function is given in figure
4.5.

As δ → 0, the difference between the numerical and asymptotic solution
should decrease. This can be seen in table 4.1, where the l2 norm of the
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−1
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Single Colony Solution with δ = .25

Figure 4.4: The solution to the steady state equation with a single cell colony
centered at the origin. Here, δ = .25 and the initial edge length is .05.

difference between solutions is shown for different values of δ. Note that, for
a given mesh size, there is a lower bound constraint on δ as there need to
be sufficient degrees of freedom in the FEM model to represent the interior
regions accurately.

This result helps to confirm the asymptotic solutions presented in section
3.3.3 as well as the accuracy of the numerical computations.

4.2 Calculating the Interface Velocity

Recall our asymptotic result,

η̇ = −
( ∂sV0

A1(s)

)
s

= −
( vs
∇v · n

)
s
,

where V0 is the first term in the inner expansion of (4.1) and A1 arises from
the second term. This is the velocity we need to calculate in order to use
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Two Colony Solution with δ = .03125

Figure 4.5: The solution to the steady state equation with two cell colonies
located at [-.15, -.45] and [.25, .25] with radii of δ and 2δ respectively. Here,
δ = .03125.

the level set method and capture interface motion.
The arc length derivatives are calculated by determining the tangent

to the interface from the isoparametric mapping (4.3) and taking the dot
product of that with the gradient of v. This is because ∂sf(x) = ∇f(x) · t,
where t is the tangent vector of the curve at the point x. The gradient is
calculated using the finite element framework. For a given triangle K and
point (x, y) ∈ K, the gradient is defined as

∇v(x, y) =

6∑
i=1

vi∇Ni(x, y),

where Ni(x, y) are the non-zero basis functions on that triangle. We can
take advantage of the reference element to say that the gradient is
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δ difference (l2)

.25000 3.3275

.12500 .44805

.06250 .05868

.03125 .00977

Table 4.1: A table of the error for decreasing values of δ. The error quickly
decreases as δ decreases, coinciding with the asymptotic limit of δ � 1.

∇v(x, y) = J−T
6∑
i=1

vi∇̂N̂i(ω, ξ),

where N̂i(ω, ξ) are the local basis functions and J−T is the inverse transpose
of the Jacobian of the reference map. The reference basis functions are given
in (4.4) and the Jacobian is given in (4.5). The normal vector n is calculated
using an outward normal by taking the vector perpendicular to the tangent
t.

Since the gradient and normal vectors are not well defined at the vertices
of a triangle we instead only calculate the velocity at the mapped quadratic
nodes that sit between two vertices that lie on the interface. To calculate
the velocity elsewhere we pass a periodic spline through those points and
interpolate. This gives us the normal velocity at all of the nodes on the
interface and in principle anywhere on the curve.

To check the accuracy of the velocity, we again look to the problem
problem (4.1) with Ω = {x : |x| ≤ 1}, the unit disk, Ω− = {x : |x| ≤ .25},
σ = 1 and D = 1. Since the solution is independent of θ, the arc length
derivative will be 0 and thus the velocity is 0. We calculate the velocity
on the interface with quadratic and isoparametric elements and use the
maximum value as a measure of accuracy. Figure 4.6 is a log-log plot of the
maximum velocity value versus h, the initial mesh size. The convergence
rates (slopes) are 1.24 and 1.68 for the quadratic and isoparametric elements,
respectively.
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Figure 4.6: Log-log plot of maximum velocity value on the interface versus
mesh size. Once again the isoparametric elements provide an improvement
in accuracy.

4.3 Interface Evolution Using the Level Set
Method

The level set method was developed by Osher and Sethian in [21] and it
offers an accurate and robust way of evolving interfaces. The formulation
for the level set method is as follows. Given a normal velocity field V, we
evolve the surface z = φ(x, y, t) according to the hyperbolic conservation
law

φt + V|∇φ| = 0,

where φ(x, y, t) = 0 defines the moving interface we want to track. At
the first step φ is initialized as a signed distance function that, at each
point in space, describes the distance to the interface. Since the level set
equation requires a normal velocity field for all level sets, we need to build
an extension velocity off the interface. Thus, before we proceed with the
evolution, we need to construct this signed distance function and extension
velocity field.

As an example, a circular interface of radius R can be represented as the
signed distance function
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φ(x, y) =
√
x2 + y2 −R.

An interface comprised of a collection of disjoint regions can be repre-
sented as a union of a collection of signed distance functions φi, where each φi
is an embedding of a simple closed curve. The value for φ(x, y) =

⋃
i φi(x, y),

at a point (x, y) in space, is given by φ(x, y) = mini(φi(x, y)). This simple
fact allows one to represent complicated domain configurations as a mini-
mum over much simpler ones.

The level set equation is typically solved on a rectangular grid with uni-
form spacing. We chose to do the same and thus we embed the finite element
mesh in a square domain and impose artificial periodic boundary conditions.
Since curve evolution only requires local information, the boundary effects
never come into play. We will now take a deeper look at more specific points
of the implementation.

