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Abstract

In this thesis, we asymptotically construct steady-state localized spot solu-

tions to the Brusselator reaction-diffusion system in the semi-strong inter-

action regime characterized by an asymptotically large diffusivity ratio. We

consider two distinct settings: a periodic pattern of localized spots in R2 con-

centrating at lattice points of a Bravais lattice, and multi-spot solutions that

concentrate around some discrete points inside a finite domain. We use the

method of matched asymptotic expansions, Floquet-Bloch theory, and the

study of certain nonlocal eigenvalue problems to perform a linear stability

analysis of these patterns. This analysis leads to a two-term approximation

for a certain stability threshold characterized by a zero-eigenvalue crossing.

Numerical results for the stability threshold are obtained, and compared

with various approximations. For the periodic problem, a key feature for

the determination of the stability threshold is to use an Ewald summation

method to derive an explicit expression for the regular part of the Bloch

Green function. Moreover, such an expression allows for the identification

of the lattice that offers the optimum stability threshold. For the finite

domain problem, we implement our asymptotic theory by calculating the

stability threshold for an N -spot pattern where the spots are equidistantly

spaced on a circular ring that is concentric within the unit disk.
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Chapter 1

Introduction

Inspired by the work of Allan Turing [14] in 1952, there has been much ef-

fort over the past five decades in trying to characterize various patterns that

appear in the physical world through the modeling and analysis of reaction-

diffusion (RD) systems. In [14], Turing proposed a mechanism for biological

morphogenesis based on his analytical study of a coupled two-component

system of reaction-diffusion equations with very different diffusion coeffi-

cients. Using a linear stability analysis, he found that a small perturbation

to a spatially homogeneous initial data can develop into certain spatial pat-

terns through an instability. In the current literature, this type of instability

is now referred to as a Turing instability. Since then, various RD systems

have been proposed and analyzed to model both biological and chemical

patterns. Such systems include the Gray-Scott model (cf. [7]), and the

Gierer-Meinhardt system (cf [6]).

Spatially localized spot patterns have been observed both in chemical

and numerical experiments. A survey of such patterns is given in [15].

Over the past decade there has been a considerable focus on developing

a theoretical mathematical framework for the study of localized patterns for

singularly perturbed reaction diffusion systems for which the ratio O(ε−2) of

the two diffusivities is asymptotically large. The work of [17] gives a review

on the existence, classification and stability of multiple-peaked solutions

for the Gierer-Meinhardt system on an interval I ⊂ R1. The study [16]

generalizes the results to spike solutions in a finite domain Ω ⊂ R2. In both

papers, the existence of the multi-peaked solutions is proved rigorously by

using the Lyapunov-Schmidt reduction method, while the stability results on

the so-called large eigenvalues with λ = O(1) as ε→ 0 are based on the study

of certain nonlocal eigenvalue problems. In [3] formal singular perturbation
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Chapter 1. Introduction

techniques, based on the method of matched asymptotic expansions, are

used to analyze the stability of spot patterns for the 2-D Gray-Scott system.

In this work, the slow dynamics of the spot patterns is also characterized.

The study [10] analyzes the self-replication process of spot patterns for the

Schnakenburg model. A formal asymptotic analysis is used to derive an ODE

system describing the slow dynamics of the spot patterns, which has the

same effect of summing infinite logarithmic series in powers of ν = −1/ ln ε.

In this thesis, we construct localized spot solutions to the 2-D Brusselator

in the semi-strong interaction regime characterized by an asymptotically

large diffusivity ratio. We then study the stability of these localized patterns.

The Brusselator, proposed by Prigogine and co-workers in Brussels in 1960s,

is a theoretical model for a hypothetical autocatalytic reaction (cf. [12]). The

standard form of this model can be written in terms of non-dimensional space

variables as

UT = ε20∆U + E − (B + 1)U + U2V , VT = D∆V +BU − U2V , (1.1)

where ε20 = Du/L
2, D = Dv/L

2, L is a characteristic length-scale, while Du

and Dv are the diffusivities of U and V . Many different patterns have been

observed for this model through full scale numerical studies of the PDE, and

via Turing-type stability analysis augmented by weakly nonlinear theories

for the evolution of small amplitude patterns.

Our goal in this thesis is to construct localized spot solutions under

the singularly perturbed limit ε0 → 0 when E = O(ε0), while maintaining

an asymptotically large diffusivity ratio Dv/Du = O(ε−2
0 ), so that D =

Dv/L
2 = (Dv/Du)(Du/L

2) = O(1). Then, upon writing E = ε0E0 with

E0 = O(1), T = t/(B + 1), U = Bu/ε0, and V = ε0v as in [13], the

singularly perturbed RD system becomes

ut = ε2∆u+ ε2E − u+ fu2v , τvt = D∆v +
1

ε2
(u− u2v) . (1.2)

2



Chapter 1. Introduction

where we have defined f , τ , E, D, and ε, by

f ≡ B

B + 1
, τ ≡ 1

f2
, E ≡ E0

B
, D ≡ D(B + 1)

B2
, ε ≡ ε0√

B + 1
,

This system has three independent bifurcation parameters E, D, and f ,

depending on D, B, and E0. From the definition of f , we observe that

f ∈ (0, 1).

In order to solve the system (1.2), we still need some information about

the domain and boundary conditions. We will consider two cases in this

thesis; periodic solutions on R2 and multi-spot solutions on a finite domain.

For the periodic case, we look for periodic solutions to (1.2) with respect

to some Bravais lattices, i.e.

u(x+ li) = u(x), v(x+ li) = v(x), i = 1, 2, (1.3)

where li, i = 1, 2 are two Bravais vectors. The study [8] undertakes a similar

analysis for the Gierer-Meinhardt and Schnakenburg reaction-diffusion sys-

tems. Some basic facts concerning Bravais lattices, the Wigner-Seitz prim-

itive cell, reciprocal lattices and Brillouin zones are reviewed in Chapter 2.

Due to the periodicity, we can avoid solving the system on the whole plane.

Instead, to construct an equilibrium, or steady-state solution, we need only

consider a Wigner-Seitz primitive cell together with periodic boundary con-

ditions on the boundary of the cell. After constructing periodic solutions in

the primitive cell using the method of matched asymptotic expansions, we

perturb this solution and perform a linear stability analysis. The solutions

we construct are stable for small D, unstable for D large, and the stability

threshold occurs when D ∼ O(ln 1
ε ). To calculate the stability threshold, we

need to find the spectrum of the singularly perturbed eigenvalue problem

on the whole plane, which is equivalent to finding the eigenfunction of the

operator ∆ + V (x), where V (x) is a periodic function with respect to the

Bravais lattices. In this way, the Floquet-Bloch theory arises naturally in

the formulation of the stability problem. We prove some basic facts regard-

ing the Bloch Green function in Section 2.3. According to the Floquet-Bloch

3



Chapter 1. Introduction

theory, instead of solving the perturbed system on the whole plane, we only

need to solve it within the the Wigner-Seitz primitive cell with the Bloch

quasi-periodic boundary conditions, which involve a Bloch vector k (not

unique) in the first Brillouin zone. By analyzing this problem using the

method of matched asymptotic expansions, we derive a nonlocal eigenvalue

problem. From this problem we obtain the leading order result for the sta-

bility threshold, which is independent of the geometry of the lattice and

the Bloch vector. To determine a higher-order approximation for the stabil-

ity threshold, we perform a more refined perturbation analysis in order to

calculate a real-valued band of continuous spectrum lying within an O(ν)

neighbourhood of the origin in the spectral plane. This band does depend

on the geometry of the lattice and the Bloch vector k. For a given lattice,

we determine the next term in the stability threshold from the requirement

that the rightmost edge of the real-valued continuous band of spectrum lie

in the left plane {λ|Re(λ) ≤ 0} for any Bloch vector k in the first Brillouin

zone. This calculation involves minimizing the regular part of the Bloch

Green’s function. Then, we can determine the optimal lattice arrangement

which allows for the largest stability threshold. Overall, the identification

of the optimal stability threshold is through a min-max argument. Finally,

in addition to this detailed way to calculate the stability threshold, which

involves calculating a continuous band of spectrum near the origin of the

spectral plane, we also give a quick, but formal, alternative derivation of the

first two terms of the stability threshold in Section 3.3.

Our second problem concerns the analysis of the multi-spot patterns to

(1.2) on a finite domain Ω ⊂ R2 with the no-flux boundary conditions:

∂nu(x) = 0 , ∂nv(x) = 0 x ∈ ∂Ω . (1.4)

Here n is the outer normal vector on the boundary. We focus on both the

existence and linear stability of multi-spot patterns for this problem. The

study [13] analyzes a similar problem on a sphere for the Brusselator. We

construct asymptotic spot solutions whose u component concentrates on N

given points x1,x2, ...,xn ∈ Ω. For simplicity, we will only consider the case

4



Chapter 1. Introduction

for which these N spots have a common height. As shown in [16] for the

related Gierer-Meinhardt system, the true steady-state positions of these

N points are not arbitrary but rather are close to the critical point of a

certain objective function related to the Neumann Green function. It is

anticipated that a similar result should hold for the true steady-state spot

locations for the Brusselator. In our approach, we focus not only on steady-

state solutions, but also on quasi steady-state solutions that can persist

over very long time intervals. Our only key assumption is that the spot

pattern has sufficient symmetry so that the vector e = (1, 1, ..., 1)T is an

eigenvector of a certain Neumann Green’s matrix. When this requirement

is met, there is a common local behavior near each of the spots. After

constructing asymptotic solutions that have this symmetry, we introduce a

perturbation and perform a linear stability analysis of these patterns as for

the periodic case. The key difference between the periodic and finite domain

problems is that, instead of solving the system only within one primitive

cell in the periodic case, the interaction of the spots for the finite domain

problem arises through a Neumann Green matrix. A detailed calculation of

the stability threshold for this problem, based on the method of matched

asymptotic expansions, involves the eigenvalues and eigenfunctions of the

Neumann Green matrix in an essential way.

The last chapter of this thesis is concerned with performing a few nu-

merical experiments. Firstly, we numerically calculate a key term χ(S, f),

which appears in the boundary conditions when solving the inner core prob-

lems near a spot. The numerical results for this quantity are compared

with asymptotic approximations for it that are derived in the small source

strength limit S � 1. Then we calculate the stability threshold directly

from a nonlinear algebraic equation, and we compare the results with one-

and two-term asymptotic approximations. For the periodic problem, we also

show that a regular hexagonal lattice of spots offers the optimum stability

threshold. Finally, we consider a case study for the finite domain problem,

in which N spots are equidistantly-spaced on a circular ring that is concen-

tric with the unit disk. For this configuration, a refined approximation for

the stability threshold is calculated.
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Chapter 2

Preliminaries: The Bravais

Lattice and the Bloch

Green’s Function

2.1 Bravais Lattice

In this section we review some basic definitions and results regarding the

Bravais lattice. The Bravais lattice was first introduced to describe the

periodicity of crystalline solids. The lattice points of a Bravais lattice in Rd

can be represented as

Λ = {
d∑
i=1

nili|ni ∈ Z, li are linear independent in Rd, i = 1, 2, ..., n} ,

(2.1)

so that the lattice looks exactly the same when translated by any integer lin-

ear combination of li, which are called lattice vectors. We remark here that

the choice of lattice vectors is not unique. In fact, any linear transformation

{
∑n

j=1 aijlj}ni=1 with det(aij) = ±1 will give the same lattice.

Definition 2.1.1. A primitive cell of a Bravais lattice is the smallest region

which when translated by all different integer linear combinations of lattice

vectors can cover the entire space without overlapping. The Wigner-Seitz

primitive cell of a lattice point is a special primitive cell consisting of all

points in space that are closer to this lattice point than to any other lattice

point.

As we can see from the definition, the Wigner-Seitz primitive cell of a
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2.1. Bravais Lattice

certain lattice point is unique while a primitive cell is not. We we can deter-

mine the Wigner-Seitz primitive cell of a certain lattice point by identifying

the smallest region enclosed by all hyperplanes which perpendicularly bi-

sect the line segments between this point and any other lattice point (it is

sufficient to only consider the nearby points around the chosen point).

Now we consider the lattice on R2. A Bravais lattice Λ on R2 is generated

by two lattice vectors l1, l2 which are not parallel to each other. Without

lose of generality, we may assume l1 is (1, 0), and we can always choose

l2 = (a, b), such that a ∈ (0, 1], b > 0 by adding some kl1, for k ∈ Z, to the

original l2. Then we consider the Wigner-Seitz primitive cell of the origin

O and show that it is either a hexagon or a rectangle. First of all, due

to the central symmetry of the lattice, we know that the boundaries of the

Wigner-Seitz primitive cell will come in pairs and so we only need look at the

right-hand side. Next, after some easy observation, it follows that b1 and b2,

which is the perpendicular bisector of ±l2, form part of the boundaries of the

Wigner-Seitz primitive cell. The remainder of the boundary arises from some

of the perpendicular bisectors of the line segments between the origin and the

points of the second column, i.e. l1 + kl2, k ∈ Z. It is useful to observe the

mid-points of these line segments lie on a line parallel to l2 passing through

the mid-point of OA and the distance between two mid-points next to each

other is |l2|2 . Since b1, b2 are perpendicular to l2, and the distance between

them is |l2|, then for most of the cases only two of these mid-points will lie

between them and the corresponding perpendicular bisectors intersecting

with b1, b2 form the boundaries of the primitive cell. This is the generic

case when the Wigner-Seitz primitive cell is a hexagon. A special case is

when one mid-point lies in the middle of b1, b2 and the two mid-points next

to it on b1, b2, Then, the perpendicular bisectors corresponding to these

three mid-points is the same line which is perpendicular to b1, b2. Thus, in

this case the Wigner-Seitz primitive cell will be a rectangle. In conclusion,

if we use the polar coordinate to denote the angle between l1 and l2 by θ,

and the length of l2 by r, then by the assumption we made on l2, we will

have θ ∈ (0, π2 ), r ∈ (0, 1
cos θ ) and the Wigner-Seitz primitive cell will be a

hexagon unless r = cos θ
k , k ∈ Z, k > 0. In this latter, degenerate case, the

7



2.2. Reciprocal Lattice

primitive cell will be a rectangle.

−1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

1.5

Figure 2.1: Wigner-Seitz primitive cell

2.2 Reciprocal Lattice

Next, we review the concept of the reciprocal lattice Λ∗ of a certain Bravais

lattice. This notion arises from Fourier analysis. Firstly, we define a periodic

function with respect to a Bravais lattice as follows:

Definition 2.2.1. Given a Bravais lattice Λ in Rd with lattice vectors

{li}di=1, a function u(x) is periodic with respect to the lattice Λ if u(x+li) =

u(x), i = 1, 2, ..., d.

