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0 Introduction

The purpose of this article is to show how congruences between the Fourier coefficients of Hecke eigenforms
give rise to corresponding congruences between the algebraic parts of the critical values of the associated
L-functions. This study was initiated by B. Mazur in his fundamental work on the Eisenstein ideal (see
[Maz77] and [Maz79]) where it was made clear that congruences for analytic L-values were closely related to
the integral structure of certain Hecke rings and cohomology groups. The results of [Maz79] also showed that
congruences were useful in the study of nonvanishing of L-functions. This idea was then further developed
by Stevens [Ste82] and Rubin-Wiles [RW82]. The work of Rubin and Wiles, in particular, used congruences
to study the behavior of elliptic curves in towers of cyclotomic fields. A key ingredient here was a theorem
of Washington, which states, roughly, that almost L-values in certain families are nonzero modulo p.

This theme has recently been taken up again, in the work of Ono-Skinner [OSa], [OSb], James [Jam],
and Kohnen [Koh97]. While the earlier history was primarily concerned with cyclotomic twists, the current
emphasis is on families of twists by quadratic characters. Here one wants quantitative estimates for the
number of quadratic twists of a given modular form, which have nonvanishing L-function at s = 1. We
continue this trend in the present work by using our general results to obtain a strong nonvanishing theorem
for the quadratic twists of modular elliptic curves with rational points of order three. This generalizes a
beautiful example due to Kevin James, and provides new evidence for a conjecture of Goldfeld [Gol79]. It
should, however, be pointed out that even the study of quadratic twists may be traced back to Mazur: the
reader is urged to look at pages 212–213 of [Maz79], and especially at the footnote at the bottom of page
213. The theorems of Davenport-Heilbronn [DH71] and Washington [Was78], which are crucial in this paper,
are both mentioned in Mazur’s article.

We want to begin by discussing the congruences that lie at the heart of this article. Thus let f =
∑
anq

n

be an elliptic modular cuspform of level M and weight k ≥ 2. Assume that f is a simultaneous eigenform for
all the Hecke operators and that a1(f) = 1. The L-function associated to f is defined by the Dirichlet series
L(s, f) =

∑
ann

−s, which converges for the real part of s sufficiently large, and has analytic continuation
to s ∈ C. A fundamental theorem of Shimura [Shi76] states that L(s, f) enjoys the following algebraicity
property:
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Theorem (0.1) (Shimura). There exist complex periods Ω±
f such that, for each integer m satisfying 0 ≤

m ≤ k − 2, and every Dirichlet character χ, the quantity

τ (χ) ·m!
L(m + 1, f, χ)
(−2πi)m+1Ω±

f

is algebraic. Here the sign ± of Ω± is determined by ±1 = χ(−1), and τ (χ) denotes the Gauss sum of χ.

The integers m appearing in Shimura’s theorem are said to be critical for L(s, f).
Now consider another eigenform g =

∑
bnq

n, where the Fourier coefficients bn are related to those of f
by a congruence:

an ≡ bn (mod p),

for a prime ideal p in the ring of all algebraic integers (we need to fix an embedding of the algebraic closure Q
of Q into C). Then general arguments from Iwasawa theory [Gre89], [Coa91], [BK90], suggest that algebraic
parts of special values should reflect algebraic properties, so that for critical m, there should be a congruence

τ (χ) ·m!
L(m + 1, f, χ)
(−2πi)m+1Ω±

f

≡ τ (χ) ·m!
L(m+ 1, g, χ)
(−2πi)m+1Ω±

g
(mod p). (1)

Of course the crucial ingredient in proving such congruences is the determination of the periods Ω±
∗ , since

Shimura’s theorem only specifies them up to an algebraic constant. A related question arises in the definition
of p-adic L-functions in Iwasawa theory, where one needs to specify these periods up to p-adic unit [Gre89],
[Coa91].

In this article we show how to define canonical periods for cuspforms (canonical up to p-adic unit) and
show how to derive the corresponding congruences. As we have already mentioned, results of this variety
have been proven by a number of authors. However, we are able to subsume the previous works into a
rather general frame: we show how all such congruences follow in a formal way from a sufficiently precise
description of the Hecke-module structure of the cohomology with coefficients of the appropriate modular
curves. The utility of these cohomology groups is already apparent in [AS86]. The specific condition we need
is closely related to the ‘multiplicity one’ results introduced by Mazur, and, thanks to the work of Ribet,
Wiles, and others, we are able to verify its validity in rather general situations. For example we have the
following result:

Theorem (0.2). Let p be an odd prime, and let f =
∑
anq

n and g = bnqn be cuspidal newforms of weight
2 on Γ1(M), such that an ≡ bn (mod pr), for some prime p above p in Q. Assume that (M, p) = 1 and that
the residual representation attached to f is irreducible. Fix an isomorphism Cp

∼= C, such that the prime
p of Q ⊂ C induces the usual absolute value on Cp. Then there exist canonical periods Ω±

f and Ω±
g such

that the congruence (1) holds modulo pr, for every character χ. There exists χ such that both sides of the
congruence are nonzero modulo p.

The organisation of this paper is as follows. The first section treats the case of residually irreducible forms,
where there are no congruences with Eisenstein series. In an effort to obtain the most general statement, we
state the hypothesis on the cohomology as an axiom, prove our main theorems under the this axiom, and
conclude by giving a list of conditions under which the axiom is valid.

The second section is concerned with the case of residually reducible forms, where congruences with
Eisenstein series may occur. The results in this setting are less satisfactory, as the Hecke-module structure
of the cohomology is not well understood. Nevertheless, a considerable amount can be salvaged, and results
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similar to (0.2) are obtained. We conclude this section by showing that the L-values of a cuspform whose
Fourier coefficients are congruent to those of an Eisenstein series has the property that its L-values are
congruent to certain products of Bernoulli numbers. This is a refinement of a theorem due to Mazur and
Stevens [Maz79], [Ste82].

The final section of the paper gives an application to nonvanishing theorems for modular L-functions.
To state the problem we will investigate, let f be a modular cuspform even weight k = 2m. Let D be a
square-free integer, and let χD denote the Kronecker character associated to the quadratic field Q(

√
D). For

a positive real number X, define the number

Mf (X) = #{D : |D| < X, L(m, f ⊗ χD) �= 0}.