4.3.1 The Signed Distance Function

Evolution by the level set equation does not strictly require a signed distance
function but a signed distance function has many nice properties that im-
prove the accuracy of numerical computations. A signed distance function,
φ, gives the shortest distance from a point x to the boundary φ = 0 and also
has the property that |∇φ| = 1. This normalized gradient diminishes the
negative effects that large variations in the gradient may have on numerical
computations. This is why a signed distance function is often chosen.

Throughout evolution, the level set equation can have a distorting effect
on the interface, causing very steep or flat gradients (see [18]). This means
small perturbations in the velocity or interface can have large and unphys-
ical effects on the solution. This problem is ameliorated by reinitializing
φ as a signed distance function at every iteration. In order to reinitialize
a level set function into a signed distance function we evolve the following
reinitialization equation proposed in [28] to a steady state.

φt = sign(φ)(1− |∇φ|).
Typically, very few iterations are required for a reasonably accurate reini-
tialization.

For points within one grid space of the interface we use a subcell fix
(see figure 4.7). Russo and Smereka in [25] explain that for these ‘close’
points, a standard discretization will not remain upwind. Thus, for the
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4.3. Interface Evolution Using the Level Set Method

Figure 4.7: An example of a set of points (identified by the crosses) one grid
node away from an interface.

point (i, j) on the nth iteration, the subcell fix changes the right hand side
of the reinitialization equation given above to

sign(φ0
i,j)|φni,j | −Di,j ,

where φki,j = φ(xi, yj , tk) and Di,j is an approximation of the distance from
the node (xi, yj) to the interface. Di,j is given by

Di,j = h
φ0
i,j

∆φ0
i,j

∆φ0
i,j =

√
(Dxφ0

i,j)
2 + (Dyφ0

i,j)
2

where h is the grid spacing, Dxφ
0
i,j and Dyφ

0
i,j are the maximum absolute

value of a small parameter ε, along with the central, forward, and backward
difference operators in the x and y directions, respectively. ∆φ0

i,j is given as
above because merging or breaking interfaces may result in small values for
the denominator and this formulation keeps the distance, Di,j , numerically
robust. Note that this fix is only done for points within one grid space away
from the interface and for all others we use Godunov’s method.

An example of the effectiveness of reinitialization with a subcell fix can
be is seen in figure 4.8
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Figure 4.8: An example where reinitialization, particularly with a subcell
fix, is very effective at correcting defects in a level set function. Here, φ =
f ∗ (

√
(x/4)2 + (y/2)2 − 1), where f = .1 + (x+ 3.5)2 + (y + 2)2.
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4.3. Interface Evolution Using the Level Set Method

4.3.2 Regular Grid Initialization and Velocity Extension

As mentioned previously, the level set equation is solved on a regular grid.
Since the velocity is only defined on the interface, it needs to be interpolated
to this grid and then extended outward in a reasonable fashion. The only
strict stipulation [26] imposes upon this extension is that it be continuous
at the interface. This can be done in the manner suggested in [17]. First,
the velocity is extended to the rest of the triangulated mesh by solving the
following equation.

∆V = 0, x ∈ Ω \ Γ; V = η̇, x ∈ Γ[∂V
∂n

]
= 0, x ∈ Γ;

∂V
∂n

= 0, x ∈ ∂Ω.
(4.6)

We solve Laplace’s equation with Dirichlet boundary conditions away
from the interface and initialize the velocity that was already solved for
on the nodes corresponding to the interface. We also enforce a zero jump
condition in the normal derivative on the interface to impose differentiability.
Since this system is overdetermined it is solved in the least squares sense
using the normal equations.

The reason we extend the velocity in this way is because, in a weak sense,
we enforce the fact that ∇φ · ∇V = 0. To show this, consider the integral∫

Ω
φ∆V dx = 0,

which is true because of (4.6). This can be decomposed into a sum of two
integrals, ∫

Ω−

φ∆V dx +

∫
Ω+

φ∆V dx = 0,

Applying Green’s identity, we have

−
∫

Ω
∇φ · ∇V dx +

∫
∂Ω
φ
∂V
∂n

dx−
∫
∂Ω+

φ
∂V
∂n

dx +

∫
∂Ω−

φ
∂V
∂n

dx = 0

where the sign for the last two integrals is opposite because of the different
normal directions. The last two integrals vanish due to the imposed jump
condition on the interface and the second integral vanishes because of the
Neumann boundary conditions. Thus, we have∫

Ω
∇φ · ∇V dx = 0,
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4.3. Interface Evolution Using the Level Set Method

and therefore, in a weak sense, we have ∇φ · ∇V = 0. The reason why this
condition is important is because it helps maintain φ as a signed distance
function. To see this, suppose that initially |∇φ| = 1 and we evolve the
interface using the level set equation φt + V|∇φ| = 0. Now, consider

d|∇φ|2
dt

= 2∇φ · d
dt
∇φ = −2(∇φ · ∇V|∇φ|+∇φ · ∇|∇φ|V).