We know that a 2π periodic function u(x) on R can be decomposed into

Fourier series as einx, n ∈ Z. According to Definition 2.2.1, we can view

u(x) as a periodic function with respect to the 1-D lattice Λ = {nl1|n ∈
Z, l1 = 2π} and the Fourier basis einx, n ∈ Z can be viewed as eik·x, k ∈
Λ∗ = {nl∗1|n ∈ Z, l∗1 = 1}, where Λ∗ is another Bravais lattice related

to Λ, which will be defined as the reciprocal lattice of Λ later. In higher

dimensions, we first consider a 2π periodic (in each direction) function u(x),

i.e. u(x + 2πei) = u(x), i = 1, 2, ..., d, where ei are the standard basis of

Rd. We know that u(x) can be decomposed into Fourier series of ein·x,

n ∈ Zd. As explained above, u(x) now can be viewed as a periodic function

with respect to the Bravais lattice Λ = {
∑d

i=1 nili|ni ∈ Z, li = 2πei, i =

1, 2, ..., d}. In addition, the Fourier basis ein·x, n ∈ Zd can be viewed as

8



2.2. Reciprocal Lattice

eik·x, k ∈ Λ∗ = {
∑d

i=1 nil
∗
i |ni ∈ Z, l∗i = ei}. For the general case, if u(x) is

a periodic function with respect to a Bravais lattice Λ with lattice vectors

{li}di=1, we want to decompose it as we did above. In order to convert to the

previous case, we use a linear coordinate change x = 1
2π [l1|...|ld]y and denote

A = 1
2π [l1|...|ld]. Then ũ(y) = u(Ay) is a 2π periodic function in each yi

direction and can be decomposed into Fourier series as ein·y = ein·(A−1x) =

ei((A−1)Tn)·x, n ∈ Zd. If we denote (A−1)T = [b1|...|bd], then (A−1)Tn,

n ∈ Zd, represents a Bravais lattice with lattice vector {bi}d1. And since

AT (A−1)T = I, we have the relation ( 1
2π li) · bj = δij , so that li · bj = 2πδij ,

which leads to the definition of reciprocal lattice.

Definition 2.2.2. The reciprocal lattice Λ∗ of a Bravais lattice Λ with lattice

vectors {li}di=1 is the Bravais lattice given by the lattice vectors {bi}di=1 where

bi are the vectors satisfy li · bj = 2πδij.

We remark that { 1
2πbi}

d
i=1 are the dual basis for {li}di=1 in Rd. Thus,

{bi}di=1 are well defined and uniquely determined by {li}di=1. We further

remark that other authors choose the reciprocal lattice vectors {bi}di=1 to

satisfy li · bj = δij .

Some important properties concerning reciprocal lattices Λ∗ of a Bravais

lattice Λ are listed here as follows:

• Λ∗ = {b ∈ Rd|eib·l = 1, ∀l ∈ Λ}

• The reciprocal lattice of Λ∗ is Λ.

• Any periodic function u(x) with respect to Λ can be decomposed into

Fourier series of eib·x, where b ∈ Λ∗. Using a change of variable, we

have the formula:

u(x) =
1

|Ω|
∑
b∈Λ∗

(

∫
Ω
u(y)e−ib·y dy)eib·x . (2.2)

• The Fourier transform of
∑
l∈Λ δ(x− l) is (2π)d

|Ω|
∑
b∈Λ∗ δ(ξ− b), where

Ω is the Wigner-Seitz primitive cell of Λ.

9



2.2. Reciprocal Lattice

• If u(x) ∈ L1(Rd), then
∑
l∈Λ u(x + l) converges absolutely almost

everywhere, and we have:

∑
l∈Λ

u(x+ l) =
1

|Ω|
∑
b∈Λ∗

û(b)eix·b . (2.3)

In particular, upon replacing u(x) by u(x)eix·k, we have that

∑
l∈Λ

u(x+ l)eik·l =
1

|Ω|
∑
b∈Λ∗

û(b− k)eix·(b−k) . (2.4)

We remark that the last two properties are called Poisson summation for-

mulae. We prove these properties as follows:

Proof. First we establish the basic result that the Fourier transform of∑
l∈Λ δ(x − l) is (2π)d

V

∑
b∈Λ∗ δ(ξ − b). The key step in the proof is the

following equality:

∞∑
n=−∞

einx = 2π
∞∑

k=−∞
δ(x− 2πk) . (2.5)

The proof of (2.5) can be found in many books; we simply sketch the outline

of the proof here. First of all, the equality holds in the sense of distribution,

and since both sides are 2π periodic, we may prove it only on the interval

[−π, π], i.e. for any test function φ(x) ∈ C∞0 [−π, π],

lim
N→∞

∫ π

−π
(

N∑
n=−N

einx)φ(x) dx =

∫ π

−π
(2π

+∞∑
k=−∞

δ(x− 2πk))φ(x) dx = 2πφ(0) .

(2.6)

This is true since

N∑
n=−N

einx =
sin (N + 1

2x)

sin x
2

→ δ(x) , as N →∞ ,

in the sense of distributions.

10



2.2. Reciprocal Lattice

Notice that the 1-D case followed directly from this equality,

̂∞∑
n=−∞

δ(x− nl) =
∞∑

n=−∞
ein·ξl = 2π

∞∑
k=−∞

δ(lξ−2πk) =
2π

l

∞∑
k=−∞

δ(ξ−k2π

l
) .

For the higher dimensional case, we have

̂∑
l∈Λ

δ(x− l) =
∑
mi∈Z

e−i(
∑d
i=1mili)·ξ =

d∏
i=1

(
∞∑

mi=−∞
e−imi(li·ξ)) (2.7)

=

d∏
i=1

(2π

∞∑
ki=−∞

δ(li · ξ − 2πki)) =
d∏
i=1

(

∞∑
ki=−∞

δ(
li · ξ
2π
− ki)) .

If we denote ξ =
∑d

i=1 ηibi = [b1|b1|...|bd]η = Bη, where {bi}di=1 are the

reciprocal vectors to {li}di=1, then (2.7) becomes

d∏
i=1

(

∞∑
ki=−∞

δ(
li · ξ
2π
− ki)) =

d∏
i=1

(

∞∑
ki=−∞

δ(ηi − ki)) =
∑
k∈Zd

δ(η − k) (2.8)

=
∑
k∈Zd

δ(B−1(ξ −Bk)) =
1

det(B−1)

∑
b∈Λ∗

δ(ξ − b) .

SinceB−1 = 1
2π [l1|l1|...|ld], then det(B−1) = V

(2π)d
, where V = det([l1|l1|...|ld])

is the volume of the primitive cell. In this way, we conclude that

̂∑
l∈Λ

δ(x− l) =
(2π)d

V

∑
b∈Λ∗

δ(ξ − b) . (2.9)

Then we prove the last property. First of all since∫
Ω

∑
l∈Λ

|u(x+ l)| dx =

∫
R2

|u(x)| dx <∞ , (2.10)

the series
∑
l∈Λ u(x+ l) converges absolutely almost everywhere. Moreover,

since the series is periodic with respect to the lattice Λ, then by using the

11



2.3. Bloch Theorem and Bloch Green Function

property above we can decompose it into a Fourier series as

∑
l∈Λ

u(x+ l) =
1

|Ω|
∑
b∈Λ∗

(

∫
Ω

(
∑
l∈Λ

u(y + l))e−ib·y dy)eib·x . (2.11)

The last step in the derivation is to calculate the Fourier coefficients as∫
Ω

(
∑
l∈Λ

u(y + l))e−ib·y dy =
∑
l∈Λ

∫
Ω
u(y + l)e−ib·y dy (2.12)

=

∫
R2

u(y)e−ib·y dy = û(b) , (2.13)

where the the second to last equality holds since R2 is tiled when Ω trans-

lated by all lattice vector, and since ∀l ∈ Λ and ∀b ∈ Λ∗, we have eil·b = 1.

In particular when we replace u(x) by u(x)eix·k, the Fourier transform

is translated by k.

There are two further useful concepts that relate to Bravais lattices.

Definition 2.2.3. Bragg planes are the hyperplanes which perpendicularly

bisect any line segment between two lattice points of Λ∗. The first Brillouin

Zone is the Wigner-Seitz primitive cell of Λ∗

2.3 Bloch Theorem and Bloch Green Function

In this sub-section, we review Bloch theorem and some properties of the

Bloch Green function in the Wigner-Seitz primitive cell Ω of some lattice Λ.

These results will be used later when we consider the stability of a periodic

pattern of spots for the reaction-diffusion system. The proof below is similar

to that in [8].

The Bloch theorem originates from quantum mechanics and states that

the eigenfunction φ(x) of the operator −∆ + V (x), where the potential

function V (x) is periodic with respect to a Bravais lattice Λ, must have

the form φ(x) = eik·xφp(x), where φp(x) is also periodic with respect to

the lattice Λ, and k can be chosen to lie in the first Brillouin Zone, or

equivalently ∀l ∈ Λ, φ(x + l) = eik·lφ(x). The Bloch theorem allows us

12



2.3. Bloch Theorem and Bloch Green Function

to solve the eigenvalue problem within the primitive cell together with the

Bloch boundary conditions, instead of on the whole space. The proof of

the Bloch theorem can be found in many solid physics books and the key

idea is that if two operators commute, which in this case are −∆ + V (x)

and translation by any lattice vector, they share common non-degenerate

eigenvectors while the eigenvalues may be different. By using this idea, we

can prove the Bloch theorem for a system, which is the basis for our linear

stability analysis. Since the equilibrium solutions we construct are periodic

with respect to some Bravais lattice Λ, finding the eigenspace of the linear

perturbed system is equivalent to finding the eigenfunction for an operator

similar to −∆ + V (x). In this way, the Bloch theorem arises naturally in

the stability analysis of a periodic arrangement of spots.

Next we consider some key properties of the Bloch Green function. This

is the Green function in the fundamental Wigner-Seitz cell that satisfies the

Bloch boundary conditions. As we have shown above, the primitive cell Ω

will be either a hexagon or a rectangle. We may assume that the boundaries

of Ω consist of d±i, with i ≤ 2 for a rectangle and i ≤ 3 for a hexagon, where

d±i represents the perpendicular bisector of ±Li ∈ Λ which come in pairs.

The Bloch Green function in Ω is the solution to

∆G0,k(x) = −δ(x), x ∈ Ω, (2.14)

and satisfies the following Bloch boundary conditions, also referred to as

quasi-periodic boundary conditions:

∀x ∈ d−i, G0,k(x+Li) = e−ik·LiG0,k(x), (2.15)

∂n−G0,k(x+Li) = e−ik·Li∂−n+G0,k(x),

where the ± behind n in the directional derivatives denote one-side deriva-

tives, n is the outer unit normal vector parallel to Li and k is some non-zero

vector in the first Brillouin Zone Ω∗, i.e. in the Wigner-Seitz primitive cell

of Λ∗. We first remark here that we require k 6= 0 since there is no solution

to (2.14) if k = 0. This is shown by integrating ∆G0,k(x) over Ω, and us-
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2.3. Bloch Theorem and Bloch Green Function

ing the divergence theorem which results in a contradiction. The boundary

conditions are well-defined since x + Li ∈ di if x ∈ d−i. Moreover, we use

one-side normal derivative since we only solve the equation inside Ω. With

this boundary conditions, we can extend the solution to the whole plane

with continuous normal derivative between contiguous cells.

It is also useful to analyze the quasi-periodic reduced-wave Green’s func-

tion, which is the solution to

∆Gσ,k(x)− σ2Gσ,k(x) = −δ(x) , x ∈ Ω , σ ∈ R , (2.16)

with the boundary conditions of (2.15). We observe that the Bloch Green

function is simply the special case of the reduced-wave Green’s function

when σ = 0. The first key property is that the regular part Rσ,k of Gσ,k(x),

which is defined by subtracting the free space Green function − 1
2π ln |x| from

Gσ,k(x), i.e.

Rσ,k = lim
x→0

Gσ,k(x) +
1

2π
ln |x| ,

is real for k 6= 0.

Lemma 1. The regular part Rσ,k of Gσ,k(x) is real-valued for |k| 6= 0.

Proof. We let ε > 0 and eliminate the singularity by cutting a small ball

B(0, ε) around the origin. We denote Ωε ≡ Ω − B(0, ε). Then we use the

divergence theorem and the fact that ∆Gσ,k(x) = σ2Gσ,k(x) for x ∈ Ωε to

calculate∫
∂Ωε

Gσ,k∂nGσ,k dl =

∫
∂Ωε

Gσ,k(∇Gσ,k · n) dl =

∫
∂Ωε

((Gσ,k∇Gσ,k) · (n dl)

=

∫
Ωε

∇ · (Gσ,k∇Gσ,k) dx =

∫
Ωε

(
∇Gσ,k · ∇Gσ,k +Gσ,k∆Gσ,k

)
dx

=

∫
Ωε

(
|∇Gσ,k|2 + σ2|Gσ,k|2

)
dx ,

where n is the outer normal vector as usual. Upon calculating the boundary
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2.3. Bloch Theorem and Bloch Green Function

integral directly, we have∫
∂Ωε

Gσ,k∂nGσ,k dl =

∫
∂Ω
Gσ,k∂nGσ,k dl −

∫
∂B(0,ε)

Gσ,k∂nGσ,k dl . (2.17)

We claim that the first term vanishes due to the Bloch boundary conditions

(2.15). Since ∂Ω has either 4 or 6 perpendicular bisectors, which come in

pairs, then according to (2.15), on each pair d±i, Gσ,k(x) is different by a

factor of e−ik·Li and ∂nGσ,k is different by −e−ik·Li owing to the fact that

the outer normal vectors are opposite. Then, if we integrate Gσ,k∂nGσ,k on

d±i, these two terms will be different by e−ik·Li(−e−ik·Li) = −1. Thus, the

first integral on the right hand-side of (2.17) banishes. Next, we calculate

the second term on the right hand-side of (2.17) as∫
∂B(0,ε)

Gσ,k∂xGσ,k dx ∼ ε
∫ 2π

0
(− 1

2π
ln ε+Rσ,k + o(1))(− 1

2πε
+O(1)) dθ

∼ 1

2π
ln ε−Rσ,k +O(ε ln ε) .

In this way, we let ε→ 0 to obtain

Rσ,k = lim
ε→0

[ ∫
Ωε

(
|∇Gσ,k|2 + σ2|Gσ,k|2

)
dx+

1

2π
ln ε
]
, (2.18)

which proves that Rσ,k is real-valued.

As we mentioned before, there is no solution to (2.14) if k = 0. So the

next lemma will discuss the asymptotic behaviour of R0,k when k tends to

0. To analyze this limiting behavior, we may assume k = σκ, where σ � 1

and |κ| = O(1). This form suggests that we can calculate a solution to

(2.14) by a singular perturbation technique. As such, we expand G0,k as

G0,k(x) =
U0(x)

σ2
+
U1(x)

σ
+ U2(x) + · · · . (2.19)

In addition, the expansion of the boundary conditions (2.15) yield for ∀x ∈
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2.3. Bloch Theorem and Bloch Green Function

d−i that

U0

σ2
+
U1

σ
+ ...

∣∣
x+Li

= [1− iσ(κ ·Li) + ...]

(
U0

σ2
+
U1

σ
+ ...

) ∣∣
x

∂n−U0

σ2
+
∂n−U1

σ
+ ...

∣∣
x+Li

= − [1− iσ(κ ·Li) + ...]

(
∂−n+U0

σ2
+
∂−n+U1

σ
+ ...

) ∣∣
x
,

where n is the outer normal vector on the boundary, which is parallel to Li.

Then by equating the same order of σ, we get:

O(ε−2) : ∆U0(x) = 0 , ∀x ∈ Ω ,

∀x ∈ d−i , U0(x+Li) = U0(x) , ∂n−U0(x+Li) = ∂−n+U0(x) .