Then a well-known conjecture in analytic number theory states that Mf(X) � X. There are a number of
partial results in this direction, due to Murty-Murty [MM91], Iwaniec [Iwa90], and others; currently the best
estimate is due to Ono and Skinner [OSb] who prove that Mf (X) � X/ log(X).

In the case where f has weight 2 and corresponds to an elliptic curve over Q, Goldfeld has conjectured
that Mf (X) ∼ X/2 (see [Gol79] for a more precise statement). A recent example due to Kevin James [Jam]
shows that Mf(X) � X for a certain elliptic curve of level 14. In this paper we will extend James’ ideas to
obtain the following result:

Theorem (0.3). Let C be a modular elliptic curve over Q with a rational point of order three. Assume
that C has good ordinary reduction at 3, and that the conductor N of C is square-free. Let f be the newform
assosciated to C; then we have Mf(X) � X.

The proof of the theorem is based on a mod 3 relationship between the algebraic part of L(1, χD) and the
class-number of the field Q(

√
D), which follows from the general congruence machinery developed in the

second section. The estimate onMf(X) then follows from a theorem of Davenport and Heilbronn, as refined
by Nakagawa and Horie [NH88]. This application of the Davenport-Heilbronn theorem is due to James,
whose work gave a version of our theorem for the curve 14B in Cremona’s tables. It should be pointed
out that James relates the L-values to class numbers by using Waldspurger’s theorem and the Shimura lift
rather than the theory of congruences. His technique has also been exploited by Kohnen [Koh97] to obtain
nonvanishing results for certain forms of level 1, including the Ramanujan ∆-function.

The author would like to thank K. Ono, C. Skinner, and A. Wiles for some useful conversations. Particular
thanks are due to Ono, who brought the work of James to our attention.

Notation and Hypotheses

Let p be an odd prime, andN a positive integer prime to p. We setM = Nps for a non-negative integer s, and
assume throughout that M ≥ 4. Let Γ denote the group Γ1(M). Then our hypothesis that M ≥ 4 implies
that Γ is torsion-free. Let X be the Riemann surface given by the (complete) modular curve corresponding
to Γ. Let C denote the set of cusps on X. We may identify C with the set P1(Q)/Γ. We will follow the
notations and conventions of Stevens [Ste82], Chapter 1, in dealing with the cusps.

We also fix an isomorphism Cp
∼= C, together with an embedding Q ↪→ C. We let K denote a finite

extension of the field Qp and write O for the ring of integers in K. We write π for a generator of the maximal
ideal of O, and put F = O/π. We will write Fp for the field with p elements.

We also want to recall some notation from Eichler-Shimura theory, as it is fundamental to what follows.
For a ring A and a non-negative integer n we denote by Ln(A) the symmetric polynomial algebra over A of
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of degree n. Thus Ln(A) consists of the homogeneous polynomials of degree n, with coefficients in A. The
group Σ = GL2(Q) ∩M2(Z) acts on Ln(A) by

γ : P (X, Y ) �→ P ((X, Y ) det(γ)γ−1).

Thus we may form the Eichler-Shimura cohomology groups H1(Γ, Ln(A)) and the parabolic subgroups
H1

p (Γ, Ln(A)) (see [DI95], §12). Now let k ≥ 2 be an integer, and let A be a subring of C (or Cp). Let Sk(A)
denote the space of cusp forms on Γ with Fourier coefficients in A. Then Sk(A) is stable under the Hecke
operators. If we write Tk = T(A) for the A-algebra generated by the Hecke operators in the endomorphism
ring of Sk(A), then Tk acts on the torsion-free parts of H1(Γ, Ln(A)) and H1

p (Γ, Ln(A)), for n = k − 2.
Given a weight k modular form f(z) for Γ, we define a differential form with values in Ln(C) by

ωf = f(z)(zX + Y )ndz. (2)

Then
γ �→

∫ γz0

zo

ωf

defines a 1-cocycle on Γ, with values in Ln(C). If f(z) is a cuspform then the class of ωf is lies in the
parabolic subgroup. Here z0 is any basepoint in the upper half-plane H.

1 The Irreducible Case

(1.1). Let f =
∑
anq

n, g =
∑
bnq

n be normalized Hecke eigenforms on Γ of weight k ≥ 2, with coefficients
in O, and such that

an ≡ bn (mod πr)

for some integer r ≥ 1. We do not assume at present that either f or g is a newform; the reasons for this
will become clear in the sequel. Let Tk denote the O-algebra generated by the Hecke operators acting on
Sk = Sk(Γ,O). Then the congruence class of f and g in Sk determines a maximal ideal m of Tk, and a
residual representation

ρm : Gal (Q/Q) → GL2(Tk/m)

such that Tr (Frob (q)) = Tq for all primes q with (Np, q) = 1. In this section we assume that ρm is irreducible.
This implies in particular that f and g are both cuspidal. The ring Tk,m ⊗Q is an Artin algebra, and there
are surjective K-algebra homomorphisms

πf , πg : Tk,m ⊗Q → K

determined by f and g. The ring Tk,m ⊗ Q decomposes as a product of local Artin rings, and there are
unique local factors Rf and Rg such that πf , πg factor through Rf , Rg respectively.

The Hecke algebra Tk acts on H1(Γ, Ln(O)), and we write H1(Γ, Ln(O))m for the localization at m. We
may decompose H1(X,Ln(O)) further as H1(Γ, Ln(O)) = H1(Γ, Ln(O))+ ⊕ H1(Γ, Ln(O))−, according to
the action of complex conjugation.

(1.2). In this section we describe the axioms under which we will prove our main theorem. Here we will
simply state the conditions: a diverse list of hypotheses under which they may be verified is given at the end
of this section. It is our hope that this sort of axiomatization will make clear the structure of the proof, and
facilitate the applications.

The conditions are
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1. Rf = Rg = K, and

2. There exist isomorphisms of Tk-modules

ϕ± : H1(Γ, Ln(O))±m = H1
p (Γ, Ln(O))±m ∼= T∗

k,m = HomO(Tk,m,O)m.

In particular, H1(Γ, Ln(O)) is torsion-free.