Since |∇φ| = 1, we have that ∇|∇φ| = 0. Now, with ∇φ · ∇V = 0, we have
that

d|∇φ|2
dt

= 0,

and therefore |∇φ| = 1 for all time as it is a unique solution to the ODE.
This is why we impose ∇φ · ∇V = 0; having φ as a signed distance func-
tion, as mentioned previously, improves numerical accuracy and robustness
significantly.

Once the velocity has been extended to the rest of the triangulated do-
main we can initialize it to a set of points on the regular grid. We choose
these points by selecting those that lie within a certain small distance (given
by φ) from the interface, φ = 0. The finite element method gives us a nat-
ural interpolation scheme; we find which triangle a mesh point lies in and
interpolate using the basis functions for that triangle. For the rest of the
points in the domain we set the velocity to zero.

Once the velocity has been initialized we can smooth the jump between
initialized and non initialized grid points with the velocity extension equa-
tion. This extends the initial set of points with non-zero velocity further
outwards and alleviates discontinuities. The velocity extension equation is

∂V
∂t

+ sign(φ)
∇φ
|∇φ| · ∇V = 0.

This equation advects the initial velocity away from the front in the
proper upwind direction (see [6]), maintains continuity between the interfa-
cial velocity and extension velocity at the interface, and in equilibrium has
the property that ∇φ · ∇V = 0. This property, once again, helps maintain
φ as a signed distance function and works in conjunction with the finite
element extension method described in (4.6).

Since the velocity depends upon the solution to the steady state PDE
given in (4.1) and the shape of the interface, it is only valid on a very small
timescale for the level set equation. This means we only need to extend the
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4.3. Interface Evolution Using the Level Set Method

velocity to a narrow band around the interface as we are forced to discard it
and re-solve the steady state equation. An example of an interface velocity
curve and the corresponding extension can be seen in 4.9

4.3.3 Interface Evolution

Finally we come to the interface evolution step. Here, we solve the level set
equation

φt + V|∇φ| = 0,

for a small time step before recovering the interface and passing the new
configuration back to the steady state equation (4.1). The interface is re-
covered by passing a periodic spline through the oriented collection of points
that represent the zero level set φ(x, y, t) = 0 and then sampling this spline
at evenly spaced values along the curve.

As φ moves towards equilibrium the values of the velocity field will de-
crease. Since we need to interpolate the velocity from the interface to a
regular grid, the interpolation process will cause unphysical results when
the interpolation error is the same order as the velocity. To fix this problem
and continue with the evolution we can switch to a simpler front tracking
method when the maximum velocity value falls below some tolerance based
on grid size. By this stage the level set method will have handled the topo-
logical changes and non-convex interfaces that are so difficult to capture
with front tracking.

Front tracking is very simple to implement and only requires that one
calculate the normal vector for nodes on the interface and advance these
points in that direction, scaled by the velocity η̇.

4.3.4 Discretizations

Following the intuition given in [6], we use a third-order total variation
diminishing Runge-Kutta scheme for solving the reinitialization, level set
and extension velocity equations. This scheme was chosen to avoid temporal
instabilities arising from the discretization. Consider the following general
equation

φt = L(φ),

where L is the spatial operator. The third-order TVD scheme is then given
as
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Figure 4.9: An example of a normal velocity curve on the interface and the
resulting narrow band extension.
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φ(1) = φ(0) + ∆tL(φ(0)),

φ(2) = 3
4φ

(0) + 1
4φ

(1) + 1
4∆tL(φ(1)),

φ(3) = 1
3φ

(0) + 2
3φ

(2) + 2
3∆tL(φ(2)),

where L is the discrete spatial operator.
For the spatial discretization we again follow [6]. Consider the spatial

operator of the level set equation, given as

L(φ) = −V|∇φ|.
This is discretized using Godunov’s method to make sure upwinding is han-
dled properly. Godunov’s method gives us

L(φ) = −max(V, 0)∇+ −min(V, 0)∇−,
where

∇+ =[max(max(D+xφ, 0)2,min(D−xφ, 0)2)+

max(max(D+yφ, 0)2,min(D−yφ, 0)2)]1/2,

∇− =[max(max(D−xφ, 0)2,min(D+xφ, 0)2)+

max(max(D−yφ, 0)2,min(D+yφ, 0)2)]1/2,

with D±x representing the forward and backward difference operators in the
x direction, respectively. To improve accuracy the forward and backward dif-
ference operators are discretized using the second-order ENO scheme found
in [18]. The schemes are

D+xφi,j =
φi+1,j − φi,j

h
− h

2
minmod(Dxxφi,j , D

xxφi+1,j),

D−xφi,j =
φi,j − φi−1,j

h
+
h

2
minmod(Dxxφi,j , D

xxφi−1,j),

where Dxx is the standard central difference approximation to the second
derivative and the minmod function returns the argument with the smaller
absolute value. These are all reproduced in an analogous fashion for the y
direction.