O(ε−1) : ∆U1(x) = 0 , ∀x ∈ Ω ,

∀x ∈ d−i , U1

∣∣
x+Li

= U1 − i (κ ·Li)U0

∣∣
x
,

∂n−U1

∣∣
x+Li

= ∂−n+U1 − i (κ ·Li) ∂−n+U0

∣∣
x
,

O(1) : ∆U2(x) = −δ(x) , ∀x ∈ Ω ,

∀x ∈ d−i , U2

∣∣
x+Li

= U2 − i (κ ·Li)U1 −
(κ ·Li)2

2
U0

∣∣
x
,

∂n−U2

∣∣
x+Li

= ∂−n+U2 − i (κ ·Li) ∂−n+U1 −
(κ ·Li)2

2
∂−n+U0

∣∣
x
.

From the leading order equation we conclude that U0 = a for some constant

a. Form the O(ε−1) equation, we get that U1 is a linear function of the form

U1(x) = (−iaκ) ·x+ b, where b is another constant. Next we integrate ∆U2

over Ω defined by the O(1) problem. Upon using the boundary conditions

and the expression for U0 and U1, as derived above, we obtain that

∫
Ω

∆U2 dx =

∫
∂Ω
∂nU2(x) dl =

L∑
j=1

∫
±dj

∂nU2(x) dl =

∫
Ω
−δ(x) dx , ⇒

L∑
j=1

−i(κ ·Lj)n · (−iaκ)|di| = −a
L∑
j=1

(κ ·Lj)
κ ·Li
|Li|

|di| = −1 ,

where L = 2 if the primitive cell is a rectangle, and L = 3 if the primitive
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2.3. Bloch Theorem and Bloch Green Function

cell is hexagon. In this way, we determine a as

a =
1∑L

j=1(κ ·Lj)2 |di|
|Li|

=
1

κT (
∑L

j=1
|di|
|Li|LjL

T
j )κ

=
1

κTQκ
, (2.20)

where we denote Q =
∑L

j=1
|di|
|Li|LjL

T
j . We remark that Q is a positive

definite matrix related only to the lattice. This leads to our second lemma:

Lemma 2. For sufficiently small k, the regular part R0,k of the Bloch Green

function G0,k has the asymptotic behaviour

R0,k ∼
1

kTQk
, (2.21)

where Q is a positive definite matrix related to the lattice Λ as shown above.

We remark here that when we try to find the singular perturbed solution

G0,k for k ∼ O(ε), the reason we expand G0,k from O(ε−2) is because it can’t

satisfy the boundary conditions if we start from O(ε−1).

Next we state two other similar results which will be useful later.

Lemma 3. The regular part Rσ,k of the reduced-wave Bloch Green function

Gσ,k has the asymptotic behaviour Rσ,k ∼ R0,k + O(σ2), as σ → 0 and

|k| ∼ O(1), where R0,k is the same as above.

Proof. Just expand Gσ,k = G0 + σ2G1 + .... Then, we have G0 is the Bloch

Green function G0,k. And since G1 is bounded for |k| ∼ O(1), we have the

asymptotic behaviour Rσ,k ∼ R0,k +O(σ2).

Lemma 4. The regular part Rσ,k of the reduced-wave Bloch Green function

Gσ,k has the asymptotic behaviour Rσ,k ∼ 1
σ2[|Ω|+κTQκ]

, as σ → 0 and |k| ∼
O(σ), where Q is the same positive definite matrix determined by the lattice

Λ.

Proof. The proof is basically the same as we do for R0,k, the only difference

is the equation for U2 became ∆U2 = U0−δ(x). So when we integrate ∆U2,

U0|Ω| will appear.
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2.3. Bloch Theorem and Bloch Green Function

Similar to the Bloch boundary conditions (2.15), we will also use the

periodic boundary conditions:

G(x+ li) = G(x), ∂n−G(x+ li) = ∂−n+G(x), ∀x ∈ d−i, (2.22)
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Chapter 3

Periodic Spot Patterns for

the Brusselator

In this chapter we construct periodic spot solutions to (1.2) by first con-

structing a single spot solution inside the Wigner-Seitz primitive cell Ω sub-

ject to the periodic boundary conditions (2.22). We then periodically extend

this solution to the whole plane. Next, we analyze the linear stability of the

equilibrium solutions. We first perturb the steady state solution, to derive a

singular perturbed eigenvalue problem governing the linear stability of the

periodic pattern. From this eigenvalue problem we then provide an accu-

rate calculation of the stability threshold corresponding to a zero eigenvalue

crossing. We also provide a more expedient approach to derive the stability

threshold.

3.1 Periodic Spot Solutions

The Brusselator reaction-diffusion model has the form

ũt = ε2∆ũ+ ε2E − ũ+ fũ2ṽ ,

τ ṽt = D∆ṽ +
1

ε2
(ũ− ũ2ṽ) .

From this first equation we observe that there is a spatially homogeneous

equilibrium solution for ε� 1 with ũ ∼ ε2E, and so we make a substitution

of the form ũ = u+ ε2E and ṽ = v. Then the system becomes

ut = ε2∆u− u+ f(u2v + 2ε2Euv + ε4Ev) , (3.1)

τvt = D∆v + E + ε−2(u− u2v)− 2Euv − ε2E2v .
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3.1. Periodic Spot Solutions

Since the steady-state problem is singularly perturbed, we need to construct

a localized asymptotic expansion solutions in the inner region near the origin

of the fundamental Wigner-Seitz cell. Then we use the method of matched

asymptotic expansions to match the inner solution to an appropriate outer

solution.

In the inner region, we use an inner coordinate and perform a scaling to

eliminate the D. The inner variables y, U , and V , are defined by

y = ε−1x , U(y) =
u(x)√
D
, V (y) =

√
Dv(x) . (3.2)

To motivate this scaling of U and V , we remark that if we assumed u ∼ DαU ,

v ∼ DβV , then from the first equation we have that α = −β = k, while from

the second equation we conclude that D · O(D−k) ∼ O(Dk). This leads to

k = 1/2.

In the inner region, to leading order the solution is radially symmetric.

As such, if we denote ρ = |y| then to leading order we get the core problem

∆ρU − U + fU2V = 0 , ∆ρV + U − U2V = 0 , 0 < ρ <∞ , (3.3)

where U and V are functions of ρ. Therefore, (3.3) is an ODE system.

It will have solutions when equipped with initial conditions or appropriate

boundary conditions. In this case, we add boundary conditions at ρ = 0

and an asymptotic condition as ρ→∞:

U ′(0) = V ′(0) = 0 ; U → 0 , V ∼ S ln ρ+ χ(S, f) , as ρ→∞ , (3.4)

where S is some unknown source strength to be determined, while χ(S, f) is

some quantity depending on S and f that is to be computed from the core

solution.

We remark here that we choose U ′(0) = V ′(0) = 0 since we are looking

for differentiable radically symmetric solutions, U → 0 at infinity since we

want localized spot solutions, and we allow V to have logarithmic growth at

infinity since the solution to ∆V = −δ(y) on R2 is − 1
2π ln |y|. To derive an
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3.1. Periodic Spot Solutions

identity for S, we integrate ∆V over R2 to obtain

2πS =

∫
R2

(U2V − U) dx =

∫ 2π

0
dθ

∫ ∞
0

(
U2V − U

)
ρ dρ ,

so that

S =

∫ ∞
0

(
U2V − U

)
ρ dρ . (3.5)

Next, we construct the outer solution. Since u is localized, the second

equation in (3.1) reduces asymptotically to

0 = D∆v + E +

(∫
Ω

[ε−2(u− u2v)− 2Euv − ε2E2v] dx

)
δ(x) . (3.6)

Upon using (3.5), this equation becomes

D∆v + E = 2πS
√
Dδ(x) , x ∈ Ω . (3.7)

Then, if we integrate (3.7) over Ω and use the periodic boundary conditions

on ∂Ω, we can calculate the source strength S as

S =
E|Ω|

2π
√
D
, (3.8)

so that (3.7) becomes

∆v +
E

D
=
E|Ω|
D

δ(x) . (3.9)

To represent the solution v, we introduce the periodic Green function

Gp for Ω as

∆Gp +
1

|Ω|
= δ(x) , x ∈ Ω , (3.10)

with the periodic boundary conditions (2.22). Since Gp is determined only

up to a constant, we impose that
∫

ΩGp dx = 0. As x → 0, Gp has the

singular behaviour Gp ∼ 1
2π ln |x| + Rp, where the regular part Rp can be

calculated explicitly for any oblique Bravais lattice, as was shown in [4].

In terms of this Green’s function, we have v = E|Ω|
D Gp + c. As x → 0,
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the limiting behavior of v is

v ∼ E|Ω|
2πD

ln |x|+ E|Ω|
D

Rp + c . (3.11)

We now match this behavior with the inner solution. From (3.4), we obtain

as |y| → ∞ that

v ∼ 1√
D

(S ln |y|) + χ(s, f)) =
E|Ω|
2πD

(lnx+
1

ν
) +

χ√
D
, (3.12)

where ν = −1
ln ε � 1. Upon matching, we identify the constant c as

c =
χ√
D

+
1

ν

E|Ω|
2πD

− E|Ω|
D

Rp . (3.13)

Since the stability threshold occurs when D ∼ O( 1
ν ), then from our

formula (3.8) for S, we conclude that S ∼ O( 1√
D

) ∼ O(ν
1
2 ). Therefore, for

S = O(ν1/2), we must look for an asymptotic solution to the core problem

(3.3). To motivate the scalings for U and V , we observe from (3.12) and

(3.3) that V =
√
Dv ∼ O( 1√

Dν
) ∼ O(ν−

1
2 ), UV ∼ O(1), which leads to

U ∼ O(ν
1
2 ). Since S = O(ν

1
2 ), we need χ(S, f) to be order O(ν−

1
2 ) to match

with V . These formal scaling arguments motivate the following asymptotic

expansion for the solution to the core problem:

U ∼ ν
1
2 (U0 + νU1 + ν2U2 + · · · ) , V ∼ ν−

1
2 (V0 + νV1 + ν2V2 + · · · ) ,

χ ∼ ν−
1
2 (χ0 + νχ1 + ν2χ2 + · · · ) , S ∼ ν

1
2 (S0 + νS1 + ν2S2 + · · · ) .

(3.14)

Next, we substitute (3.14) into (3.3) and try to construct radially sym-

metric solutions at each order. At leading order, we have

∆U0 − U0 + fU2
0V0 = 0 , U ′0(0) = 0 , U0 → 0 , as |y| → ∞ ,

∆V0 = 0 , V ′0(0) = 0 , V0 → χ0 , as |y| → ∞ .
(3.15)
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From this system we conclude that

U0 =
ω

fχ0
, V0 = χ0 , (3.16)

where ω is the unique positive radially symmetric solution (see [5]) to

∆ω − ω + ω2 = 0 , (3.17)

with ω(y) having exponential decay as |y| → ∞. In addition, we have∫∞
0 ω(ρ)ρdρ =

∫∞
0 ω2(ρ)ρ dρ ≡ b upon integrating the equation for ω. Fur-

ther properties of this ground-state solution are given in [5].

At next order, we have that

∆U1 − U1 + f(
ω2

f2χ2
0

V1 + 2
ω

f
U1) = L0U1 +

ω2

fχ2
0

V1 = 0 , (3.18)

∆V1 +
ω

fχ0
− ω2

χ0f2
= 0 , (3.19)

U ′1(0) = V ′1(0) = 0 ; U1 → 0 , V1 → S0 ln |y|+ χ1 , as |y| → ∞ ,

where the operator L0 is defined as L0w = ∆w−w+ 2ωw. By applying the

divergence theorem to the V1 equation we obtain that

S0 =
b

fχ0
− b

fχ2
0

⇒ χ0 =
1− f
f2

b

S0
. (3.20)

Then the solutions to (3.18) and (3.19) can be decomposed as

U1 = − χ1

fχ2
0

ω − 1

f3χ3
0

U1P , V1 = χ1 +
V1P

f2χ0
, (3.21)

where U1P , V1P are the unique radially symmetric solution to

L0U1P − ω2V1P = 0 , ∆V1P = ω2 − fω ,

U ′1P (0) = V ′1P (0) = 0 ; V1P → (1− f)b ln |y|+ o(1) , as |y| → ∞ .

(3.22)
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To eliminate the f -dependence in V1P , we introduce V1Q satisfying

∆V1Q = ω , V ′1Q(0) = 0 ; V1Q → b ln |y|+ o(1) , as |y| → ∞ .

(3.23)

Then we have

∆(V1Q − ω) = ω −∆ω = ω2 ⇒ V1P = (1− f)V1Q − ω . (3.24)

After substituting V1Q into (3.22) we get

L0U1P = (1− f)ω2V1Q − ω3 . (3.25)

This suggests that we should decompose U1P by introducing U1QI and U1QII ,

which are taken to satisfy

L0U1QI = ω3 , U ′1QI(0) = 0 , U1QI → 0 , as |y| → ∞ , (3.26)

L0U1QII = ω2V1Q , U
′
1QII(0) = 0 , U1QII → 0 , as |y| → ∞ , (3.27)

so that U1P = (1− f)U1QII − U1QI .

At second order we obtain that

L0U2 + f(
ω2

f2χ2
0

V2 + χ0U
2
1 + 2

ω

fχ0
U1V1) = 0 ,

U ′2(0) = 0 , U2 → 0 , as |y| → ∞ ,

∆V2 + U1 − U2
0V1 −

2ω

f
U1 = 0 ,

V ′2(0) = 0 , V2 → S1 ln |y|+ χ2 , as |y| → ∞ .

By using the divergence theorem on the V2 equation we calculate S1 as

S1 =

∫ ∞
0

U2
0V1ρ dρ+

2

f

∫ ∞
0

ωU1ρ dρ−
∫ ∞

0
U1ρ dρ . (3.28)
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Next, upon integrating (3.18) we get∫
R2

L0U1 dx+

∫
R2

ω2

fχ2
0

V1 dx = 0 ,

⇒ −
∫ ∞

0
U1ρ dρ+

∫ ∞
0

2ωU1ρ dρ+

∫ ∞
0

ω2

fχ2
0

V1ρ dρ = 0 ,

where
∫
R2 ∆U1 dx vanishes due to the boundary conditions. Upon substi-

tuting this back into (3.28), together with (3.26) and (3.27), we obtain that

f

1− f
S1 =

∫ ∞
0

U1ρ dρ =

∫ ∞
0

(− χ1

fχ2
0

ω − 1

f3χ3
0

((1− f)U1QII − U1QI))ρ dρ

= − χ1b

fχ2
0

− 1− f
f3χ3

0

∫ ∞
0

U1QIIρ dρ+
1

f3χ3
0

∫ ∞
0

U1QIρ dρ .

We then combine this expression with (3.21) and (3.20) to calculate χ1 as

χ1 =
fχ2

0

b
(−1− f

f3χ3
0

∫ ∞
0

U1QIIρ dρ+
1

f3χ3
0

∫ ∞
0

U1QIρ dρ− S1
f

1− f
) ,

= −(1− f)b

f2

S1

S2
0

− S0

b2

∫ ∞
0

U1QIIρ dρ+
S0

(1− f)b2

∫ ∞
0

U1QIρ dρ .