The first condition will be satisfied if, for example, both f and g are new of level M , but can often be
checked in other situations. The second condition however is more delicate, and may fail for the simple
reason that there is nontrivial O-torsion in the cohomology group. It may therefore be preferable to modify
Condition 2 by replacing H1(Γ, Ln(O)) with its image in H1(Γ, Ln(K)). The arguments in this paper will
then go through with only minor modifications. However, we are not aware of any examples where the
weaker condition holds but the stronger one does not. Note also that the identification of group cohomology
and parabolic cohomology at m is a consequence of the irreducibility of ρm.

We assume from now on that these conditions hold.

(1.3). We now need to recall the duality between cusp forms and the Hecke rings, referring the reader
to [DI95], §12 for details. With notation as in [DI95], there is a natural pairing Tk × Sk → O given by
(t, h) �→ a1(, h|t), and it can be shown ([DI95], Prop 12.4.13) that this pairing induces an isomorphism of
Tk-modules

Sk(O) ∼= T∗
k = HomO(Tk,O).

We may therefore reformulate condition 2 above as follows: there exist isomorphisms

θ± : H1(Γ, Ln(O))±m ∼= Sk(O)m. (3)

Given a modular form h in Sk(O)m, we define cocycles δ±h by θ±(δ±h ) = h. Since we have f ≡ g (mod πr),
we will have

δ±f ≡ δ±g (mod πr) (4)

for each choice of sign.
On the other hand, the recipe given in (2) shows that the modular forms f and g give rise to certain vector-

valued differential forms on H and cohomology classes ωf and ωg in H1(Γ, Ln(C)). The cohomology classes
ωf and ωg will be eigenvectors for the Hecke operators, with the same eigenvalues as f and g respectively.
If we write ω±

∗ for the projection to the ±-part (here the star denotes either f or g) our Condition 1 then
implies that there exist complex numbers Ω±

f and Ω±
g such that

ω±
∗ = Ω±

∗ δ
±
∗ . (5)

The numbers Ω±
∗ are the canonical periods alluded to in the title. We note, however, they are only

determined up to p-adic units, the dependence coming from the choice of isomorphism in Condition 2.
Strictly speaking, the periods also depend on the maximal ideal m. It can be shown, however, that if the
cuspform f corresponds to a modular elliptic curve E, then the canonical periods coincide with the usual
Néron periods on E.
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(1.4). Now we make explicit the connection with L-values. Roughly speaking, the algebraic parts of the
L-functions attached to f and g are given by the integrals of the classes δ±∗ against suitable homology classes,
and the congruence (4) we have exhibited between δ±f and δ±g leads to the congruences for the special values.
To make this explicit, we introduce some notation. Let χ be a nontrivial Dirichlet character, of conductor
D, and let Z(χ) denote the ring obtained by adjoining to Z the values of χ. We define a relative homology
class

Λ(χ) ∈ H1(X,Cusps;Z(χ))

as follows. For a pair x, y of cusps we let {x, y} denote the relative homology class generated by the projection
to X of the geodesic path in the upper-half-plane joining x and y. Then the class Λ(χ) is defined by the
formula

Λ(χ) =
D−1∑
a=0

χ(a) · { a
D
, i∞} (6)

The paths {a/D, i∞} are vertical lines. There is a natural injection

H1(X,Z(χ)) ↪→ H1(X,Cusps;Z(χ)),

and a simple computation using the relative homology sequence and the boundary operator (see [Ste82],
page 28) shows that Λ(χ) actually represents a class in H1(X,Z(χ)) when the conductor D is prime to the
level. The action of complex conjugation on homology gives a splitting

H1(X,Z(χ)) = H1(X,Z(χ))+ ⊕H1(X,Z(χ))−,

and if α = ± is such that χ(−1) = (−1)α, then one checks without difficulty that Λ(χ) lies in H1(X,Z(χ))α.
When the weight k = 2, an easy computation shows that for any χ we have∫

Λ(χ)

ω±
∗ = τ (χ) · L(1, ∗, χ)

(−2πi)
. (7)

Here the number L(1, ∗, χ) is the value at s = m of the L-function of ∗, twisted by the character χ, and τ (χ)
denotes the Gauss sum of χ. Note also that the integral is zero if the parity of χ does not agree with that
of ω∗.

It is convenient to take an alternative approach when dealing with forms of higher weight. The key tool
is the theory of modular symbols, as described in [GS93] §4. The following discussion is only a summary,
and we refer the reader to [GS93] for a more detailed discussion and [AS86] for the proofs.

(1.5). Let R be a ring, and let A be an R[Γ]-module with Hecke action (this amounts to the restriction that
R be a contravariant R[Σ]-module, in the notation of [GS93]). Let D denote the group of divisors supported
on the cusps P1(Q). Let D0 denote the subgroup of divisors of degree zero. Let SΓ(A) = Hom Γ(D0, A)
denote the group of modular symbols, and let BΓ(A) = Hom Γ(D, A) denote the boundary symbols. There
is an isomorphism

H1
c (Y, Ã) = SΓ(A), (8)
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where Ã is the local coefficient system associated to A on Y = Γ/H, and the subscript ‘c’ denotes cohomology
with compact supports. Furthermore, there is an exact sequence

0 → H0(Γ, A) → BΓ(A) → SΓ(A) → H1
p(Γ, A) → 0. (9)

Here H1
p (Γ, A) denotes the parabolic cohomology group Recall that H1

p (Γ, A) coincides with the image
of the compactly supported cohomology under the composite H1

c (Y, Ã) → H1(Y, Ã) = H1(Γ, A).
Given a modular symbol Φ ∈ SΓ(A), we define the special value L(Φ) ∈ A by

L(Φ) = Φ({i∞}− {0}).

If χ is a primitive Dirichlet character with conductor m ≥ 1, we define the twisted special value L(Φ, χ) by
L(Φ, χ) = L(Φ|Rχ), where the twist operator is defined by

Φ|Rχ =
m−1∑
a=0

χ(a)Φ|
(

1 a/m
0 1

)
∈ SΓ′(A),

for a suitable group Γ′. Given a cuspform f for Γ, we may define a modular symbol Φf with values in Ln(C)
by the formula

Φf({c1} − {c2}) =
∫ c1

c2

ωf .