The reinitialization and velocity extension equations are handled with
similar discretizations, also using Godunov’s method. For the sign function
that arises in these equations, we use a smoothed version to alleviate any
numerical issues given as

102



4.4. Results

sign(φ) =
φ√

φ2 + h2
,

where h is the grid spacing.

4.4 Results

In this section we present a few canonical results from which the behavior of
many different configurations can be explained. We also verify some of the
asymptotic results found in section 3.3.2, 3.3.3 and 3.3.4, where instabilities
and different timescales are present. In all examples the outer domain Ω
is a circle of radius one centered at the origin and the level set equation is
solved on a regular grid with 200 grid points in each direction.

4.4.1 Off-Center Circle

Figure 4.10 is an example of interface evolution where Γ is an off-center
circle. Here, Ω− = {x : |x− (.25, .25)| ≤ .25}, σ = 1 and D = 1.

The reason the drop moves away from the center is due to the Neu-
mann boundary conditions on the domain wall which creates a mirroring
effect. The droplet is attracted to its image droplet and ‘reaches’ out to-
wards it. This also confirms the analysis from section 3.3.3, in particular
remark 3.3.3.4 (iv), where it was found that when off-center the drop ini-
tially bulges outwards. With this level set formulation it would be hard
to capture exactly what occurs when it reaches the boundary due to our
embedding the circular domain in a regular gridded square.

We also plot the area loss versus iteration count (area at current iteration
- initial area) in figure 4.11. This is a rough metric for accuracy of the level
set method in this case when there is no exact solution. Despite losing area
per time step the total loss remains small.

4.4.2 Two Axisymmetric Perturbed Circles

In figures 4.12 through 4.15 we examine the case of two axisymmetric per-
turbed circles, where the perturbation is relatively small. In polar coordi-
nates the shapes are given by r = .0175(cos(6θ) + 12) with a shift of .45 and
−.45 in the x direction. Here, D = 1 and σ = 1.

The evolution of this example can be broken into four phases. The first
phase is that in which the perturbations rapidly smooth out to a circular
shape (figure 4.12). The second phase is the much slower evolution of the two
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circles moving together and eventually merging into one mass (figure 4.13).
The third phase is the barbell shape of the two merged circles smoothing
out into an ellipse (figure 4.14). Finally, the last phase is the equilibrium
state of a circular drop centered in Ω at the origin (figure 4.15).

These four phases serve as canonical results that explain the chemotac-
tic evolution process for many different droplet configurations. For typical
parameter values, perturbations to circles will smooth out and drops will
move towards each other and merge into one large group. The behavior is
very similar to that of the Ostwald ripening in this regard.

The slow merging in the second and third phases relative to the quick
smoothing in the first suggests that the two evolution processes happen on
different timescales. This confirms the asymptotic result derived at the end
of section 3.3.4.

4.4.3 Asymptotic Result: Boundary Effects Cause
Instabilities

In figure 4.16, we confirm the asymptotic result in section 3.3.2, remark
3.3.2.1. In this case, Γ = r0 + δ cos(nθ) was shown to be unstable when
r0 was above some critical value that depends upon n and λ. Instead of
returning to a circular shape as in figures 4.12 through 4.15, we have growth
of the perturbation. This instability is due to effects of the domain boundary
and Neumann boundary conditions, which cause the drop to reach outwards
towards its mirror image. Notice that the entirety of the perturbation does
not grow, only the sides that reach out beyond r = .5.

The parameter values selected that satisfy this condition are D = 250,
r0 = .65, δ = .15, n = 2 and σ = 1. Figure 4.16 highlights this instability
and the aforementioned growth of the perturbation.

4.4.4 Asymptotic Result: Perturbations to Small Drop
Decay Faster Than Perturbations to Large Drop

Figure 4.17 is a confirmation of the result from section 3.3.2, specifically
equation (3.46). Here, we assumed that the interface, Γ, is a near circle
given by r = r0 + δ cos(nθ). In the limit where δ � r0 � 1 and λ =
1/
√
D = O(1) (D from (4.1)), we have that a perturbation flattens out with

velocity proportional to O(δ/r2
0). This indicates that a small circle with a

size δ perturbation should flatten out faster than a larger circle with the
same size perturbation.

For the steady state PDE, we set D = 1 and σ = 1. The interface for
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the small near-circle is given by r = .25 + .05 cos(6θ) and large near-circle is
r = .5 + .05 cos(6θ). Figure 4.17 shows that the smaller near-circle returns
to an equilibrium state faster than its larger counterpart.

4.4.5 Asymptotic Result: High Frequency Perturbations
Decay Faster Than Low Frequency Perturbations

Figure 4.18 is a confirmation of the result from section 3.3.2, equation (3.47).
Here, we assumed that the interface, Γ, is a near circle given by r = r0 +
δ cos(nθ). In the limit where D and ρ0 are fixed and n → ∞, where n is
the order of the perturbation, we have that the perturbations flatten with
velocity proportional to O(n2). This means a high frequency perturbation
will decay faster than a lower frequency one for the same r0 and δ.