In conclusion, we have constructed a two-term asymptotic spot solution to

the core problem (3.3) in the limit S → 0. We summarize our result as

follows:

Principal Result 1. For S ∼ ν
1
2 (S0 + νS1 + ...), where ν ≡ −1

ln ε , the core

problem (3.3) has an asymptotic solution in the form

U ∼ ν
1
2 (U0+νU1+· · · ), V ∼ ν−

1
2 (V0+νV1+· · · ), χ ∼ ν−

1
2 (χ0+νχ1+· · · ) ,

(3.29)

where U0(ρ), U1(ρ), V0(ρ) and V1(ρ) are defined by:

U0 =
ω

fχ0
, U1 = − χ1

fχ2
0

ω − 1

f3χ3
0

((1− f)U1QII − U1QI) ,

V0 = χ0 , V1 = χ1 +
1

f2χ0
((1− f)V1Q − ω) .
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Here U1QI , U1QII , and V1Q are the unique radially symmetric solutions to

(3.26), (3.27), and (3.24), respectively. In addition, ω is the unique positive

radially symmetric solution to (3.17), while χ0 and χ1 are defined by

χ0 =
(1− f)

f2

b

S0
,

χ1 = −(1− f)b

f2

S1

S2
0

− S0

b2

∫ ∞
0

U1QIIρ dρ+
S0

(1− f)b2

∫ ∞
0

U1QIρ dρ .

3.2 Linear Stability Analysis

In this section, we perform a linear stability analysis for the equilibrium spot

solution that we have just constructed. We perturb the steady state solu-

tions and derive the singularly perturbed eigenvalue problem. By analyzing

this eigenvalue problem we get the stability threshold. As we mentioned in

Section 2.3, since the steady state solutions we have just derived is periodic

with respect to the lattice Λ, solving the perturbed system is equivalent

to finding eigenfunctions of the operator ∆ + f(x), where f(x) is a 2 × 2

periodic matrix with respect to the lattice Λ. As a result of the general-

ized Bloch theory, instead of solving the perturbed system on R2, we need

only consider the eigenvalue problem within the primitive cell Ω with the

Bloch boundary conditions (2.15), which involves a Bloch vector in the First

Brillouin Zone.

We begin perturbing the equilibrium solutions as

u = ue + eλtφ , v = ve + eλtη . (3.30)

We linearize the equations around this steady state solution and obtain, to

leading order, the singularly perturbed eigenvalue problem

λ

(
φ

τη

)
=

(
ε2∆φ

D∆η

)
+

(
−1 + 2fueve fu2

e

ε−2 − 2ε−2ueve ε−2u2
e

)(
φ

η

)
, (3.31)
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3.2. Linear Stability Analysis

for x ∈ Ω, where φ and η satisfy the Bloch boundary conditions (2.15) for

some k in the first Brillouin Zone.

Since the equilibrium solution is localized then, as similar to the con-

struction of the equilibrium spot solution, we introduce an inner region near

the core of the spot. As such, we introduce the following inner coordinates

and scale the system as

y = ε−1x , Φ(y) =
φ(x)

D
=
φ(εy)

D
, N(y) = η(x) = η(εy) . (3.32)

We still look for radially symmetric solutions Φ(y) = Φ(ρ), N(y) = N(ρ),

where ρ = |y|. Then, to leading order, the inner system becomes

∆ρΦ− (λ+ 1)Φ + 2fUV Φ + fU2N = 0 , Φ′(0) = 0 ; Φ→ 0 as ρ→∞ ,

(3.33)

∆ρN + (1− 2UV )Φ− U2N = 0 , N ′(0) = 0 ; N → C ln |y|+B(C, f) ,

(3.34)

as ρ → ∞. We remark here that since this is a linear system for a fixed f ,

it follows that the ratio B
C is a constant. In addition, we remark that the

asymptotic boundary condition for Φ is appropriate provided that Re(λ +

1) > 0, i.e. that λ is not in the continuous spectrum. Finally, we obtain the

following identity by integrating the equation for N to get

C =

∫ ∞
0

(U2N − (1− 2UV )Φ)ρ dρ . (3.35)

In terms of C, in the outer region the second equation of (3.31) is ap-

proximated as

∆η − τλ

D
η = 2πCδ(x) , (3.36)

with the Bloch boundary conditions (2.15) for some Bloch vector k. In terms

of the reduced-wave Bloch Green function (2.16), we can write η as

η = −2πCGµ,k(x) , µ =

√
τλ

D
∼ O(ν

1
2 ) . (3.37)
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Therefore, as x→ 0, η(x) has the asymptotic behaviour

η(x) ∼ −2πC(− 1

2π
ln |x|+Rµ,k) ∼ C ln |x| − 2πCRµ,k . (3.38)

We know from Lemma 3 that if |k| is bounded away from the origin, then

we have Rµ,k = R0,k +O(µ2) = R0,k +O(ν).

Next, we asymptotically match (3.38) with the far-field behavior of the

inner solution (3.34), which is given by

η ∼ C ln |x|+ C

ν
+B . (3.39)

Upon comparing (3.38) and (3.39), we conclude that

C(1 + 2πνR0,k +O(ν2)) = −νB . (3.40)

Next, we will calculate the asymptotic solution to (3.33) and (3.34) for

ν small. Since we have UV ∼ O(1), U2 ∼ O(ν) and C ∼ νB, this suggests

that we expand the solutions as

Φ ∼ ν(Φ0 + νΦ1 + · · · ) , N ∼ N0 + νN1 + · · · ,

B ∼ B0 + νB1 + · · · , C ∼ ν(C0 + νC1 + · · · ) .

Upon substituting these expansions into (3.33) and (3.34), we obtain to

leading order that

∆Φ0 − (λ+ 1)Φ0 + 2fU0V0Φ0 + fU2
0N0 = 0 , ∆N0 = 0 ,

Φ′0(0) = N ′0(0) = 0 ; Φ0 → 0 , N0 → B0 as |y| → ∞ .

Then, upon substituting the expressions for U0 and V0, as given in Principal

Result 1, we get

L0Φ0 = λΦ0 −
B0

fχ2
0

ω2 , N0 = B0 . (3.41)
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From (3.40), we conclude that

B0 = −C0 = N0 , B1 = −C1 − 2πR0,kC0 . (3.42)

At next order, we have that Φ1 satisfies

∆Φ1 − (λ+ 1)Φ1 + 2f(U0V1 + U1V0)Φ0 + 2fU0V0Φ1

+ fU2
0N1 + 2fU0U1N0 = 0 ; Φ′1(0) = 0 , Φ1 → 0 as |y| → ∞ ,

(3.43)

while N1 satisfies

∆N1 + (1− 2U0V0)Φ0 − U2
0N0 = 0 ,

N ′1(0) = 0 , N1 → C0 ln |y|+B1 as |y| → ∞ .

Upon substituting the results for U0 and V0 from Principal Result 1, we

obtain from the divergence theorem on the N1 equation that

C0 =

(
1 +

b

f2χ2
0

)−1 ∫ ∞
0

(
2

f
ω − 1

)
Φ0ρ dρ . (3.44)

With C0 now determined, we substitute it back into the equation for Φ0 to

obtain

L0Φ0 = λΦ0 +
f

b+ f2χ2
0

(
2

f

∫ ∞
0

ωΦ0ρ dρ−
∫ ∞

0
Φ0ρ dρ

)
ω2 . (3.45)

In contrast to the nonlocal eigenvalue problems (NLEP’s) analyzed in

[8], this NLEP is more intricate as it involves two nonlocal terms. In order to

obtain an NLEP with only one nonlocal term, we integrate (3.45) to derive∫
R2

L0Φ0dx = 0− 2π

∫ ∞
0

Φ0ρ dρ+ 4π

∫ ∞
0

ωΦ0ρ dρ

= 2πλ

∫ ∞
0

Φ0ρ dρ+
2πbf

b+ f2χ2
0

(
2

f

∫ ∞
0

ωΦ0ρ dρ−
∫ ∞

0
Φ0ρ dρ

)
,
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3.2. Linear Stability Analysis

which leads to

(λ+ 1− bf

b+ f2χ2
0

)

∫ ∞
0

Φ0ρ dρ = (2− 2b

b+ f2χ2
0

)

∫ ∞
0

Φ0ωρ dρ . (3.46)

We substitute this back into (3.45) to get

L0Φ0 −
2b(λ+ 1− f)

(λ+ 1)(b+ f2χ2
0)− bf

∫∞
0 Φ0ωρ dρ∫∞
0 ω2ρ dρ

ω2

= L0Φ0 −
2(λ+ 1− f)

(λ+ 1)(1 + (1−f
f )2 b

S2
0
)− f

∫∞
0 Φ0ωρ dρ∫∞
0 ω2ρ dρ

ω2 = λΦ0 .

To analyze this NLEP we use some previous results on NLEP’s similar

to the one above, which can be found in [16]. From this previous theory,

we know the stability threshold occurs when β(0) = 1, where β(λ) is the

multiplier of the nonlocal term defined by

β(λ) =
2(λ+ 1− f)

(λ+ 1)(1 + (1−f
f )2 b

S2
0
)− f

.

This condition determines a critical value Sc0 of S0 as S2
c0 = (1−f)b

f2
. Then,

by (3.8), this determines the following leading order result for the stability

threshold:

Dc =
Dc0

ν
+Dc1 + · · · , Dc0 =

f2

(1− f)b

E2|Ω|2

4π2
. (3.47)

We remark that at this leading-order stability threshold we have Φ0 = ω,

which then yields f2χ2
0 = (1− f)b and C0 = fχ2

0 = 1−f
f b = −B0.

It is critical here to emphasize that the leading order stability threshold

is independent of the details of the lattice Λ, and does not depend on the

Bloch vector k. It order to determine the effect of the lattice on the stability

threshold we must proceed to one higher order.

We now continue the calculation to one higher order. At the leading

order stability threshold we can simplify the equation for Φ and N , and we

expand the eigenvalue as λ = νλ1 + · · · in order to calculate the spectrum
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near the origin. At the leading order threshold, the equation for N1 is now

∆N1 =
1

f
ω2 − ω , N ′1(0) = 0 , N1 → C0 ln |y|+B1 as |y| → ∞ .

(3.48)

Upon recalling the definition of V1P , it follows that

N1 =
V1P

f
+B1 . (3.49)

Since we are seeking the second order term then, as similar to the construc-

tion of the equilibrium spot solution, we will need to analyze the third order

equation and impose a solvability condition. At the leading order stability

threshold, the equation for the third-order term N2 becomes

∆N2 + (1− 2

f
ω)Φ1 − 3

ω2V1P

f3χ2
0

− B1

f2χ2
0

ω2 − 2
χ1

fχ0
ω2 = 0 ,

N ′2(0) = 0 , N2 → C1 ln |y|+B2 , as |y| → ∞ .

The solvability condition for this equation yields that

C1 = −
∫ ∞

0

(
1− 2

f
ω

)
Φ1ρ dρ+

3

f3χ2
0

∫ ∞
0

ω2V1Pρ dρ+
B1

1− f
+2

√
b

1− f
χ1 .

(3.50)

Upon combining this equation with −2πR0,kC0 − C1 = B1, we derive that

B1 =

(
1− f
2− f

)
(

∫ ∞
0

(1− 2

f
ω)Φ1ρ dρ−

3

f3χ2
0

∫ ∞
0

ω2V1Pρ dρ

+
2

f3χ2
0

∫ ∞
0

U1Pρ dρ− 2πR0,k
1− f
f

b+ 2

√
b

1− f
S1) .

(3.51)

Once again, we want to eliminate the term
∫∞

0 Φ1ρ dρ. This can be done

by using the same method as done previously above. To do so, we substitute

(3.51) into the equation of Φ1 to get

L0Φ1 − λ1ω +
3

f2χ2
0

ω2V1P +
2χ1

χ0
ω2 +

B1

fχ2
0

ω2 = 0 . (3.52)

31



3.2. Linear Stability Analysis

We then integrate both sides of this expression we obtain∫ ∞
0

Φ1ρ dρ =

∫ ∞
0

Φ1ωρ dρ−
2− f
2− 2f

λ1b+
3

2f2χ2
0

∫ ∞
0

ω2V1Pρ dρ

+
bχ1

χ0
− πbR0,k .

(3.53)

Then we substitute (3.53) and (3.51) back into (3.52) to conclude

LΦ1 ≡ L0Φ1 −
∫∞

0 Φ1ωρ dρ∫∞
0 ω2ρ dρ

ω2 = λ1

(
ω +

f

2− 2f
ω2

)
− 3

f2χ2
0

ω2V1P

+

(
3

2f2χ2
0b

∫ ∞
0

ω2V1Pρ dρ−
χ1

χ0
+ πR0,k

)
ω2 .

(3.54)

Finally, λ1 is determined by imposing a solvability condition on Φ1 in (3.54).

The adjoint operator of L is simply

L?Ψ ≡ L0Ψ− ω
∫∞

0 ω2Ψρ dρ∫∞
0 ω2ρ dρ

. (3.55)

It is readily verified that if we define Ψ? = w+ρw′/2, then we have L?Ψ∗ = 0.

The null space of L? was first identified in [8]. By imposing the Fredholm

alternative on (3.54) we get

λ1

∫ ∞
0

(ω +
f

2− 2f
ω2)Ψ∗ρ dρ− 3

2f2χ2
0

∫ ∞
0

ω2V1PΨ∗ρ dρ (3.56)

+ (
3

2f2χ2
0b

∫ ∞
0

ω2V1Pρ dρ−
χ1

χ0
+ πR0,k)

∫ ∞
0

ω2Ψ∗ρ dρ = 0 .

This expression can be simplified considerably by using the following iden-

tities:∫ ∞
0

ω2Ψ∗ρ dρ =

∫ ∞
0

(L0ω)
(
L−1

0 ω
)

=

∫ ∞
0

ω2ρ dρ = b ,∫ ∞
0

ωΨ∗ρ dρ =

∫ ∞
0

ρω(ω +
ρ

2
ω
′
) dρ =

∫ ∞
0

ω2ρ dρ+
1

4

∫ ∞
0

[
ω2
]′
ρ2 dρ =

b

2
,∫ ∞

0
ω2V1PΨ∗ρ dρ =

∫ ∞
0

(L0U1P )
(
L−1

0 ω
)

=

∫ ∞
0

U1Pωρ dρ ,
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2

∫ ∞
0

ωU1PΨ∗ρ dρ−
∫ ∞

0
U1Pρ dρ =

∫ ∞
0

ω2V1Pρ dρ .

In this way, we determine the spectrum near the origin in the spectral

plane as

λ1 = 2(1− f)

(
χ1

χ0
− πR0,k +

3

2f2χ2
0b

∫ ∞
0

U1Pρ dρ

)
. (3.57)

Since we are seeking a two-term expansion for the stability threshold Dc of

D, we need to write χ0 and χ1 in term of D. In Principal Result 1, χ was

written in term of S, and S is in term of D as

S = ν
1
2 (S0 + νS1 + · · · ) =

E|Ω|
2π
√
D

=
E|Ω|
2π

[
D0

(
1 + ν

D1

D0
+ · · ·

)]− 1
2

= ν−
1
2
E|Ω|D−

1
2

0

2π

(
1− ν

2

D1

D0
+ · · ·

)
.

Now with Dc0 = f2

(1−f)b
E2|Ω|2

4π2 , we have Sc1 = −1
2S0

Dc1
Dc0

, so that

χ1

χ0
=
fχ0

b

(
− 1

f3χ3
0

∫ ∞
0

U1Pρ dρ− S1
f

1− f

)
.

Therefore, we have

λ1 = 2(1− f)

(
1

2(1− f)b2

∫ ∞
0

U1Pρ dρ+
2π2(1− f)b

f2E2|Ω|2
D1 − πR0,k

)
.