(1.6). Now we want to specialize this to the case of interest. Let ∗ denote either of the modular forms f or
g as before. Then the differential forms ω±

∗ define parabolic group cohomology classes with values in Ln(C).
We want to use (9) to lift these to modular symbols. To do this we use the Manin-Drinfeld argument. Let
q be a prime congruent to 1 modulo Np, and let ηq denote the Hecke operator Tq − 1− < q >. Arguing as
in [GS93], Lemma 6.9b, we see that ηq kills the boundary symbols. Thus we define a modular symbol by
lifting ω±

∗ to SΓ and then applying ηq. We obtain a modular symbol Φ±
∗ with values in Ln(C), whose special

values are given by

ηq(∗) · L(Φ±
∗ , χ) = L(∗, χ) =

(
. . . , τ(χ)

(
k − 2
m

)
m!
L(m+ 1, f, χ)
(−2πi)m+1Ωα

, . . .

)
(10)

We now repeat this procedure with the cohomology classes δ±∗ . Since ηq is an integral Hecke operator, it
acts on integral cohomology, and we obtain modular symbols ∆±

∗ with values in Ln(O), and we will have
∆±

f ≡ ∆±
g (mod πr). Naturality of the sequence (9) then implies the following algebraicity result:

ηq(∗)
L(∗, χ)
Ω±

∗
= L(∆±

∗ , χ) ∈ Ln(O). (11)

Observe that the quantity ηq(∗) is algebraic. Under the hypothesis that the maximal ideal m is residually
irreducible, it is easy to see that we may choose q so that ηq(∗) is a p-adic unit, for both f and g. Since we
clearly have ηq(f) ≡ ηq(g) (mod πr), and both sides are p-adic units, we obtain the following proposition:

Proposition (1.7). Let f and g be as above, so that f ≡ g (mod πr) and the maximal ideal m is irreducible.
Let χ be a Dirichlet character (we do not assume that the conductor is prime to the level), and let the sign
α = ± be determined by ±1 = χ(−1). Then for each integer m satisfying 0 ≤ m ≤ k − 2, we have the
congruence

τ (χ) ·
(
k − 2
m

)
m!
L(m+ 1, f, χ)
(−2πi)m+1Ωα

f

≡ τ (χ) ·
(
k − 2
m− 1

)
m!
L(m+ 1, g, χ)
(−2πi)m+1Ωα

g

(mod πr).
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Remark (1.8). The reader will note that the binomial coefficients in the formulae above are not generally
p-adic units, except when m = 0. However, we can refine the congruences to obtain more precise information
at the points m > 1 in the ordinary case by using properties of p-adic L-functions, as we now explain.

(1.9). We want to prove that the p-adic L-functions for f and g satisfy a congruence modulo πr. We assume
that f and g are p-stabilized newforms of level Npr, so that r ≥ 1 and the eigenvalue of Up is a unit in
Tk,m. Let u be a topological generator of the multiplicative group 1 + pZp. Let χ be a nontrivial character,
with conductor prime to N . Let ζ be a p-power root of unity, and define a Dirichlet character ξ by putting
ξ(u) = ζ and ξ((Z/pZ)×) = 1. Finally, for ∗ = f or ∗ = g, define a quantity βp(∗) as the (unit) eigenvalue of
Up on ∗. Then the p-adic L-function for ∗ and χ is a power series Lp(∗, χ, X) ∈ O(χ)[[X]] characterised by
the following interpolation formula: for all pairs ζ,m such that the p-part of χξω−m is nontrivial, we have

Lp(f, χ, ζum+1 − 1) = τ (χξωm) ·
(
pm

βp(∗)

)t

·m!
L(m+ 1, ∗, χξω−m)

(−2πi)m+1 · Ωα
∗
. (12)

Here pt is the p-part of the conductor of χξω−m. If on the other hand the p-part of χξω−m is trivial, then,
letting (χξω−m)0 denote the associated primitive character, we have

Lp(∗, χ, ζum+1 − 1) = (1 − (χξω−m)0(p)βp(∗)−1pm)
L(m+ 1, ∗, χξω−m)

(−2πi)m+1Ωα
∗

. (13)

Since Lp(∗, χ, X) is an integral power series, it is completely characterised by the above formulae. We refer
the reader to [MTT86] for a proof of the existence. Note also that there is a choice of complex period implicit
in the definition, and that choosing a different period scales the function by a constant; one has to choose
the periods correctly if one wants to have a congruence. At any rate, our main result is the following:

Theorem (1.10). The p-adic L-functions of f and g are congruent in the sense that

Φ(X) = Lp(f, χ,X)− Lp(g, χ,X)

is divisible by πr in O(χ)[[X]].

Proof. The easiest way to see this is via the Weierstrass preparation theorem. We may write

Φ(X) = B · U(X) · F (X),

where B is a constant, U(X) is an invertible power series, and F (X) is a distinguished polynomial (note
O(χ) may be ramified over O, so that π need not be a uniformizer). We have to show that πr divides B,
under the hypothesis that Φ(X) takes on values divisible by πr for all but finitely many points X = ζu − 1
(this follows from the congruences already proven at s = 1). By changing variables we may assume that
Φ(ζ − 1) is divisible by πr for all but finitely many ζ.

Suppose B is not divisible by πr ; then since O(χ) is a DVR, B must divide πr . Dividing out by B, we
may assume that Φ(X) = U(X) · F (X), for a unit U(X) and a distinguished polynomial F (X), where F is
such that it takes on values divisible by some nonunit A = πrb−1 at all but finitely many points X = ζ − 1.
Since U(X) is a unit, we may even assume that Φ(X) = Xs + a1Xs−1 + · · · + as, where the ai all have
positive valuation. One checks easily that if the order of ζ is sufficiently large, then the valuation of such a
polynomial at ζ − 1 coincides with that of the leading term (ζ − 1)s, and this approaches zero as the order
of ζ approaches infinity. This is a contradiction, and proves the contention.
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Corollary (1.11). Let the hypotheses on f and g be as in the above propostition. Then, for each χ with
conductor prime to N , we have

τ (χ) ·m!
L(m+ 1, f, χ)
(−2πi)m+1Ωα

f

≡ τ (χ) ·m!
L(m+ 1, f, χ)
(−2πi)m+1Ωα

g

(mod πr)

for each integer m satisfying 0 ≤ m ≤ k − 2.