For the steady state PDE, we set D = 1 and σ = 1. The high frequency
interface is given by r = .35 + .05 cos(9θ) and the low frequency is r =
.35+ .05 cos(6θ). Figure 4.18 shows that the higher the frequency, the faster
the perturbations decay.
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T = 0.0020101 T = 0.084422

T = 0.19095 T = 0.27136

Figure 4.10: Off-circle example. Blue is the outer domain, the dotted black
line is the initial position and dark red is the moving drop. For the triangu-
lated mesh we start with an initial edge size of .05 with 100 fixed nodes on
the interface. The time step for reinitialization, constructing the extension
velocity and solving the level set equation was chosen to be h/5, where h is
the regular grid mesh size.
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Figure 4.11: Plot of area loss versus iteration count for the off-center circle
example. Area is lost at each iteration but remains small.
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Two Drops: Phase 1

T = 4.0201e−05 T = 8.0402e−05

T = 0.0001206 T = 0.00020101

Figure 4.12: Phase 1 of the two perturbed circle example. Blue is the outer
domain, the dotted black line is the initial position and dark red is the
moving drop. For the triangulated mesh we start with an initial edge size of
.05 with 100 fixed nodes on each interface. The time step for reinitialization,
constructing the extension velocity and solving the level set equation was
chosen to be h/5, where h is the regular grid mesh size.
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Two Drops: Phase 2

T = 0.00020101 T = 0.080402

T = 0.15075 T = 0.20101

Figure 4.13: Phase 2 of the two perturbed circle example. Blue is the outer
domain, the dotted black line is the initial position and dark red is the
moving drop. For the triangulated mesh we start with an initial edge size
of .05 with 100 fixed nodes on each interface which becomes 200 fixed nodes
when the domains merge. The time step for reinitialization, constructing
the extension velocity and solving the level set equation was chosen to be
h/5, where h is the regular grid mesh size.
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Two Drops: Phase 3

T = 0.20101 T = 0.26533

T = 0.33166 T = 0.40201

Figure 4.14: Phase 3 of the two perturbed circle example. Blue is the outer
domain, the dotted black line is the initial position and dark red is the
moving drop. For the triangulated mesh we start with an initial edge size of
.05 with 200 fixed nodes on the interface. The time step for reinitialization,
constructing the extension velocity and solving the level set equation was
chosen to be h/5, where h is the regular grid mesh size.
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Two Drops: Phase 4

T = 0.40201 T = 0.46633

T = 0.53266 T = 0.60302

Figure 4.15: Phase 4 of the two perturbed circle example. Blue is the outer
domain, the dotted black line is the initial position and dark red is the
moving drop. For the triangulated mesh we start with an initial edge size of
.05 with 200 fixed nodes on the interface. The time step for reinitialization,
constructing the extension velocity and solving the level set equation was
chosen to be h/5, where h is the regular grid mesh size.
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T = 0.0020101 T = 0.064322

T = 0.15075 T = 0.20101

Figure 4.16: An example of an unstable perturbation due to boundary ef-
fects. Blue is the outer domain, the dotted black line is the initial position
and dark red is the moving drop. For the triangulated mesh we start with
an initial edge size of .05 with 180 fixed nodes on the interface. The time
step for reinitialization, constructing the extension velocity and evolution of
the level set equation was selected as h/5, where h is the regular grid mesh
size.
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T = 2.0202e−05 T = 2.0202e−05

T = 6.0605e−05 T = 6.0605e−05

T = 0.00010101 T = 0.00010101

Figure 4.17: Different sized perturbed circle example. Blue is the outer
domain and dark red is the moving drop. For the triangulated mesh we
start with an initial edge size of .05 with 100 fixed nodes on the interface
when r0 = .25 (left) and 200 fixed nodes on the interface when r0 = .5
(right). The time step for reinitialization and constructing the extension
velocity was selected as h/5, where h is the regular grid mesh size. In order
to capture the quick perturbation-flattening effects, the time step for the
level set equation was h2/5.
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T = 2.0202e−05 T = 2.0202e−05

T = 4.0403e−05 T = 4.0403e−05

T = 6.0605e−05 T = 6.0605e−05

Figure 4.18: Different frequency perturbed circle example. Blue is the outer
domain and dark red is the moving drop. For the triangulated mesh we
start with an initial edge size of .05 with 150 fixed nodes on the interface.
The time step for reinitialization and constructing the extension velocity was
selected as h/5, where h is the regular grid mesh size. In order to capture the
quick perturbation-flattening effects, the time step for the level set equation
was h2/5.
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Conclusion

In this thesis we studied the interfacial motion present in the two-dimensional
Ostwald ripening and volume-filling chemotaxis systems. For both prob-
lems, we derive the governing partial differential equation model and use
the method of matched asymptotic expansions to determine the laws which
dictate motion. After this motion law is derived, we verify the result against
intuition and expected behavior with numerical simulations and specific ex-
amples.