(3.58)

Notice that this is a continuous band of spectra parametrized by the

Bloch vector k. This is illustrated schematically in Figure 3.2. As proved in

Lemma 1 and Lemma 2, R0,k is real and tends to infinity as |k| → 0. This

shows from (3.58) that λ1 is real, and leaves the ball of radius O(ν) � 1

near the origin along the negative real axis as |k| → 0.

Therefore, in order to have stability, we need λ1 < 0, ∀k ∈ Ω∗. We

summarize our result as follows:

Principal Result 2. In the limit ε → 0, D ∼ O( 1
ν ), we have constructed
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Figure 3.1: The Continuous Band of Spectra

periodic spot solutions(with respect to a fixed Bravais lattice Λ) in Principal

Result 1. The linearized operator around this solution has a continuous

spectrum within an O(ν) neighbourhood of the origin and is parametrized by

a Bloch vector k ∈ Ω∗\0:

λ(k) = 2ν(1− f)

(
1

2(1− f)b2

∫ ∞
0

U1Pρ dρ+
2π2(1− f)b

f2E2|Ω|2
D1 − πR0,k

)
.

(3.59)

To have linear stability, we need λ(k) < 0, ∀k ∈ Ω∗\0, which gives a two

term asymptotic expansion for the stability threshold Dc:

Dc =
Dc0

ν
+Dc1 + · · · , where Dc0 =

f2E2|Ω|2

4π2(1− f)b
, and

Dc1 = min
k∈Ω∗\0

{ f2E2|Ω|2

2π2(1− f)b
(πR0,k −

1

2(1− f)b2

∫ ∞
0

U1Pρ dρ)} ,
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= min
k∈Ω∗\0

{Dc0(2πR0,k −
1

(1− f)b2

∫ ∞
0

U1Pρ dρ)}

= min
k∈Ω∗\0

{Dc0(2πR0,k +
1

(1− f)b2

∫ ∞
0

U1QIρ dρ−
1

b2

∫ ∞
0

U1QIIρ dρ)} .

We remark here that since R0,k is real-valued, then so is the thresholdDc,

which is what we should expect. As shown above, the second order term in

Dc depends on the lattice Λ. In order to compare the stability threshold on

different lattices, we will fix |Ω| = 1. This leads to the following optimality

criterion:

Principal Result 3. With fixed primitive cell of area unity, the optimal

lattice arrangement Λop is the one with the largest stability threshold:

Λop = arg max
Λ, |Ω|=1

{Dc(Λ)} = arg max
Λ, |Ω|=1

{ min
k∈Ω∗\0

{R0,k}} . (3.60)

Some numerical results to identify the optimal lattice arrangement is

given in Section 5.2.

3.3 A Quick Derivation of the Stability

Threshold

In this section, we give another much more expedient way to derive the

stability threshold. Recall that in the inner core problem (3.3), S is a pa-

rameter in the asymptotic boundary condition. More specifically, if we view

S as a parameter of the solution, then

∆ρU(|y|, S)− U(|y|, S) + fU2(|y|, S)V (|y|, S) = 0 ,

∂U

∂ρ
(0, S) = 0 , U → 0 as |y| → ∞ ,

∆ρV (|y|, S) + U(|y|, S)− U2(|y|, S)V (|y|, S) = 0 ,

∂V

∂ρ
(0, S) = 0 , V → S ln |y|+ χ(S, f) as |y| → ∞ .
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Upon taking the partial derivative of U and V with respect to S, we get

∆

(
∂U
∂S
∂V
∂S

)
+

(
−1 + 2fUV fU2

1− 2UV −U2

)(
∂U
∂S
∂V
∂S

)
=

(
0

0

)
, (3.61)

with the boundary conditions

∂2U

∂S∂ρ
(0, S) = 0 ,

∂U

∂S
→ 0 , as |y| → ∞ ,

∂2V

∂S∂ρ
(0, S) = 0 ,

∂V

∂S
→ ln |y|+ ∂χ

∂S
(S, f) , as |y| → ∞ .

Then, we observe that ∂U
∂S and ∂V

∂S are, up to a scalar multiple, the

solution to the perturbed core problem (3.33) and (3.34) when λ = 0. To

fix the boundary conditions in (3.33) and (3.34) for N(y), we must choose

S appropriately. This constraint on S to hold when λ = 0 is the stability

threshold we are seeking. Since the solution to (3.33) and (3.34) is unique up

to a constant scaling, then upon comparing the boundary conditions with

(3.33) and (3.34), it follows that the stability threshold Sc occurs when

B

C
=
∂χ

∂S
(Sc, f) . (3.62)

Then, together with (3.40), we have

∂

∂S
χ(Sc, f) = −1

ν
− 2πR0,k +O(ν) . (3.63)

We then use the expansion for χ from Principal Result 1, which we write as

χ(S, f) = ν−
1
2

(
b(1− f)

f2

1

S0
+ ν(−(1− f)b

f2

S1

S2
0

− S0

(1− f)b2

∫ ∞
0

U1Pρ dρ) + · · ·
)
,

S = ν
1
2 (S0 + νS1 + · · · ) ,

to derive

χ(S, f) =
b(1− f)

f2

1

S
−
∫∞

0 U1Pρ dρ

(1− f)b2
S +O(ν) , (3.64)
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=
b(1− f)

f2

1

S
+

(
1

b2(1− f)

∫ ∞
0

U1QIρ dρ−
1

b2

∫ ∞
0

U1QIIρ dρ

)
S +O(ν) .

Upon taking the partial derivative we obtain

∂

∂S
χ(S, f) = −b(1− f)

f2

1

S2
−
∫∞

0 U1Pρ dρ

(1− f)b2
+O(ν) , (3.65)

= −1

ν

b(1− f)

f2

1

S2
0

(1− 2
S1

S0
ν + · · · )−

∫∞
0 U1Pρ dρ

(1− f)b2
+O(ν) ,

= −1

ν

b(1− f)

f2

1

S2
0

+ (2
b(1− f)

f2

S1

S3
0

−
∫∞

0 U1Pρ dρ

(1− f)b2
) +O(ν) .

Upon comparing this expression with (3.63), we obtain from equating powers

of ν that

−1 = −b(1− f)

f2

1

S2
c0

,

−2πR0,k = 2
b(1− f)

f2

Sc1
S3
c0

−
∫∞

0 U1Pρ dρ

(1− f)b2
,

= 2
b(1− f)

f2

Sc1
S3
c0

+
1

b2(1− f)

∫ ∞
0

U1QIρ dρ−
1

b2

∫ ∞
0

U1QIIρ dρ .

In this way, we can solve for Sc0 and Sc1, then obtain the corrections Dc0

and Dc1 to the stability threshold from expanding the relation (3.8) between

S and D. This yields the same result for the stability threshold as derived

in Principal Result 2. We remark that although this simple derivation is

able to quickly isolate the stability threshold, it is unable to give any precise

account of the nature of the spectrum of the linearized operator near the

origin when D is near the leading-order stability threshold.
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Chapter 4

Spot Patterns for the

Brusselator on a Finite

Domain

In this chapter, we first construct N -spot solutions to the Brusselator model,

formulated as

ut = ε2∆u− u+ f(u2v + 2ε2Euv + ε4Ev) ,

τvt = D∆v + E + ε−2(u− u2v)− 2Euv − ε2E2v ,
(4.1)

on a finite domain x ∈ Ω ⊂ R2, with no-flux boundary conditions

∂nu(x) = ∂nv(x) = 0 , x ∈ ∂Ω , (4.2)

where n is the outer normal vector on ∂Ω. After constructing such multi-

spot patterns, we then perform a linear stability analysis to calculate a

stability threshold corresponding to a zero-eigenvalue crossing.

The asymptotic construction of the N -spot pattern and the linear sta-

bility analysis is very similar to that for the periodic case. One of the key

differences between the periodic and finite-domain problems, is that for the

periodic case we need only construct a one-spot solution in one primitive

cell. In contrast, for the finite domain case, spots interact with each other

in the domain through the Green’s function. As a result, a Neumann Green

matrix together with its eigenvalues and eigenvectors play a key role in the

analysis.
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4.1. The N -Spot Solutions

4.1 The N-Spot Solutions

In this section, our goal is to construct N -spot solutions where u(x) concen-

trates around N distinct O(ε) balls centred at N given points x1,x2, ...,xn ∈
Ω. The position of these N points are not arbitrary, but satisfy some con-

ditions to be derived and explained below.

We first introduce local coordinates around each of these N points in

the form

y = ε−1(x− xj) , Uj(y) =
u(x)√
D
, Vj(y) =

√
Dv(x) , j = 1, 2, ..., N .

(4.3)

Then, in an inner region around xj , we look for a radially symmetric solution

in the form Uj(y) = Uj(ρ), Vj(y) = Vj(ρ), where ρ = |y|. To leading order,

we get the core problem

∆ρUj − Uj + fU2
j Vj = 0 , ∆ρVj + Uj − U2

j Vj = 0 , 0 < ρ <∞ , (4.4)

with the boundary conditions

U ′j(0) = V ′j (0) = 0 , Uj → 0 , Vj → Sj ln ρ+ χ(Sj , f) , as ρ→∞ .

(4.5)

Here the introduction of the source strength Sj and the function χ(Sj , f)

is the same as in (3.4). Upon integrating ∆Vj and using the divergence

theorem we get

2πSj =

∫
R2

(U2
j Vj − Uj) dx =

∫ 2π

0
dθ

∫ ∞
0

(U2
j Vj − Uj)ρ dρ ,

which yields

Sj =

∫ ∞
0

(U2
j Vj − Uj)ρ dρ . (4.6)

In the outer region, given that u is localized around {xi}Ni=1, then by

using the relation (4.6) we obtain that the leading order outer solution v
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4.1. The N -Spot Solutions

satisfies

D∆v + E = 2π
√
D

N∑
i=1

Siδ(x− xi) , x ∈ Ω , (4.7)

with ∂nv = 0 for x ∈ ∂Ω. Upon integrating (4.7) over Ω, and by using the

no-flux boundary conditions (4.2), we get the solvability condition

E =
2π
√
D

|Ω|

N∑
j=1

Sj . (4.8)

To represent the solution v, it is convenient to introduce the Neumann Green

function G(x, ξ), which satisfies

∆xG0(x, ξ) =
1

|Ω|
− δ(x− ξ) , (4.9)

∇xG0(x, ξ) · n = 0 , ∀x ∈ ∂Ω ,

∫
Ω
G0(x, ξ) dx = 0 , (4.10)

G0(x, ξ)→ − 1

2π
ln |x− ξ|+R0(ξ) , as x→ ξ , (4.11)

where n is the outer normal vector to ∂Ω. We remark here that R(ξ) is the

regular part of the Green function while − 1
2π ln |x− ξ| is the singular part.

The right hand side of the equation 1
|Ω| − δ(x − ξ) is consistent with the

no-flux boundary conditions ∇xG0(x, ξ) ·n = 0, ∀x ∈ ∂Ω. We also impose

the uniqueness condition,
∫

ΩG0(x, ξ) dx = 0, since the solution to the PDE

with the no-flux boundary conditions is only unique up to a constant.

In terms of G0, the solution v to (4.7) can be represented as

v(x) = −
N∑
i=1

2πSi√
D
G0(x,xi) + c , (4.12)

where c is some constant. Then, by letting x→ xj , and by matching to the

inner solution near each spot, we obtain the following nonlinear system of
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4.1. The N -Spot Solutions

N equations for Sj , j = 1, . . . , N , and for c:

Sj
ν

+ χ(Sj) = −2πR0(xj)Sj − 2π
∑
i 6=j

G0(xi,xj)Si +
√
Dc , 1 ≤ j ≤ N .

(4.13)

The remaining equation to complete the system is (4.8). It is convenient to

rewrite this system in matrix form by introducing the following notation:

S ≡


S1

...

SN

 , e ≡


1
...

1

 , χ(S, f) ≡


χ(S1, f)

...

χ(SN , f)

 ,

G ≡


R0(x1) G0(x1,x2) · · · G0(x1,xN )

G0(x2,x1) R0(x2) · · ·
...

. . .
...

G0(xN ,x1) · · · R0(xN )

 .

We shall refer to G as the Neumann Green matrix of x1,x2, ...,xN . Then,

the N matching conditions (4.13) and the solvability condition (4.8) can be

written in matrix form as

S + νχ(S, f) = −ν2πGS + ν
√
Dce ,

eTS =
|Ω|E

2π
√
D
.

(4.14)

For simplicity we will assume that the N spots have a common source

strength S, i.e. for Sj = S, j = 1, 2, ..., N . For such a pattern, we have that

S = Se, χ(S, f) = χ(S, f)e, and that (4.14) reduces to

GS = SGe = − 1

2πν
(S + νχ(S, f)− ν

√
Dc)e , S =

E|Ω|
2πN

√
D
. (4.15)

Therefore, it follows that for such a common source strength pattern to

exist we must have that e is an eigenvector of G(x1,x2, ...,xN ). We remark

that the existence of such a special eigenvalue does not generally occur for

a pattern of N arbitrarily-located spots. Since the Green function satisfies
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the usual reciprocity condition, it follows that G is a symmetric matrix and

can be diagonalized with an orthonormal basis as 1√
N
e, {qj}Nj=2, i.e.

G(
1√
N
e) = k1(

1√
N
e) , Gqj = kjqj , j = 2, 3, ..., N, (4.16)

qTj
1√
N
e = 0 , j = 2, 3, ..., N , qTj qi = 0 , ∀ 2 ≤ i, j ≤ N .

Upon using this relation, we obtain for a common source strength pattern

that (4.14) reduces to

1

2πν
(S + νχ(S, f)− ν

√
Dc) = −Sk1 . (4.17)

Next, since the stability threshold occurs in the regime where D ∼
O(ν−1), it follows that S ∼ O(ν

1
2 ) at a zero eigenvalue crossing. By fol-

lowing the same procedure as for the periodic problem, we can calculate the

small S asymptotics of the solution to the core problem (4.4) as follows:

Principal Result 4. For S ∼ ν
1
2 (S0 + νS1 + · · · ), where ν ≡ − 1

ln ε , the

radially symmetric asymptotic solutions to the core problem (4.4) in an O(ε)

ball centred at xj is given by:

Uj ∼ ν
1
2 (Uj0 + νUj1 + · · · ) , Vj ∼ ν−

1
2 (Vj0 + νVj1 + · · · ) ,

χ ∼ ν−
1
2 (χ0 + νχ1 + · · · ) , (4.18)

where Uj0(ρ), Uj1(ρ), Vj0(ρ) and Vj1(ρ) are defined by

Uj0 =
ω

fχ0
, Uj1 = − χ1

fχ2
0

ω − 1

f3χ3
0

((1− f)U1QII − U1QI) , (4.19)

Vj0 = χ0 , Vj1 = χ1 +
1

f2χ0
((1− f)V1Q − ω) . (4.20)

Here U1QI , U1QII , V1Q are the unique radially symmetric solutions to (3.26),

(3.26), (3.24) as before, ω is the unique radially symmetric solution to
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4.2. Linear Stability Analysis

(3.17), while χ0 and χ1 are defined as

χ0 =
(1− f)

f2

b

S0
, (4.21)

χ1 = −(1− f)b

f2

S1

S2
0

− S0

b2

∫ ∞
0

U1QIIρ dρ+
S0

(1− f)b2

∫ ∞
0

U1QIρ dρ . (4.22)

We remark here that since the source strength is the same for each j,

then so are the inner solutions. Moreover, we remark that such patterns can

either be true steady-state solutions if the spot locations satisfy some further

condition, or simply quasi-steady patterns that can persist for very long time

intervals provided that there is no unstable O(1) eigenvalue in the spectrum

of the linearization. The analysis of the spectrum of the linearization is

analyzed in the next section. This completes our construction of an N -spot

solution where the spots have a common source strength.