Proof. Apply the theorem to Lp(f, χωr) and Lp(g, χωr) for suitable r, and use the interpolation property of
the p-adic L-function. Note that the Euler factor in (13) is a p-adic unit.

Remark (1.12). We want to show that our results are non-vacuous, in the sense that, for any choice of α
of sign, there exists at least one twist χ of parity α with

τ (χ) · L(1, ∗, χ)−2πi · Ωα
∗
�= 0 (mod π).

When the weight k is two, this will follow from a result of Stevens (see [Ste85], Thm. 2.1). To state this result,
recall the homology class Λ(χ) ∈ H1(X,Z(χ)) defined in (1.4), and let λ(χ) denote the image in H1(X,F).
Then Stevens’ theorem states that the classes λ(χ) generate H1(X,F). Since we have H1(Γ,O) ⊗ O/π =
H1(Γ,O/π) (see [Hid81], (1.10a)), and since we are in weight two, we can use the cap product to see that
the special value is given by

τ (χ) · L(1, ∗, χ)−2πi · Ωα
∗
�= 0 (mod π) = δ±∗ ∩ Λ(χ).

Thus one has only to check that the cocycle δ±∗ is nonzero inH1(Γ, A)⊗O/π. But this follows from Condition
2, as the form ∗ is not divisible by π in S2(O).

If k ≥ 3, and m is ordinary, we may use the techniques of Hida theory, as follows. Let F = O/π, and
assume that f is a p-stabilized newform of level Np, and weight k ≥ 3.Let Γ = Γ1(Np), and let e denote
Hida’s idempotent, giving the projection to the ordinary part of the Hecke algebra. Then Hida has shown
that there is an isomorphism j : eH1

p (Γ, Lk(F)) = eH1
p (Γ,F), induced by projection onto the coefficient of

Y n (see [Hid85], where it is assumed that p ≥ 5, or the lemma on page 539 of [Wil88]). Let δ denote the
image of δ±f in H1(Γ,F); since j is an isomorphism it follows from condition 2 that δ is nonzero. One then
checks as in [AS86] that

τ (χ) · L(1, ∗, χ)−2πi · Ωα
∗
�= 0 (mod π) ≡ δ ∩ Λ(χ),

and the the result follows from Stevens’ theorem as before.

Now we give criteria for Condition 2 to be valid.

Theorem (1.13). Condition 1 is valid in each of the following situations:

• M = N is prime to p and p > k

• M = Np, m is ordinary, and the Jordan-Holder factors of ρm are distinct on a decomposition group
Dp.
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Proof. It suffices work with a suitable maximal ideal in the Hecke ring with coefficients in Zp. The first
statement then follows from the results of Faltings and Jordan, [FJ95], Thm. (2.1). The second statement
follows, when M = Np and k = 2, from [Wil95] Thm. 2.1. To extend to the higher weight, we briefly sketch
how this follows from Hida’s results on ordinary forms and cohomology groups [Hid85]. Hida has shown that
there exists an isomorphism

eH1
p(Γ1(Np), Ln(Fp)) = eH1

p(Γ1,Fp), (14)

where e is the idempotent giving the projection to the ordinary part. On the other hand, it follows from the
properties of the universal Hecke ring T∞ that

eTk/p = eT2/p, (15)

where for each integer k ≥ 2, Tk denotes the Hecke ring generated in the endomorphisms of Sk(Zp). We may
choose compatible maximal ideals at weight two and weight k so that the residual representations coincide;
then the weight two result already verified shows that H1(Γ1(Np),Fp)± is locally free of rank 1 over T2/p,
for each choice of sign. But now the result follows upon combining (15) and (14). Note also that it follows
from Hida’s results the higher weight Hecke rings are Gorenstein, so that T∗

k
∼= Tk as Tk-modules.

2 The Eisenstein case

In this section we show how to extend the foregoing results to the case of maximal ideal m whose associated
representation is reducible. To fix notation, we consider a normalized Hecke eigenform f of weight k ≥ 2 as
before. Given our fixed embedding Q ↪→ Cp, the form f defines a maximal ideal m of residue characteristic
p in Tk and a semisimple representation ρm : Gal (Q/Q) → GL2(Tk/m) such that Tr (Frob q) = aq(f) for
primes q not dividing Np. Our assumption is that ρm is reducible, in the sense that there exist characters
ξi such that

ρm = ξ1 ⊕ ξ2.
Now let g be another eigenform satisfying f ≡ g (mod πr). There are two rather different possibilities

here, depending on whether or not g is assumed to be an Eisenstein series. We will show how, in either of
these two cases results similar to those previously obtained continue to hold. In addition to the elementary
fact that the Mellin transforms of Eisenstein series are not neccesarily holomorphic, there are two technical
difficulties in the present situation: the first is that the (co)-freeness of the cohomology is much more delicate,
and the second is that the Manin-Drinfeld splitting will no-longer respect integral structures, as elements of
the Eisenstein ideal do not act as units.

(2.1). We begin by explaining what is known about the Hecke-module structure of the cohomology. Freeness
assertions analogous to (1.2) have been proven in the case of prime level in [Maz77], but it is unclear whether
or not they will hold in general. To state a condition that is valid more often, we need to introduce some
notation. Let H1

p (Γ, Ln(O))m denote the ofH1
p(Γ, Ln(O)) at m. We may decompose H1

p(Γ, Ln(O)) according
to the action of complex conjugation as usual. Our freeness hypothesis may then be stated as follows: for
some choice of sign α ∈ {+,−}, we have an isomorphism

1. H1
p(Γ, Ln(O))α ∼= Sk(O)m ∼= HomO(Tk,O)m

When k = 2, it then follows from duality that for the opposite choice −α of sign, we will have
H1

p (Γ, Ln(O))−α ∼= Tk. To require (co)-freeness of both eigenspaces is equivalent to the requirement that T2
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be Gorenstein. It turns out that Condition 1 above is often true for appropriate α (see (2.7)), but, as we
have already remarked, it is not known whether these rings are Gorenstein in general. Thus the condition
may not hold for −α.

From now on we assume that Condition 1 above is valid for at least one choice of α.