The Ostwald ripening system is derived as the late-stage dynamics of
the Cahn-Hilliard equation and results in a Mullins-Sekerka free boundary
problem. We consider a collection of N small circular droplets in a domain,
Ω ⊂ R2. We construct an inner and outer solution to the problem and en-
force matching to derive a system of ordinary differential equations which
describe the motion of the radius of each drop, to leading order. Following
this, we improve our solution, solving the problem to terms of all logarith-
mic order where, at this order, the interaction is captured by a Neumann
Green matrix. The system of ordinary differential equations is improved
and now requires solving a linear algebraic system involving the radius of
each drop and the Neumann Green’s function. The system is seen to be area
preserving, perimeter reducing, and have the finite time extinction property
where the smallest droplet vanishes in finite time. These properties push
the system towards an equilibrium state of a single, large drop that holds
all of the initial mass. We verify the derived system of ordinary differential
equations with a simple two drop numerical simulation.

For our study on the volume-filling chemotaxis system, we derive the
model by assuming an organism exhibits a random walk on a one-dimensional
infinite lattice with preferred movement in the direction of a chemical gradi-
ent. Volume-filling is included with a monotone decreasing function which
decays to zero when the concentration of the organism reaches the normal-
ized maximum value of one. We define the interface, Γ, as a collection of
simple closed curves which separate regions with concentration one and con-
centration zero of the organism. In the limit of small diffusive forces, we use
a boundary fitted coordinate system and matched asymptotic expansions to
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derive a surface diffusion law that describes the velocity on this interface.
The velocity is then used to determine the behavior in a few specific cases.

In the case of two concentric circles, the velocity is identically zero and we
are in a stable equilibrium. This is confirmed by solving the problem exactly
as well as with a matched asymptotic expansion when the initial mass of
the system is small. Next, we examine what occurs when the circular shape
of the droplet is perturbed. In the limit of a high frequency perturbation or
large chemical diffusion, we see the velocity stabilizing the system. When in
the limit of small diffusive forces, we cannot confirm the system stabilizes
but if any instability occurs it will be very weak. The third case is that of
many small circular interfaces. Here the movement is critically influenced
by the configuration of all other drops due to gradient terms in the Green’s
function. We see that there is a weakness in the model as the equations
dictate an unphysical stable equilibrium of N small disks of a common radius
located at the roots of unity on a ring concentric within the unit disk. We
also determine that a single off-center drop will move away from the center,
in the direction of its image across the domain wall. This case also shows
that a small drop will deform the most and a collection of N small circular
drops will not remain circular. In the final case study we derive information
about the velocity for N small arbitrarily shaped drops. Here we see that, to
leading order, the drops are influenced not by interaction among themselves
but due to their arbitrary shape.

We analyze and verify the asymptotic results with numerical simulations,
making use of the finite element and level set methods to capture compli-
cated geometries and merging of interfaces. An interface-fitted mesh is used
along with isoparametric quadratic elements in the finite element method
to solve the steady state partial differential equation with sufficient accu-
racy. We use this solution to numerically calculation the velocity on each
interface. This interfacial velocity is then interpolated to a regular-gridded
domain and extended outwards for use with the level set method. The level
set method robustly handles the evolution and merging of each interface by
describing them as a signed distance function. This process is repeated by
recovering the interface and again solving the steady state problem. We
confirm many of the asymptotic results as well as show a set of canonical
drop interactions.

The analysis of these two systems suggest many open problems and fu-
ture work. For Ostwald ripening, we would like to extend the work in [8]
to two dimensions. Here, they consider the Mullins-Sekerka free bound-
ary problem with kinetic drag. We would also like to extend the equations
of motion in Ostwald ripening to incorporate perturbations to the circu-
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lar shapes. In the chemotaxis model we assumed the volume-filling term
was q(u) = 1 − u. The surface diffusion law can be extended to include
a more general volume-filling term. For chemotaxis, numerical simulations
revealed boundary effects when the radius of a near-circular drop was be-
yond a certain critical value. This phenomenon was only observed and not
characterized; it would be interested to see analytic results verifying these
simulations. Additionally, we conjecture in section 3.1, conjecture 3.1 that
the denominator of the surface diffusion law must be positive. Proving
this is important for completeness of understanding the surface diffusion in
chemotaxis. Finally, the analysis on a collection of arbitrarily shaped small
initial droplets concludes with a local solution that is independent of any
interaction with the other drops. Extending this analysis to higher orders
will answer the question of whether the system leads to a circular shape on
a longer timescale.
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Appendix A

Boundary Fitted Coordinates

Here we derive the boundary fitted coordinate system used in the chemotaxis
model. Let η be the minimal distance from a point in some domain Ω to
boundary ∂Ω. We choose η such that η > 0 inside Ω and η < 0 outside Ω.
Assuming Ω is smooth, there exists have a unit tangent vector t and unit
(inward) normal vector n at each point on ∂Ω.