4.2 Linear Stability Analysis

We denote the N -spot solution constructed above as ue(x), ve(x) and we

introduce the perturbation

u(x) = ue(x) + eλtφ , v(x) = ve(x) + eλtη . (4.23)

Upon substituting (4.23) into (4.1), we linearize around the N -spot solution

to obtain the singularly perturbed problem (3.31), written again as

λ

(
φ

τη

)
=

(
ε2∆φ

D∆η

)
+

(
−1 + 2fueve fu2

e

ε−2 − 2ε−2ueve ε−2u2
e

)(
φ

η

)
.

In the inner region around each xj , we introduce the local variables as

y = ε−1(x− xj) , Φj(y) =
φ(εy + xj)

D
, Nj(y) = η(εy + xj) . (4.24)

We look for radially symmetric solution of the form Φj(y) = Φj(ρ), Nj(y) =
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4.2. Linear Stability Analysis

Nj(ρ), where ρ = |y|. Then, the inner problem near the j-th spot at xj

reduces asymptotically to

∆ρΦj − (λ+ 1)Φj + 2fUjVjΦ + fU2
jNj = 0 , (4.25)

∆ρNj + (1− 2UjVj)Φj − U2
jNj = 0 ,

Φ′j(0) = N ′j(0) = 0 ; Φj → 0 , Nj → Cj ln |y|+Bj(Cj , f) , as ρ→∞ .

We remark here that for a fixed f , the ratio
Bj
Cj

is a constant since the system

is linear. The solvability condition for the Nj equation yields

Cj =

∫ ∞
0

(
U2
jNj − (1− 2UjVj)Φj

)
ρ dρ . (4.26)

Since both ue(x) and φ(x) are localized near {xj}Nj=1, the outer approx-

imation for the eigenfunction component η(x) satisfies the leading order

problem

∆η − τλ

D
η = 2π

N∑
i=1

Ciδ(x− xi) . (4.27)

Notice that when λ = 0, corresponding to the stability threshold, then if we

integrate (4.27) over the domain and use the no-flux boundary condition we

conclude that
∑N

j=1Cj = 0. However, we do not have this constraint when

λ 6= 0. This observation suggest that we need to split our analysis into two

distinct cases.

4.2.1 λ 6= 0 and λ ∼ O(1)

First we introduce the reduced-wave Green function, which satisfies

∆xGσ(x, ξ)− σ2Gσ(x, ξ) = −δ(x− ξ) , (4.28)

∇xGσ(x, ξ) · n = 0 , ∀x ∈ ∂Ω , (4.29)

Gσ(x, ξ)→ − 1

2π
ln |x− ξ|+Rσ(ξ) , as x→ ξ . (4.30)

We need an approximation to this Green’s function when σ � 1. Since

there is no solution when σ = 0, then as we did in (2.3) we must seek Gσ
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for σ � 1 in the form of a singular asymptotic expansion as

Gσ(x, ξ) =
1

σ2|Ω|
+G0(x, ξ) +O(σ2) , (4.31)

where G0(x, ξ) is the Neumann Green function defined in (4.9). Then if we

denote σ = τλ
D , we can represent the solution to (4.27) in the form

η(x) = −2π
N∑
i=1

CiGσ(x,xi) = 2π
N∑
i=1

Ci

(
− D

τλ|Ω|
−G0(x,xi) +O(σ2)

)
.

(4.32)

By expanding this solution as x → xj and comparing the resulting ex-

pression with the far-field behavior of the corresponding inner solution, we

obtain the following matching condition near each spot:

Cj
ν

+Bj = − 2πD

τλ|Ω|

N∑
i=1

Ci−2πR(xj)Cj−
∑
i 6=j

2πG0(xi,xj)Ci , 1 ≤ j ≤ N .

(4.33)

We then rewrite this system in matrix form by first introducing the

notation

C ≡


C1

...

CN

 , B ≡


B1

...

BN

 , Φ ≡


Φ1

...

ΦN

 , N ≡


N1

...

NN

 , (4.34)

E ≡ 1

N
eeT =

1

N


1 1 · · · 1
...

. . .
...

1 · · · 1

 . (4.35)

In terms of these new variables, (4.33) can be written in matrix form as(
I +

2πνDN

τλ|Ω|
E + 2πνG

)
C = −νB . (4.36)

From this system it follows that B is one order higher in ν than C

when λ ∼ O(1). Moreover, since the system (4.4) is linear, we may assume
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N(y) ∼ O(1). This suggests that we introduce the asymptotic expansion as

Φj ∼ ν(Φj0 + νΦj1 + · · · ) , Nj ∼ Nj0 + νNj1 + · · · , (4.37)

Bj ∼ Bj0 + νBj1 + · · · , Cj ∼ ν(Cj0 + νCj1 + · · · ) .

Upon substituting this expansion into (4.25), and by using the results from

Principal Result 4, we obtain at leading order that

∆ρΦj0 − (λ+ 1)Φj0 + 2fUj0Vj0Φj0 + fU2
j0Nj0 = 0 , ∆ρNj0 = 0 , (4.38)

Φ′j0(0) = N ′j0(0) = 0 ; Φj0 → 0, Nj0 → Bj0 as ρ→∞ . (4.39)

The solution of this system in terms of the linear operator L0 of Chapter 3,

defined by L0φ = ∆φ− φ+ 2ωφ, is simply

L0Φj0 = λΦj0 −
Bj0
fχ2

0

ω2 , Nj0 = Bj0 , (4.40)

⇒ L0Φ0 = λΦ0 −
ω2

fχ2
0

B0 , N0 = B0 .

Moreover, to leading order from the matching condition (4.36), we conclude

that

(I + µE)C0 = −B0 , µ ≡ 2πD0N

τλ|Ω|
. (4.41)

At the next order, we obtain from (4.25) that the equation for Nj1 is

∆ρNj1 + (1− 2Uj0Vj0)Φj0 − U2
j0Nj0 = 0 ,

N ′j1(0) = 0 ; Nj1 → Cj0 ln ρ+Bj1 , as ρ→∞ .

Upon integrating this equation, and using the divergence theorem, we obtain

the consistency condition that

Cj0 =
b

f2χ2
0

Bj0 −
∫ ∞

0

(
1− 2

ω

f

)
Φj0ρ dρ , (4.42)

⇒ C0 =
b

f2χ2
0

B0 −
∫ ∞

0

(
1− 2

ω

f

)
Φ0ρ dρ .
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We want to eliminate the
∫∞

0 Φ0ρ dρ term as before by integrating the equa-

tion for Φ0 in (4.40). This yields that

(λ+ 1)

∫ ∞
0

Φ0ρdρ = 2

∫ ∞
0

ωΦ0ρ dρ+
b

fχ2
0

B0 . (4.43)

Then, upon combining (4.41), (4.42) and (4.43), we conclude that

[(1 + a)I + aµE ]B0 = −2(λ+ 1− f)

f(λ+ 1)
(I + µE)

∫ ∞
0

ωΦ0ρ dρ , (4.44)

where a ≡ b(λ+1−f)
f2χ2

0(λ+1)
. Using the fact that (I + kE)−1 = I − k

k+1E , we get

B0 = −2m

(
1 +

bm

fχ2
0

)−1
I +

µ

τλ

1

1 + bm
fχ2

0
(1 + µ

τλ)
E

∫ ∞
0

ωΦ0ρ dρ ,

(4.45)

where m is defined as m ≡ 1
f −

1
λ+1 . Upon substituting this expression back

into L0Φ0 = λΦ0 − ω2

fχ2
0
B0, we get a vector nonlocal eigenvalue problem

(NLEP).

Next, we will decompose Φ0 into certain directions, most of which are

unaffected by the matrix E . We observe that the geometric meaning of the

matrix E is that of projecting a vector into the direction e = (1, 1, ..., 1)T .

This suggests that we decompose Φ0 into ke+ r, where k is some constant

and r⊥e. Recall from (4.16) that the eigenvectors of the Neumann Green

matrix G are such that 1√
N
e, {qj}Nj=2 forms a orthonormal basis of RN and

qj⊥e for j = 2, 3, ..., N . We decompose Φ0 into this basis by writing

Φ0(|x|) = k(|x|)e+

N∑
j=2

uj(|x|)qj , (4.46)

where k(|x|), uj(|x|) are radially symmetric coefficient functions. Upon

substituting this into the equation for Φ0, and by using the formula for B0,
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we obtain the two distinct NLEP’s

L0k(|x|)− 2b(λ+ 1− f)(τλ+ µ)

(λ+ 1)f2χ2
0τλ+ b(1− f + λ)(τλ+ µ)

∫∞
0 kωρ dρ∫∞
0 ω2ρ dρ

ω2 = λk(|x|) ,

L0uj −
2b(λ+ 1− f)

(λ+ 1)f2χ2
0 + b(1− f + λ)

∫∞
0 ujωρ dρ∫∞
0 ω2ρ dρ

ω2 = λuj . (4.47)

These two distinct NLEP’s are similar to those considered previously. As

such we conclude that the component k(|x|) is linearly stable, but that there

is a stability threshold for uj(|x|) when

β(λ)|λ=0 =
2b(λ+ 1− f)

(λ+ 1)f2χ2
0 + b(1− f + λ)

|λ=0 = 1 ,

which yields that

χ2
0 =

(1− f)b

f2
, Sc0 =

√
b(1− f)

f
. (4.48)

We remark here that at the stability threshold we have λ = 0, which

seems to contradict our starting assumption λ 6= 0. However, the previ-

ous theorem of [16], states that when β(0) < 1 the NLEP has a positive

real eigenvalue. Another difficulty is that near the stability threshold the

eigenvalue can be very small. In particular, if λ = O(ν), then the 2πνDN
τλ|Ω| E

term in the matching condition (4.36) becomes the dominate term and the

asymptotic expansions need a little modification. We will handle these two

situations in Section 4.2.2 and Section 4.2.3, respectively.

4.2.2 λ ∼ O(ν) and λ 6= 0

Next we treat the case where λ ∼ O(ν) and λ 6= 0, and we expand λ as

λ = νλ1 + ν2λ2 + .... For this case the results (4.27), (4.28), and (4.31)

still hold. However, the only difference is that the D
τλ|Ω| term is no longer

O(ν−1), but instead is O(ν−2). This implies that the matching condition is

modified as (
2πD0N

τλ1|Ω|
E + νI + 2πν2G

)
C = −ν2B . (4.49)
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Since the system is linear, then without loss of generality we may assume that

B ∼ O(ν) and from (4.49) it seems that C ∼ O(ν2). However, this scaling

assumption would be inconsistent with the logarithmic growth condition in

the equation for Nj1. In fact, the leading-order solution to (4.49 is that

EC = 0, which is equivalent to C⊥e. We then expand the solutions as in

(4.37) and obtain that the matching condition becomes

(I + 2πνG)C = −νB . (4.50)

Due to the properties of G in (4.16), it follows that B⊥e. Therefore, at

leading order, we have

B0 = −C0⊥e, L0Φ0 = − ω2

fχ2
0

B0, N0 = B0, ⇒ Φ0 = − ω

fχ2
0

B0 .

(4.51)

We may assume that C0 =
∑N

j=2 djqj = −B0, where qj are other eigenvec-

tors of G that are orthogonal to e and dj are some constant coefficients. At

next order, the equation for N1 is:

∆N1 =
ω

fχ2
0

B0 −
ω2

f2χ2
0

B0 , (4.52)

N ′1(0) = 0 , N1 → C0 ln |y|+B1 , as |y| → ∞ .

The solvability condition for this equation gives:

C0 =
b

fχ2
0

(1− 1

f
)B0 = −B0, ⇒ χ0 =

√
b(1− f)

f2
, S0 =

√
b(1− f)

f
,

(4.53)

which is precisely the same threshold we obtained from (4.47). The solution

to (4.52) can then be written as

N1 = B1 −
V1P

b(1− f)
B0 = B1 +

V1P

b(1− f)

N∑
j=2

djqj . (4.54)
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Upon substituting this expression into the equation for N2 we get

∆N2 + (1− 2ω

f
)Φ1 − 2

(
ω

fχ0
(χ1 +

V1P

f2χ0
) + χ0(− χ1

fχ2
0

ω − U1P

f3χ3
0

)

)
Φ0

− ω2

f2χ2
0

N1 − 2
ω

fχ2
0

(− χ1

fχ2
0

ω − U1P

f3χ3
0

)N0 = 0 ,

N ′2(0) = 0 , N2 → C1 ln |y|+B2 , as |y| → ∞ .

Upon using the divergence theorem on this equation for N2, and by using

(4.51) and (4.54), we obtain that the following consistency condition must

hold:

C1 +

∫ ∞
0

Φ1ρdρ−
2ω

f

∫ ∞
0

Φ1ρ dρ−
1

1− f
B1 −

3

b2(1− f)2

∫ ∞
0

ω2V1Pρ dρ

N∑
j=2

djqj − 2
fχ1

b
1
2 (1− f)

3
2

N∑
j=2

djqj = 0 . (4.55)

Similarly, the matching condition (4.50) gives

C1 + 2πGC0 = −B1, ⇒ C1 + 2π

N∑
j=2

kjdjqj = −B1. (4.56)

The equation for Φ1 then becomes

L0Φ1 +
3fω2V1p

b2(1− f)2

N∑
j=2

djqj +
2f2χ1ω

2

(b(1− f))
3
2

N∑
j=2

djqj (4.57)

+
fω2

b(1− f)
B1 = λ1

f

b(1− f)
ω

N∑
j=2

djqj .

Upon integrating this equation and then substituting into (4.55) and (4.56),

we get that

B1 = π

N∑
j=2

djkjqj −
1− f
f

∫ ∞
0

ωΦ1ρ dρ
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− f

b(1− f)

N∑
j=2

djqj

(
bχ1(1− f)

fχ0
+

3

2bf

∫ ∞
0

ω2V1Pρ dρ+
b

2
λ1

)
.

Finally, we substitute this expression back into (4.57) to obtain the vector

NLEP

LΦ1 ≡ L0Φ1 −
∫∞

0 Φ1ωρ dρ∫∞
0 ω2ρ dρ

ω2 = λ1(ω +
f

2− 2f
ω2)

f

b(1− f)

N∑
j=2

djqj

− 3fω2V1P

b2(1− f)2

N∑
j=2

djqj −
f

b(1− f)

N∑
j=2

djqj

(
−πkj +

χ1

χ0
−

3
∫∞

0 ω2V1Pρ dρ

2b2(1− f)

)
ω2 .

Upon decomposing Φ1(x) = r(x)e+
∑N

j=2 tj(x)qj as before, we obtain that

the coefficient functions tj(x) satisfy

Ltj(x) =
fdj

b(1− f)
{λ1(ω +

f

2− 2f
ω2)− 3

b(1− f)
ω2V1P

− ω2

(
−πkj +

χ1

χ0
− 3

2b2(1− f)

∫ ∞
0

ω2V1Pρ dρ

)
}.