(2.2). First we treat the case of congruences between cuspforms. Thus let f =
∑
anq

n and g =
∑
bnq

n be
cuspidal Hecke eigenforms of level M , and assume that an ≡ bn (mod πr) for each n. Assume further that
f and g have residually reducible representations at the maximal ideal m ⊂ Tk,m, and that the local factors
of Tk,m determined by f and g are each one-dimensional over K. Choosing a sign α in Condition 1 above,
we may define cocycles δα∗ ∈ H1(Γ, Ln(O)) and complex periods Ωα

∗ such that

Ωα
∗ δ

α
∗ = ωα

∗ . (16)

Evidently, we will again have the congruence δαf ≡ δαg . Consider the modular symbols

∆α
∗ =

ωα
∗

Ωα
∗
∈ SΓ(Ln(C)).

We know that the image of ∆α
∗ in H1

p(Γ, Ln(C)) represents the integral class δα∗ . Now let δ̃α∗ denote a lift of
δα∗ to SΓ(Ln(O)). We can make the choices so that δ̃αf ≡ δ̃αg (mod πr) (check this). Then b∗ = δα∗ − δ̃α∗ ∈
BΓ(Ln(C)) is a boundary symbol. Applying the operator ηq, we obtain the following result:

Theorem (2.3). Let the cuspforms f and g be as above. Let 0 ≤ m ≤ k − 2 be an integer and let χ be a
Dirichlet character with parity α. The we have the following congruence formula:

ηq(f) · τ (χ) ·
(
k − 2
m

)
m!
L(m+ 1, f, χ)
(−2πi)m+1Ωα

f

≡ ηq(g)τ (χ) ·
(
k − 2
m

)
m!
L(m+ 1, g, χ)
(−2πi)m+1Ωα

g

(mod πr). (17)

Remark (2.4). Note that the quantities ηq(∗) will not be p-adic units. In particular, it is not clear that
the quantities appearing in the the congruences are non-zero even for a single χ. However, we can do better
if the character χ has conductor prime to the level, as the next theorem demonstrates.

Theorem (2.5). Let f and g be as before. Let χ be a Dirichlet character of parity α and conductor m
prime to the level M . If k = 2 then we have the congruence

τ (χ) · L(1, f, χ)
(−2πi)Ωα

f

≡ τ (χ) L(1, g, χ)
(−2πi)Ωα

g

(mod πr).

If k > 2 and p|N , then the same congruence holds modulo π.

Proof. Assume that k = 2. We contend then that the χ-twisted special values of the boundary symbols b∗
vanish. This may be seen as follows. Observe that if m is an integer prime to M , then any two cusps of the
form a/m with (a,m) = 1 are equivalent under Γ = Γ1(M). The definitions, together with the fact that χ is
nontrivial, now imply that the special value of the boundary symbol vanishes. Going back to the definitions
of the modular symbols ∆̃∗

α, we find that the twisted special values of ∆α
∗ and ∆̃α

∗ are equal. The result for
k = 2 is now immediate, since the lifts ∆̃α

∗ were chosen so that ∆̃α
f ≡ ∆̃α

g .
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To obtain the assertion about higher weight, we consider the usual morphism Ln(O) → F given by
projecting onto the coefficient of Y n and reducing modulo π. Since p|M , this will be a Γ-morphism. Evidently
this map commutes with the twist operator. The weight-two argument used above now implies that the Y n

component of the twisted boundary symbol vanishes modulo π. Thus we get the asserted congruence at
s = 1.

Remark (2.6). As in the previous section, it can be shown that there exists χ such that the quantities
appearing in the congruences are nonzero.

Now we give conditions for the validity of Condition 1. I am grateful to Wiles for explaining his work to me
in this context.

Theorem (2.7). Let ξ1 and ξ2 be the characters appearing in the semisimple representation ρm. Then
Condition 1 is satisfied, for suitable α, in each of the following situations:

• For k = 2, when Γ = Γ0(q) for a prime q, and p divides the numerator of (q − 1)/12. In this case 1 is
valid for both choices of α.

• when f is a p-stabilized newform of level Np, even weight k ≥ 2, and the characters ξi are distinct on
Dp. In this case we may take α = −ξ1(−1), where the character ξ1 is determined as follows. If both ξi
are unramified then ξ1 is determined by the requirement that the eigenvalue of Up on f be congruent
to ξ1(p) (mod m). Otherwise precisely one of the two characters in ramified at p, and we take ξ1 to be
the unramified one.

• For k = 2, and Γ = Γ1(N), with (N, p) = 1. In this case we take ξ1 to be the unique unramified
character appearing in ρm, and define α as above.

Proof. The first statement follows from work of Mazur [Maz77]. We warn the reader that the group Γ0(q)
may have non-zero torsion, so that the results of this paper are not directly applicable. The modifications
are standard and we omit them.

As for the second assertion, we first treat the case of weight 2 and level Np. Once again, we may assume
that O = Zp. Let the character ξ1 be as in the statement of the theorem. Let D = J1(Np)[p∞]m, and let
D0 and Dét be the submodule and quotient respectively of D defined in (2.2) of [Wil95]. Then the action of
a decomposition group Dp on Dét is unramified, and Frob (p) acts via Up. Assume now that ξ2 is such that
group ∆(p) of [Wil95], page 483, is nontrivial (this amounts to the restriction that ξ2 �= ω on Dp). In this
we may use the argument on pages 483-484 of [Wil95] to conclude that

D0[p] = Tm/p, and Dét[p] = Hom (Tm/p,Z/pZ), (18)

where the isomorphisms are as Tm-modules. Note that this part of Wiles’ argument does not require
the hypothesis that ρm be irreducible. Note also that the action of Galois on Dét is via the character
ξ1, which has parity −α. It follows now from (18) that Tap(J1(Np))αm is free as a Tm-module. But now
Tap(J1(Np))m = H1(X1(Np,Zp))m canonically by the Albanese map, and an application of Poincaré duality
(cap product with the orientation class in H2) shows that H1(X,Zp)−α

m = H1
p(Γ,O)−α

m is free as a Tm-
module. On the other hand cup-product gives a self-duality of H1

p(Γ,Zp) = H1(X,Zp), and since the
cup-product is alternating we find that H1

p(Γ,O)αm is co-free, as asserted. Note that we have used the fact
the the comparison isomorphisms between the étale, Betti, and group cohomologies preserve the action of
complex conjugation.