We can parametrize ∂Ω by arc length giving us (γ1(s), γ2(s)) as the
parametrization. We also know that the normal vector and tangent vector
are related through curvature, κ. That is, dt

ds = κn. κ is positive for convex
sets, as seen from inside.

Let (x1, x2) be any point near ∂Ω in cartesian coordinates (the notion
of near is clarified below). The change of variables becomes

x1 = γ1(s) + ηn1(s); n = (n1, n2),

x2 = γ2(s) + ηn2(s); t = (γ′1, γ
′
2).

Differentiating with respect to x1 and x2 and letting ex1 = (1, 0) and
ex2 = (0, 1) we wind up with

ex1 = γ ′(s)
∂s

∂x1
+

∂η

∂x1
n + ηn′(s)

∂s

∂x1
,

ex2 = γ ′(s)
∂s

∂x2
+

∂η

∂x2
n + ηn′(s)

∂s

∂x2
.

(A.1)

Since n is a unit vector, n · n = 1 and thus

d

ds
(n · n) = 2

dn

ds
· n = 0.

This means that dn/ds is perpendicular to n and thus we have dn/ds = αt
for some α to be found. To find α we take two derivatives with respect to s
of t, giving us

d2t

ds2
= κ′(s)n + κ

dn

ds
.

Taking the dot product of above with respect to t we arrive at
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Appendix A. Boundary Fitted Coordinates

t · d
2t

ds2
= 0 + κt · dn

ds
= καt · t = κα.

Since, as stated above, dt/ds = κn and n is perpendicular to t, t · (dt/ds) =
0. Thus, consider

0 =
d

ds

[
dt

ds
· t
]

= t · d
2t

ds2
+
dt

ds
· dt
ds

= κα+ κ2n · n = κ(α+ κ).

Since κ 6= 0, we have that α = −κ. Substituting the information we just
derived into the equation A.1 for ex1 and ex2 we wind up with

ex1 = (1− κη)
ds

dx1
t(s) +

dη

dx1
n(s),

ex2 = (1− κη)
ds

dx2
t(s) +

dη

dx2
n(s).

Now, taking the dot product of these two equations with respect to t we
wind up with

∇s =

(
ds

dx1
,
ds

dx2

)
=

t

1− κη (A.2)

Similarly, by taking the dot product of the two equations with n we wind
up with

∇η =

(
dη

dx1
,
dη

dx2

)
= n. (A.3)

This implies that η, the distance, must satisfy η < 1/κ. This is the precise
definition of a point being near the boundary.

With this in hand we take an arbitrary function u(x1, x2) and write ∇u
in terms of the new coordinates. This gives us

∇u = ux1ex1 + ux2ex2

= (ussx1 + uηηx1)[(1− κη)sx1t + ηx1n]

+ (ussx2 + uηηx2)[(1− κη)sx2t + ηx2n].

Expanding and rearranging, we wind up with

∇u = (1− κη)ust(s2
x1 + s2

x2) + uηn(η2
x1 + η2

x2)

+ usn(sx1ηx1 + sx2ηx2) + (1− κη)uηt(sx1ηx1 + sx2ηx2).
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Realizing that sx1ηx1 + sx2ηx2 = ∇s · ∇η = 0, we have

∇u = ‖∇s‖2(1− κη)ust + ‖∇η‖2uηn,
but, since we have expressions for ∇s and ∇η (A.2 and A.3), we can simplify
further

∇u =
us

1− κη t + uηn. (A.4)

We would also like to see how ∆u changes under this new coordinate
system. We begin by calculating ∆η as

∆η =
dn

ds
· ∇s = −κt · t

1− κη = − κ

1− κη . (A.5)

We do the same for ∆s to give us

∆s =
t′(s) · ∇s

1− κη + t · ∇
(

1

1− κη

)
.

We know that ∇s = t/(1−κη) from A.2 so the first term on the right hand
side vanishes by the fact that t′ · t = 0. We wind up with

∆s = t ·
[
κ′η∇s+ κ∇η

(1− κη)2

]
.

From A.3, we know that ∇η = n and n is perpendicular to t so the second
term in the numerator vanishes. Substituting in for ∇s we arrive at

∆s = t ·
[

κ′ηt

(1− κη)3

]
=

κ′η

(1− κη)3
. (A.6)

We are now in a position to finish the calculation. Taking a dot product
of the gradient in the boundary fitted coordinate system and ∇u from A.4,
we have

∆u = uηη‖∇η‖2 + uss‖∇s‖2 + 2usη∇s · ∇η + uη∆η + us∆s.

Substituting in for ∇η, ∇s, ∆η and ∆s from A.3, A.2, A.5 and A.6, we can
simplify to

∆u = uηη −
κ

1− κηuη +
1

(1− κη)2
uss +

κ′η

(1− κη)3
us,

or, written in a slightly different way, we arrive at our final equation
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∆u = uηη −
κ

1− κηuη +
1

1− κη
d

ds

(
us

1− κη

)
.
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Appendix B

Green’s Function for the
Unit Disk

This work was taken from a paper [7]. We want to find the Green’s function
corresponding to the PDE given below in the domain Ω = {x : |x| ≤ 1}.