Finally, we use a solvability condition on this problem to calculate λ1. From

Section 3.2 the adjoint operator L∗ has a one-dimensional nullspace Ψ∗(x)

in the class of radially symmetric functions, where Ψ? = w + ρw′/2 was

given in Section 3.2. We then impose the solvability condition as similar to

that done in Section 3.2 to conclude that∫ ∞
0

RHS ·Ψ∗ρ dρ = 0 ⇒ λ1 = 2(1− f)

(
−πkj +

χ1

χ0
+

3
∫∞

0 U1Pρ dρ

2(1− f)b2

)
= 2(1− f)

(
−πkj −

S1

S0
+

∫∞
0 U1Pρ dρ

2(1− f)b2

)
.

With this expression we can calculate the next order term in the stability

threshold that makes λ1 = 0 as

Sc1 = max
2≤j≤N

{S0

2
(−2πkj +

1

(1− f)b2

∫ ∞
0

U1Pρ dρ)} = max
2≤j≤N

{
√
b(1− f)

2f
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(−2πkj +
1

(1− f)b2
((1− f)

∫ ∞
0

U1QIIρ dρ−
∫ ∞

0
U1QIρ dρ))} . (4.58)

We remark here that since G is real symmetric, all of its eigenvalues kj are

real. Therefore, as expected, the stability threshold is real-valued.

4.2.3 λ=0

Finally we consider the case where λ = 0, which corresponding to the sta-

bility threshold. The equation for η now becomes

∆η = 2π
N∑
j=1

Cjδ(x− xj) . (4.59)

As we mentioned before, if we integrate this PDE with the no-flux boundary

conditions on ∂Ω, we obtain that

N∑
j=1

Cj = 0 , η(x) = −2π

N∑
j=1

CjG0(x,xj) , (4.60)

where G0(x,xj) is the Neumann Green function defined as before. Using

the same method in Section 3.3, we derive that ∂
∂SUj(y, Sj),

∂
∂SVj(y, Sj) are

solutions to (4.25) when λ = 0. This leads to the relation

Bj
Cj

=
∂

∂S
χ(Sj , f) . (4.61)

Since we are assuming a common source strength Sj = S = Sc, (4.61) gives

B = ∂
∂Sχ(Sc, f)C. We substitute this expression back into the matching

condition (4.36) and, upon noticing that EC = 0, we have

(I + ν
∂χ

∂S
(Sc, f))C = −2πνGC . (4.62)

This implies that C is an eigenvector of G, and we obtain the relation

1 + ν
∂χ

∂S
(Sc, f) = −2πνkj . (4.63)
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As we derived in (3.64) and (3.65), we calculate

∂

∂S
χ(Sc, f) = −1

ν

b(1− f)

f2

1

S2
c0

+ (2
b(1− f)

f2

Sc1
S3
c0

−
∫∞

0 U1Pρ dρ

(1− f)b2
) +O(ν) .

(4.64)

We substitute this expression back into (3.63) and equate terms of a common

order in ν. In this way, we derive the stability threshold results

Sc0 =

√
b(1− f)

f
, (4.65)

Sc1 = max
2≤j≤N

{
√
b(1− f)

2f
(−2πkj +

1

(1− f)b2

((1− f)

∫ ∞
0

U1QIIρ dρ−
∫ ∞

0
U1QIρ dρ))} .

Finally, by using (4.15) which relates S to D, we calculate the stability

threshold in terms of D. The results are summarized as follows:

Principal Result 5. In the limit ε → 0, and on the range D ∼ O( 1
ν ), the

multi-spot patterns constructed in Principal Result 4 are linearly stable if

D < Dc =
Dc0

ν
+Dc1 + ... , (4.66)

where Dc0 and Dc1 are defined by

Dc0 =
f2E2|Ω|2

4π2N2(1− f)b
, (4.67)

Dc1 = min
2≤j≤N

{Dc0(2πkj −
1

(1− f)b2

∫ ∞
0

U1Pρ dρ)} (4.68)

= min
2≤j≤N

{Dc0(2πkj +
1

(1− f)b2

∫ ∞
0

U1QIρ dρ−
1

b2

∫ ∞
0

U1QIIρ dρ)} .

(4.69)

We remark here that since we are solving for eigenvalues of a self-adjoint

operator, all the eigenvalues are real-valued, and so the stability threshold is

real. Although we have discussed the three cases of λ separately, the analysis

indeed provides a uniform transition between the ranges of λ. More specif-

53



4.2. Linear Stability Analysis

ically, we obtain the same leading order results for the stability threshold

from (4.48), (4.53) and (4.65). Moreover, (4.58) also agrees with (4.65) at

second order. Finally, in Section 4.2.2, we must have
∑N

j=1Cj = 0 to have

a solution, which also agrees with the solvability condition in Section 4.2.3.
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Chapter 5

Numerical Results

In this chapter, we perform some numerical experiments and compare the

results with the two term asymptotic approximations for the stability thresh-

old derived in the previous chapter. For the periodic case, we will identify

the optimal lattice arrangement of spots. For the finite domain problem we

illustrate our theory for the case of equally-spaced spots on a ring that is

concentric with the unit disk. For this finite domain problem, there is an

explicit formula for the Neumann Green function that will be used.

5.1 Small S Asymptotics of χ(S, f)

For both the periodic and the finite domain problems, the same core prob-

lems (3.3) and (4.4) arise in the asymptotic construction of the spot pattern.

In these common inner problems, a key quantity is χ(S, f), which appears

in the asymptotic boundary condition. Two-term asymptotic expansions for

χ(S, f) have been derived previously in Principal Result 1 and Principal Re-

sult 4. We now solve the core problem numerically to compute the χ(S, f),

and we compare the numerical results for χ(S, f) with the corresponding

two-term asymptotic results derived in the small S limit.

Since we are seeking radially symmetric solutions, solving the core prob-

lem is actually solving an ODE system. We use the ODE boundary value

problem solver BVP4C in Matlab. We now remark on a few details of the

numerical implementation.

• The Laplace operator in R2 polar coordinates is expressed as:

∆ρ =
d2

dρ2
+

1

ρ

d

dρ
.
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5.1. Small S Asymptotics of χ(S, f)

• Instead of solving the ODE systems on the whole interval [0,∞), we

use the interval [µ,R], where R is a sufficiently large number so as to

approximate the infinite domain, while µ is a sufficiently small number

to avoid the singularity at r = 0. We chose R = 15 and µ = 0.005 in

our computations.

• Instead of using the boundary conditions for U(ρ) and V (ρ) as ρ→∞
in (3.4) directly, we set U(R) = 0 and V

′
(R) ∼ S

R . Then, after solving

the core problem numerically, we define χ(S, f) by χ(S, f) = V (R)−
S lnR.

• The boundary value solver requires a good initial guess consistent with

the boundary conditions. First we may want to use our small S asymp-

totic approximation in Principal Result 1 as an initial guess. To do

this, we in principle need to know the radially symmetric solution of

∆ω−ω+ω2 = 0 in R2. However, this explicit solution is not available

in R2, and is only available in R1. As such, we adapt a homotopy

algorithm to find the initial guess. For a fixed f , we first start with a

small S0, and use the asymptotic approximation for the core problem

in R. We then slowly increase the dimension from 1 to 2 and solve the

core problem using the previous step as an initial guess. After hav-

ing obtained the core solution for S = S0 in R2 using this homotopy

strategy, we then increase S and solve the core problem based on the

previously computed solution.

After computing the χ(S, f) in this way, we compare the results with

the two term asymptotic expansions in (3.64). In the asymptotic approx-

imation, we require numerical values for a few integrals. We obtain that

b ≈
∫∞

0 ωρdρ = 4.9343,
∫∞

0 U1QIρdρ ≈ 11.9131 and
∫∞

0 U1QIρ dρ ≈ 11.4384.

Figure 5.1 shows results for f = 0.4 and f = 0.5, where the green (top)

curves are the asymptotic approximations and the blue (bottom) curves are

the full numerical results. We observe that the two curves are rather close

for small S, which is what we should expect.

56



5.2. Stability Threshold and the Optimal Lattice Arrangement
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Figure 5.1: Numerical solution (bottom curves) and asymptotic results (top
curves) for χ(S, f). In the left panel we fix f = 0.4, while f = 0.5 for
the right panel. In both pictures, the blue (bottom) curve is the numerical
solution while the green (top) one is the two term asymptotic expansion.

5.2 Stability Threshold and the Optimal Lattice

Arrangement

In this section, we compute the stability threshold numerically and compare

the results with the two term asymptotic approximation.

As derived in (3.63) and (3.65), the stability threshold for S, labeled

by Sc, for the periodic spot problem is the largest S, corresponding to the

smallest D, that solves the transcendental equation

∂

∂S
χ(Sc, f) = −1

ν
− 2πR0,k +O(ν) , (5.1)

for some Bloch vector k in the first Brillouin zone. For the corresponding

finite domain problem, the stability threshold is the largest S that solves

∂

∂S
χ(Sc, f) = −1

ν
− 2πki , (5.2)

for certain eigenvalues ki of the Neumann Green matrix.

Since we have already computed χ(S, f) above, we can use a cubic spline
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5.2. Stability Threshold and the Optimal Lattice Arrangement

and a numerical derivative to get ∂
∂Sχ(S, f). Then we use a nonlinear equa-

tion solver to compute the threshold directly.

On the other hand, we have derived the two term asymptotic approxi-

mation for the stability threshold in both cases. For the periodic case, we

derived previously that

Sc = ν
1
2

√
b(1− f)

f
(1 + ν(

1

2b2

∫ ∞
0

U1QIIρ dρ−
1

2b2(1− f)

∫ ∞
0

U1QIρ dρ

− π min
k∈Ω∗\0

R0,k)) , (5.3)

while for the finite domain problem we derived that

Sc = ν
1
2

√
b(1− f)

f
(1 + ν(

1

2b2

∫ ∞
0

U1QIIρ dρ−
1

2b2(1− f)

∫ ∞
0

U1QIρ dρ

− π min
2≤i≤N

ki)) . (5.4)

Notice that the only key difference between these two expressions is

that mink∈Ω∗\0R0,k is replaced by min2≤i≤N ki. Therefore, we introduce a

parameter c and our goal is to compare the solution to

∂

∂S
χ(Sc, f) = −1

ν
− c , (5.5)

with the expression

Sc = ν
1
2

√
b(1− f)

f

(
1 + ν(

1

2b2

∫ ∞
0

U1QIIρ dρ−
1

2b2(1− f)

∫ ∞
0

U1QIρ dρ−
c

2
)

)
,

for some small ε. In Figure 5.2 we show numerical results that confirm that

the full numerical results and asymptotic results agree rather well.

Next, we identify the optimal lattice arrangement for the periodic case.

As stated in Principal Result 3, the optimal lattice arrangement Λop with

fixed primitive cell of area unity is the one which solve the following max-min

problem:

arg max
Λ, |Ω|=1

{ min
k∈Ω∗\0

{R0,k}} (5.6)
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Figure 5.2: Numerical solution to (5.5) and the two-term asymptotic ap-
proximations for Sc with different c. Left panel: f = 0.4 and ε = 0.01.
Right panel: f = 0.5 and ε = 0.05. The blue (top) curve is the numerical
solution while the green (bottom) one is the asymptotic approximations in
both cases.

Therefore, if we want to find the optimal lattice numerically, we need to

know how to calculate R0,k. First we follow the process in [2] and [8], to

derive an explicit expression for the Bloch Green function and its regular

part R0,k. Recall that the Bloch Green function satisfies:

∆G0,k(x) = −δ(x), ∀x ∈ Ω ,

G0,k(x+Li) = e−ik·LiG0,k(x) , ∀x ∈ d−i ,

∂n−G0,k(x+Li) = e−ik·Li∂n+G0,k(x) , ∀x ∈ d−i .

The free space Green’s function in the absence of any boundary conditions

is Gfree(x) = − 1
2π ln |x|. We then observe that the infinite sum

G(x) =
∑
l∈Λ

Gfree(x+ l)eik·l ,

satisfies the PDE together with the quasi-periodic boundary conditions. To
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5.2. Stability Threshold and the Optimal Lattice Arrangement

verify that it satisfies these boundary conditions we calculate

G(x+Li) =
∑
l∈Λ

Gfree(x+Li + l)eik·l ,

=
∑

Li+l∈Λ

Gfree(x+ (Li + l))eik·(Li+l)eik·(−Li) ,

= e−ik·Li
∑
l′∈Λ

Gfree(x+ l
′
)eik·l

′
= e−ik·LiG(x) .

The second line above follows since Li ∈ Λ and l
′

= Li + l.

By the Poisson summation formula proved in (2.4) in Chapter 2, and

the fact that Ĝfree(ξ) = 1
|ξ|2 and |Ω| = 1, we have

G(x) =
∑
l∈Λ

Gfree(x+ l)eik·l =
∑
d∈Λ∗

Ĝfree(d− k)eix·(d−k) =
∑
d∈Λ∗

eix·(d−k)

|d− k|2
.

It is easy to prove from an integral test that the last series is not absolutely

convergent. However, we can show it is actually conditionally convergent for

x 6= 0 by decomposing it into two parts as was done in [2]. We pick some η

in η ∈ (0, 1), and rewrite the infinite series as

∑
d∈Λ∗

eix·(d−k)

|d− k|2
=
∑
d∈Λ∗

eix·(d−k)

|d− k|2
(1− e−

|d−k|2

4η2 + e
− |d−k|

2

4η2 ) ,

=
∑
d∈Λ∗

eix·(d−k)

|d− k|2
e
− |d−k|

2

4η2 +
∑
d∈Λ∗

eix·(d−k)

|d− k|2
(1− e−

|d−k|2

4η2 ) .

The first term is an absolutely convergent series, which we denote as

GFourier(x) =
∑
d∈Λ∗

eix·(d−k)

|d− k|2
e
− |d−k|

2

4η2 . (5.7)

We claim that the second term is another absolutely convergent series over

the original lattice Λ. We can write this series in a convenient form using

the following lemma:
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Lemma 5.

∑
d∈Λ∗

eix·(d−k)

|d− k|2
(1− e−

|d−k|2

4η2 ) =
∑
l∈Λ

Fsing(x+ l)eik·l , ∀x ∈ Ω\0 , (5.8)

where Fsing(x) ≡ 1
2π

∫∞
ln(2η) e

− |x|
2

4
e2s ds = 1

4πE1(η2|x|2), and E1(z) is the

exponential integral defined by E1(z) =
∫∞
z t−1e−t dt.

Proof. Firstly, we observe that 1
2π

∫∞
ln(2η) e

− |x|
2

4
e2s ds = 1

4πE1(η2|x|2) by us-

ing a simple change of variables. Then, according to [1], the exponential

integral E1(z) has the decay property, E1(z) < e−z ln(1 + 1
z ), so that the

series over Λ given by the right hand-side of (5.8)) converges absolutely.