12



In the case where the ξ2 = ω, we may may use Lemma 2.2 of [Wil95], which is valid even for reducible
m, and once again deduce (18). This completes the proof of the theorem in weight two and level Np.

To extend to higher weights, we use Hida’s theory as in (1.13) to show that

H1
p (Γ, Ln(Fp))α = H1

p(Γ,Fp)α = Hom(Tk/p,Z/p).

The result now follows from the lemma on dualizing modules on page 249 of [MW86].
The final assertion of the theorem may be proven by using the q-expansion principle, as in the paper of

Wiles already cited. The argument is similar but easier, owing to the the fact that we have good reduction
at p.

(2.8). We now want to treat the case where g is assumed to be an Eisenstein series. This was already treated
in [Maz79] for the case of Γ0(q) and in [Ste82] for more general groups. However the main result (4.2.3) in
[Ste82] is subject to the unverified hypothesis (4.2.2). The proof of our theorem (2.10) is very similar to that
of Stevens; the main advantage is that we are able to work with Eisenstein series rather than the cuspidal
group. Furthermore, our Condition 1 which replaces the first part of Stevens’ (4.2.2), may be verified in the
cases of interest.

To state our theorem we need to recall some facts about Eisenstein series. Let ψ1 and ψ2 be (not
neccesarily primitive) Dirichlet characters of conductors N1 and N2 respectively, such ψ1ψ2(−1) is even. Let
M = N1 · N2; we assume that N ≥ 4. Then there exists (see [Ste82] (3.4.2), where the normalization is
somewhat different) a holomorphic Eisenstein series

E =
∑
an(E)qn = E(ψ1, ψ2)

of weight 2 on Γ = Γ1(M) whose associated Dirichlet series is given by L(s, ψ1) ·L(s− 1, ψ2).
For each integer k ≥ 1, we let Bk denote the k-th Bernoulli polynomial. Then B1 = X − 1/2. For a

Dirichlet character χ of conductor m we have

L(1 − n, χ) = mn−1 ·
m∑

a=1

χ(a)Bn

( a
m

)
. (19)

Now let f =
∑
an(f)qn be a weight two cuspform. We assume only that f is an eigenform for all the

Hecke operators. Let p ≥ 3 be a prime. We say that f ≡ E (mod πr) if an(E) ≡ an(f) (mod πr) for each
n > 0 and if a certain condition on the constant terms of the q-expansions of E at the various cusps of Γ
is satisfied. To state this condition, let ωE denote the differential form on Y associated to E. Then, for
each cusp s of Γ, we require that the quantity 2πi · Ress(ωE) be an algebraic integer, divisible by π. We
note that the cohomology class associated to E is algebraic by the Manin-Drinfeld argument, so that these
residues are in fact algebraic. The number 2πi ·Ress(ωE) may also be described as the constant term of the
q-expansion of E at the cusp s.

Remark (2.9). The condition on the residues is redundant if p ≥ 5 and the level M is prime to p. This
follows from the q-expansion principle in characteristic p. It is not redundant if p = 3, as the mod 3 Hasse
invariant occurs in weight 2.

Theorem (2.10). Let f be a p-stabilized cuspidal newform of weight 2 and level Np. Assume that there
exists a p-stabilized Eisenstein series E as above such that f ≡ E (mod πr). Suppose that ψ2 �= ψ1, and
let α = −ψ1(−1). Then Condition 1 holds for α, and for each nontrivial primitive Dirichlet character χ of
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conductor prime to Np there exists a period ΩE which is a p-adic unit such that the following congruence
holds:

τ (χ) · L(1, f, χ)
(−2πi)Ωα

f

≡ τ (χ) · L(1, E, χ)
(−2πi)ΩE (mod πr)

(20)

Proof. The validity of Condition 1 is a direct application of (2.7). To prove the the rest of the theorem we
will use the results of [Ste82] and [Ste85]. Let δE ∈ H1(Γ, K) be the coycle defined by δE(γ) =

∫ γz

z
ωE , where

γ ∈ Γ and z is any point in the upper half-plane. As we have already remarked, the algebraicity of this cocycle
follows from the Manin-Drinfeld argument. Then it follows from [Ste82], (3.2.5), that δE ∈ h1(Γ, K)α. Since
(N, p) = 1, it follows from [Ste85], Thm. 1.3 that δE takes values in O. Indeed, the integrality of the residues
is part of the hypothesis. As for the L-values, it suffices (since p is odd) to show that, for each nontrivial
primitive character χ of parity α, that

τ (χ)
L(1, E, χ)

2πi
is integral. Note the normalization in [Ste85], (1.3) and (1.5); Stevens’ anN(E) is our an(E). But now it
follows from the definitions that

τ (χ) · L(1, E, χ)
2πi

= τ (χ)
L(1, ψ1χ)

2πi
· L(0, ψ2χ).

Since E is p-stabilized, ψ1 has conductor prime to p and ψ2 is considered as having conductor divisible
precisely by the first power of p. Then an explicit calculation with (19) shows that the second factor is
integral. The integrality of the first factor follows from the functional equation, and the fact that the
conductor is prime to p. Thus δE ∈ H1(Γ,O).

Now let R = O/πr . Since we have assumed that the residual divisor is divisible by πr, it follows that the
image δE of δE in H1(Γ, R) lies in the subgroup H1

p (Γ, R). Note that δE �= 0; this follows from a theorem of
Washington (see [Ste82], §3.5, and [Was78]). It even follows from Washington’s result that δE is not divisible
by π; the point is that there exists a period which is a p-adic unit.

On the other hand, let δαf ∈ H1
p(Γ,O) be the canonical cocycle attached to f , and let δ

α

f denote the
reduction mod πr . We contend that there exists a nonzero u ∈ R∗ such that

δ
α

E = u · δαf .

To see this we recall that H1
p (Γ,O)m = Hom(Tm,O), and since we are working with constant coefficients

and since Tm is a free O-module we have

H1
p (Γ, R)m = H1

p(Γ,O)m ⊗ R = Hom(Tm ⊗R,R)

as Tm⊗R-modules. Let s ∈ Hom (Tm⊗R,R) be the morphism that send the Hecke operator t onto the class
of a1(f |t) (mod πr). One checks easily that s is an eigenvector for the action of Tm⊗R on Hom (Tm⊗R,R),
with eigenvalues congruent to those of f . Furthermore, the space of such eigenvectors is obviously free of
rank one (evaluate on the identity operator). Since both δ

α

E and δ
α

f have the same set of eigenvalues modulo
πr , and neither is divisible by π, the existence of the unit u follows.