∆Gλ − λ2Gλ = −δ(x− x0), x ∈ Ω;
∂Gλ
∂n

= 0, x ∈ ∂Ω, (B.1)

where λ = 1/
√
D.

The first step is to switch to polar coordinates. The PDE above becomes

∂ρρGλ +
1

ρ
∂ρGλ +

1

ρ2
∂θθGλ − λ2Gλ = −1

ρ
δ(ρ− ρ0)δ(θ − θ0),

where the boundary conditions becomeGλ(ρ, θ+2π) = Gλ(ρ, θ), ∂ρGλ(1, θ) =
0 and Gλ has the proper log singularity as ρ→ 0.

This can be solved by making use of the complex Fourier series. We have

Gλ(ρ, θ; ρ0, θ0) =
1

2π

∞∑
n=−∞

Ḡλ,n(ρ; ρ0, θ0)e−inθ,

Ḡλ,n(ρ; ρ0, θ0) =

∫ 2π

0
einθGλ(ρ, θ; ρ0, θ0)dθ.

Substituting this in leads us to

∂ρρḠλ,n +
1

ρ
∂ρḠλ,n −

n2

ρ2
Ḡλ,n − λ2Ḡn =

1

ρ
δ(ρ− ρ0)einθ0 , 0 < ρ < 1,

Ḡnρ(1; ρ0, θ0) = 0; Ḡn(0; ρ0, θ0) <∞.
(B.2)

The solution to this is

Ḡλ,n(ρ; ρ0, θ0) =

[
Kn (ρ>λ)− K ′n(λ)

I ′n(λ)
In (ρ>λ)

]
einθ0In (ρ<λ) ,
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where this can be found by solving equation B.2 on either side of ρ0 and
then enforcing continuity and the jump condition. Here, ρ< = min(ρ0, ρ)
and ρ> = max(ρ0, ρ). Thus, the full solution to B.1 is

Gλ(ρ, θ; ρ0, θ0) =
1

2π

∞∑
n=−∞

e−in(θ−θ0)

[
Kn(ρ>λ)− K ′n(λ)

I ′n(λ)
In(ρ>λ)

]
In(ρ<λ).

(B.3)
We wish to improve the convergence of this series which is known to

converge slowly ([19]). Consider the free space Green’s function Fourier
representation,

Gf (ρ, θ; ρ0, θ0) =
1

2π
K0(Rλ) =

1

2π

∞∑
n=−∞

e−in(θ−θ0)Kn(ρ>λ)In(ρ<λ),

where R =
√
ρ2 + ρ2

0 − 2ρρ0 cos(θ − θ0). At this point the ρ< and ρ> nota-
tion can be dropped and replaced with ρ0 and ρ. Rewriting the term above
in B.3, we see that

G(ρ, θ; ρ0, θ0) =
1

2π
K0(Rλ)− 1

2π

∞∑
n=−∞

e−in(θ−θ0)K
′
n(λ)

I ′n(λ)
In(ρ0λ)In(ρλ).

To approximate this numerically we truncate the infinite series. Be-
fore doing this, realizing that Kn(z) = K−n(z) and In(z) = I−n(z) we can
rewrite the infinite sum to instead go from n = 0, 1, 2, . . .. If we rewrite the
exponential term using Euler’s formula the sine terms will cancel and gives
us

G(ρ, θ; ρ0, θ0) =
1

2π
K0(Rλ)− 1

2π

K ′0(λ)

I ′0(λ)
I0(ρ0λ)I0(ρλ)

− 1

π

M∑
n=1

cos(n(θ − θ0))
K ′n(λ)

I ′n(λ)
In(ρ0λ)In(ρλ), 0 < ρ < 1.

Numerically, this can be implemented with MATLAB’s built in Kn(z)
and In(z) and using the recurrence relations, ∂zKn(z) = −(Kn−1(z) +
Kn+1(z))/2 and ∂zIn(z) = (In−1(z) + In+1(z))/2 for the modified Bessel
function derivatives. Terms in the infinite sum are calculated until the next
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ρ ρ0 M PM
.08 .08 32 -9.7502e-09
.05 .08 17 -4.9680e-09
.05 .05 12 -2.4060e-09
.02 .08 9 -3.6761e-09

Table B.1: This table shows the convergence rate for the improved Green’s
function for select values of ρ and ρ0. M is the number of iterations required
to reach the specified tolerance of 1e-8 for PM . D = 1 and θ = θ0.

term is below some tolerance, say 1e-8. Under these conditions the Green’s
function for the unit disk converges very quickly, in as few as 9 iterations
for some values of ρ and ρ0. The required number of iterations and PM for
the final term in the sum for different values of ρ and ρ0 are given in table
B.1.
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