Then, by using the Poisson summation formula as proved in (2.4), we get∑
l∈Λ

Fsing(x+ l)eik·l =
∑
d∈Λ∗

F̂sing(d− k)eix·(d−k) . (5.9)

Upon comparing this result with the statement that we want to prove, we

need only show that F̂sing(ξ) = 1
|ξ|2 (1 − e

− |ξ|
2

4η2 ). To prove this we show

that the inverse Fourier transform of the right hand-side is Fsing(x). No-

tice that both Fsing(x) and the right hand-side are radially symmetric,

and that the inverse Fourier transform of a radially symmetric function

is the inverse Hankel transform of order zero (cf. [11]), so that f(r) =

(2π)−1
∫∞

0 f̂(ρ)J0(ρr)ρ dρ. Upon using the well-known inverse Hankel trans-

form (cf. [11]) ∫ ∞
0

e−ρ
2e−2s

ρJ0(ρr) dρ =
1

2
e2s− r

2 e2s

4 ,

and the fact that

1

ρ2
(1− e−

ρ2

4η2 ) = 2

∫ ∞
ln(2η)

e−ρ
2e−2s−2sds ,

we calculate the inverse Fourier transform of 1
ρ2

(1− e−
ρ2

4η2 ) as

1

2π

∫ ∞
0

(
1

ρ2
(1− e−

ρ2

4η2 ))J0(ρr)ρ dρ =
1

2π

∫ ∞
0

(

∫ ∞
ln(2η)

2e−ρ
2e−2s−2s ds)J0(ρr)ρ dρ

61



5.2. Stability Threshold and the Optimal Lattice Arrangement

=
1

π

∫ ∞
ln(2η)

e−2s

(∫ ∞
0

e−ρ
2e−2s

ρJ0(ρr) dρ

)
ds =

1

2π

∫ ∞
ln(2η)

e−2se2s− r
2

4
e2s ds

=
1

2π

∫ ∞
ln(2η))

e−
r2

4
e2s ds .

Thus, we conclude that F−1( 1
|ξ|2 (1 − e−

|ξ|2

4η2 )) = Fsing(x), which completes

the proof of the lemma.

We remark here that the series over the reciprocal lattice Λ∗, given by

the left hand-side of (5.8), is only conditionally convergent, while the series

over the original lattice Λ, given by the right hand-side of (5.8), converges

absolutely and we denote it by

Gspatial(x) =
∑
l∈Λ

Fsing(x+ l)eik·l . (5.10)

In this way, we have an explicit expression for the Bloch Green func-

tion G0,k = G(x), and have separated it into the sum of two absolutely

convergent series as

G(x) = GFourier(x) +Gspatial(x) . (5.11)

We remark here that strictly speaking the demonstration above is not com-

pletely rigorous. The Poisson summation formula proved previously requires

that the function to be in L1, but Gfree(x) is not. The way to circumvent

this technical difficulty is to first define the two absolutely convergent se-

ries GFourier(x) and Gspatial(x) as in (5.7) and (5.10). Then, we define

G(x) = GFourier(x) + Gspatial(x) and simply prove it satisfies the differen-

tial equation and the quasi periodic boundary conditions. Notice that G(x)

is independent of the choice of η since ∀x ∈ Ω\0,

GFourier(x) +Gspatial(x) =
∑
d∈Λ∗

eix·(d−k)

|d− k|2
e
− |d−k|

2

4η2 +
eix·(d−k)

|d− k|2
(1− e−

|d−k|2

4η2 ) ,

=
∑
d∈Λ∗

eix·(d−k)

|d− k|2
,

62



5.2. Stability Threshold and the Optimal Lattice Arrangement

which is independent of η.

Next we calculate the singular behaviour of G(x) as x → 0. The term

GFourier(0) is finite so this term is readily calculated. However, in the series

Gspatial(x), there is a singularity as x → 0 for the term corresponding to

l = 0, owing to the fact that the exponential integral E1(z) has a singularity

at 0. Upon using the well-known series expansion of E1(z)

E1(z) = −γ − ln(z)−
∞∑
n=1

(−1)nzn

nn!
, | arg z| < π , (5.12)

as given in §5.1.11 of [1], where γ = 0.57721 · · · is Euler’s constant, we derive

that

Fsing(x) ∼ − γ

4π
− ln η

2π
− ln |x|

2π
+ o(1), as x→ 0. (5.13)

This shows that G(x) has the expected logarithmic singularity as x → 0,

and that the regular part of the Bloch Green’s function is

R0,k = lim
x→0

(
G(x) +

1

2π
ln |x|

)
, (5.14)

=
∑
d∈Λ∗

1

|d− k|2
e
− |d−k|

2

4η2 +
∑
l∈Λ\0

eik·lFsing(l)−
γ

4π
− ln η

2π
.

We remark here that if we take conjugate of this expression, we get the

same quantity due to the symmetry of the lattice. This gives an alternative

proof that R0,k is real-valued. In addition, since R0,k only depends on Ω

and k, the expression above should be independent of the choice of η. To

establish this result, we take the derivative of (5.14) with respect to η and

prove it vanishes. Upon differentiating (5.14), we obtain

∂

∂η
R0,k =

∑
d∈Λ∗

1

2η3
e
− |d−k|

2

4η2 − 1

2πη

∑
l∈Λ\0

e−|l|
2η2eik·l − 1

2πη
. (5.15)
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To show that this expression vanishes, it is equivalent to show that

∑
d∈Λ∗

π

η2
e
− |x−d|

2

4η2 = 1 +
∑
l∈Λ\0

e−|l|
2η2eix·l =

∑
l∈Λ

e−|l|
2η2eix·l. (5.16)

Notice that the left hand-side is an absolutely convergent series and an

integrable function due to the exponential decay. Thus, as we have shown in

(2.2), it can be decomposed into a Fourier series of eix·l, where l ∈ (Λ∗)∗ = Λ

and the coefficient of eix·l is calculated as

1

|Ω∗|

∫
Ω∗
f(y)e−iy·l dy =

1

|Ω∗|

∫
Ω∗

(
∑
d∈Λ∗

π

η2
e
− |y−d|

2

4η2 )e−iy·l dy

(∀d ∈ Ω∗, ∀l ∈ Ω, l · d = 2kπ, k ∈ Z) =
1

|Ω∗|

∫
R2

π

η2
e
− |y|

2

4η2 e−iy·l dy

(the Fourier transform of a Gaussian) =
1

|Ω∗|
π

η2
4πη2e−|l|

2η2

(|Ω| = 1, then |Ω∗| = 4π2) = e−|l|
2η2 .

This establishes that ∂
∂ηR0,k = 0, which yields that R0,k is independent of

η.

The explicit expression (5.14) provides a way to calculate R0,k numer-

ically. Since the two series converge absolutely, for a fixed lattice Λ with

|Ω| = 1, we can truncate Λ, Λ∗ by a finite subset to get a good approxi-

mation of R0,k. We then minimize it numerically over k ∈ Ω∗\0. Notice

that Lemma 2 is useful here since it tells us that R0,k blows up as k → 0,

thus we can minimize it away from 0. Then, we change the lattice and

maximize R(Λ) ≡ mink∈Ω∗\0{R0,k} over different lattices with |Ω| = 1. The

numerical results shown in [8] indicates that R(Λ) is maximized for a regular

hexagonal lattice Λop and that R(Λ∗) = −0.079124. For a regular hexagonal

lattice, Table 5.1 compares the numerical results for the stability threshold,

measured in terms of the source strength, and the corresponding one- and

two-term asymptotic approximations.
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5.3. Case Study: N Peaks on a Ring

Lattice Sc Leading order Two term approximation

ε = 0.1 1.3854 1.3603 1.3706

ε = 0.01 0.4306 0.4302 0.430526

Table 5.1: Source strength threshold and its asymptotic approximation for
a regular hexagonal lattice with |Ω| = 1 and f = 0.4.

5.3 Case Study: N Peaks on a Ring

In this section, we implement our stability theory for the finite domain for

a particular arrangement of spots inside the unit disk Ω = D1. We take 5

points {xi}5i=1 equally distributed on a circle of radius 0.5 concentric within

the unit disk, as shown in Figure 5.3. The centers of the localized spots

corresponds to the locations of these points.

Figure 5.3: 5 localized spots on a ring concentric within the unit disk.

For this special symmetric configuration of 5 equally-spaced spots on

a ring, the corresponding Neumann Green matrix G has a constant row

sum, which implies that e is an eigenvector of G. This spot configuration

consisting of equally-spaced spots is one of the simplest ways to ensure that
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5.3. Case Study: N Peaks on a Ring

e is an eigenvector of G.

For the unit disk, there is an explicit formula for the Neumann Green’s

function G0(x, ξ) and its regular part. As derived in [9], we have

G0(x, ξ) =
1

2π
(− ln |x− ξ| − ln ||ξ|x− 1

|ξ|
ξ|+ 1

2
(|x|2 + |ξ|2)− 3

4
) , (5.17)

and thus the regular part R0(x) is given by

R0(x) =
1

2π
(− ln ||x|x− 1

|x|
x|+ |x|2 − 3

4
) . (5.18)

Without loss of generality we label the spot locations xi on the ring

as xi = (1
2 cos 2π(i−1)

5 , 1
2 sin 2π(i−1)

5 )T , for i = 1, 2, ..., 5. We then substitute

this into (5.17) and (5.18) to obtain G. By using Matlab, we numerically

calculate all of the eigenvalues of G as k1 = −0.2126, k2 = k3 = 0.1392,

and k4 = k5 = −0.1174. Next, we choose the smallest eigenvalue other than

the one that corresponding to e. This is the eigenvalue k4 = k5 = −0.1174,

which we then use to calculate the stability threshold in terms of the source

strength. This allows us to numerically evaluate the second order term in

the stability threshold. The full numerical results for the stability threshold,

measured in terms of the source strength, are compared versus the one- and

two-term asymptotic results in Table 5.2.

Lattice Sc Leading order Two term approximation

ε = 0.05 0.9742 0.9713 0.9619

ε = 0.02 0.6110 0.6083 0.6107

Table 5.2: The stability threshold in terms of the source strength S and its
one- and two-term asymptotic approximation for a 5 spot pattern on a ring
of radius 0.5 concentric within the unit disk with f = 0.4.

We remark that in this case, there is an analytical way to determine the

eigenvalues of the Neumann Green matrix G. Since this matrix is cyclic,

its eigenvectors are qi = (1, ωi−1, (ωi−1)2, ..., (ωi−1)n−1)T , for i = 1, 2, ..., n,

while the corresponding eigenvalue is f(ωi−1), where ω is the n-th root of
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5.3. Case Study: N Peaks on a Ring

unity. Here f(x) =
∑n

k=1 ckx
k−1 and (c1, c2, ..., cn) is the first row of G.

We can calculate the eigenvalues in this way and obtain the same results as

given above by a direct numerical calculation of the eigenvalues by Matlab.
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Chapter 6

Summary

In this thesis we have studied the linear stability of steady-state localized

spot patterns for a singularly perturbed Brusselator reaction-diffusion sys-

tem in both a periodic and finite domain setting. For both problems, there

is a stability threshold Dc ∼ O(− 1
ln ε) that characterizes a zero eigenvalue

crossing. We have calculated a two term asymptotic approximation for

Dc through an asymptotic solution of a singularly perturbed linear eigen-

value problem. In the periodic setting, we first use Floquet-Bloch theory to

convert the whole plane problem into a problem posed on a primitive cell

together with the Bloch boundary conditions. Then we obtain the leading

order approximation for Dc by analyzing a leading order nonlocal eigenvalue

problem (NLEP) derived using the method of matched asymptotic expan-

sions. This leading order NLEP is independent of the geometry of the lattice

Λ and the Bloch vector k. In order to characterize the effect of the lattice

and the Bloch vector on the stability threshold, we calculated a higher or-

der approximation for Dc by imposing a solvability condition to the next

order equations. The calculation leads to a formula for a real-valued contin-

uous band of spectra of the linearization that lies within a small ball near

the origin in the spectral plane when D is near the leading order stability

threshold. The refined approximation to the stability threshold is obtained

from the requirement that this band of spectrum lies in the left half of the

spectral plane. The correction to the leading order stability threshold ob-

tained in this way depends on the regular part R0,k of the Bloch Green

function, which in turn is determined by the lattice and the Bloch vector k.

An explicit formula for R0,k is also derived for numerical computation using

Ewald summation methods. This formula is used to determine the optimal

lattice arrangement which allows for the largest stability threshold.
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Chapter 6. Summary

The analysis for the finite domain problem is similar, with the key dif-

ference being that the N spots interact with each other through a Neumann

Green matrix G. For a pattern with arbitrarily-located spots, this leads us

to analyze N distinct problems, one near each of the spots. For simplicity,

we restrict the locations of the spots so that the spots have a common source

strength. In this way, the local problem near each of the spots is the same.

By decomposing the solution to the linearized problem into the directions

of the eigenvectors of G, the analysis becomes very similar to that for the

periodic problem. More specifically, we obtain the leading order approxima-

tion for the stability threshold through an NLEP that is the same in each

of N − 1 directions. We then calculate the second order approximation by

imposing a solvability condition in each direction on the second order terms.

This higher order approximation to the stability threshold depends on the

matrix eigenvalues of G.

For both the periodic and finite domain problems, we also provide a quick

way to derive the stability threshold, which avoids any detailed calculation

of spectra near the origin in the spectral plane. This simplified analysis

shows that the stability threshold can be determined by solving a nonlinear

equation. Numerical comparison between the two-term approximation for

the stability threshold in terms of the source strength Sc and the results

obtained from solving the nonlinear equation is provided. For the finite

domain problem we illustrate our theory for a case study of N = 5 equally-

spaced localized spots on a circular ring that is concentric with the unit

disk.

There are some open problems suggested by this study. Firstly, for

the periodic case, numerical evidence obtained from computing the regular

part of the Bloch Green’s function indicates that it is the regular hexago-

nal lattice that offers the optimum stability threshold. However, it would

be preferable to obtain a rigorous analytic proof of this result. Secondly,

although we have employed a systematic asymptotic method to calculate a

refined approximation to the stability threshold for the finite domain prob-

lem, it would be interesting to extend the rigorous leading-order analysis in

[16] to rigorously derive the second order term for the stability threshold.
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Chapter 6. Summary

Thirdly, it would be interesting to try to extend the rigorous framework

of [16] to rigorously analyze the periodic problem. The technical difficulty

here is that, in contrast to the finite domain problems considered in [16] that

have discrete spectra, the periodic problem requires analyzing the edges of

a band of continuous spectra. Fourthly, it would be interesting to give a

precise relationship between the stability threshold for a multi-spot pattern

with regularly spaced spots on a very large but finite domain and that for

the periodic problem. It is expected that the stability thresholds for these

two problems would be similar, with the only difference being essentially

the perturbing effect of a distant domain boundary. More specifically, upon

comparing the stability thresholds for the periodic and finite domain prob-

lems, we identify a formal correspondence that the regular part of the Bloch

Green function R0,k is replaced by the eigenvalues ki of the Neumann Green

matrix. Since we may view the periodic case as the limit of a truncated

lattice, i.e. ΛN = {n1l1 + n2l2||ni| ≤ N, i = 1, 2}, the question then is

how do the matrix eigenvalues ki approximate, or discretize, the continuous

band R0,k? Finally, we remark that the analysis in this thesis has focused

on determining refined formulae for the stability thresholds associated with

O(1) eigenvalues that result from zero eigenvalue crossings. However, it is

well-known that there are additional small eigenvalues of order λ ∼ O(ε2)

that are associated with the translation modes. Unstable eigenvalues in this

class lead to weak instabilities that are only manifested over very long time

intervals. It would be interesting to calculate the stability thresholds for

these eigenvalues for both the periodic and finite domain problems. For the

finite domain problem, a leading order analysis of these eigenvalues is given

in [16] for a related Gierer-Meinhardt reaction-diffusion system.
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