Now we compute the special values. Let λ(χ) ∈ H1(X,R[χ]) denote the homology class associated to
χ. We would like to ‘integrate’ δE along λ(χ). However, the Eisenstein cohomology class does not extend
to X, and so some care is required. The crucial point is that the ‘mod p’ cocycle δE does extend: we have
δE ∈ H1

p(Γ, R) = H1(X,R). The cap-product δE ∩ λ(χ), is well-defined, and takes the place of the integral.
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Stevens has computed this cap-product explicitly by using the classical theory of Dedekind sums, and a
suitable lift of λ(χ) to the space H1(Y,Z[χ]), where the periods of the Eisenstein series are well-defined.
This calculation is rather involved, and we will not attempt to reproduce it here (see [Ste82], Section (3.1.5)
for the details). The result, however, may be simply stated: Stevens shows that

δαE ∩ λ(χ) ≡ τ (χ)L(1, E, χ)
2πi

(mod πr).

On the other hand, cap-product in characteristic zero reduces to integration upon scalar extension to the
reals, and we have

δαf ∩ λ(χ) =

(
ωα

f

Ωα
f

)
∩ λ(χ) =

1
Ωα

f

∫
λ(χ)

ωα
f .

Since cap product commutes with reduction mod p, this evidently implies the theorem.

Remark (2.11). It would be interesting to extend the above results to Eisenstein series of higher weight.
One can define algebraic cocycles δE ∈ H1(Γ, Ln(K)) as before, but in this case integrality properties become
rather delicate. It seems rather likely that one can give a similar treatment to the one for weight two if one
assumes that p > k, using, for instance, the results in [Ste89], §6, but we have not pursued the details.

Remark (2.12). The requirement in the theorem that f be p-stabilized is harmless, since Eisenstein primes
at level N prime to p are ordinary. Given a form of level N , we may pass to a p-stabilized form of level Np
and apply the theorem. However, it is important to note that the same theorem holds at level N (the proof
is the same). This has the advantage that we may may consider characters of conductor divisible by p. We
will use this variant in the next section.

3 An Application to Nonvanishing Theorems

(3.1). Let C be a modular elliptic curve with a rational point of order p (so p = 3, 5, or 7). Let ρ0 :
Gal (Q/Q) → GL2(Fp) denote the representation on the p-division points of C. Then since C has a rational
p-torsion point, we see that ρ0 contains the trivial representation as a subobject. Since the determinant of
ρ0 is given by the mod p Teichmuller character ω : Gal (Q/Q) → F∗

p, we find that the semisimplification ρ
of ρ0 is given by

ρ = 1⊕ ω. (21)

Now let f =
∑
anq

n be the newform such that L(s, f) = L(s, C). If q �= p is a prime of good reduction
for C, then (21) shows that

aq ≡ ω(q) + 1 (mod p). (22)

Let E denote the non-holomorphic Eisenstein series of level 1 and weight 2. In the language of the previous
section this is E(1, 1), and we have

E(z)− 1
8πy

=
−1
24

+
∞∑

n=1

σ(n)qn
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where σ(n) =
∑

d|n d. Thus we may restate (22) as follows: we have

aq ≡ σq (mod p).

In view of the results of section 2 above, this suggests strongly that there should be a mod p relationship
between the L-values of f and those of E. Thus let D be a square-free negative integer and let χD be the
odd quadratic character corresponding to the field Q(

√
D). Then the twist of E by χD is the Eisenstein

series ED = E(χD , χD), and we have

τ (χD)
L(1, ED)
−2πi

= τ (χD)
L(1, χD)
−2πi

· L(0, χD) =
1
2
L(0, χD)2.

But the analytic class-number formula states that L(0, χD) is essentially the class-number h(D) of
Q(

√
D). Thus we expect a mod p relationship between L(1, C ⊗ χD) and h(D). In particular, we ex-

pect that L(1, C ⊗ χD) �= 0 whenever h(D) �= 0 (mod 3). Results of this kind have been obtained by a
number of authors, for instance Frey [Fre88], Nekovár̆, [Nek90], and James [Jam]. While Nekovár̆ and James
work with specific C, Frey proves a general result on the Selmer groups of such elliptic curves C, showing
that under certain conditions the twisted 3-Selmer group S(C ⊗ χD) is trivial if the class number h(D) is
prime to 3. Our result below may be viewed as a complement to the theorem of Frey, with the link being
given by the Birch-Swinnerton-Dyer conjecture. It would be interesting to compare Frey’s results to ours
more explicitly; we note only that we can recover the triviality of the 3-Selmer groups in the present situation
by invoking the theorem of Kolyvagin.

(3.2). To state the theorem we need some notation. Let C be a modular elliptic curve with a rational point
of order p. Assume that C has good, ordinary reduction at p. Let q be any odd prime with q ≡ 1 (mod 9) if
p = 3 and q ≡ 1 (mod p) if p = 5, 7, such that C has good reduction at q. Let N1 the product of primes B|N
where C has either nonsplit multiplicative reduction or additive reduction, and let N2 denote the product
of primes of additive or split multiplicative reduction, together with the prime q.

Theorem (3.3). Let the curve C be as above. Then there is a period Ω− for C such that τ (χD)L(1,E⊗χD)
(−2πi)Ω−

is integral for any negative square-free integer D. Furthermore, if D is prime to Nq, we have the congruence

(1− χD(q)/q) · τ (χD)
L(1, C ⊗ χD)
(−2πi)Ω−

≡ 1
2

∏
�|N1

(1− χD(B)/B)
∏
�|N2

(1− χD(B)) · L(0, χD)2 (mod p). (23)

Proof. The idea is of course to exhibit an Eisenstein series congruent to f , where f is the newform associated
to C, and then apply (2.10), or, more precisely, the variant described in (2.12). We will only give the proof
for p = 3, as the other cases are analogous. Let Eq be the unique holomorphic Eisenstein series on Γ0(q).
Then the constant term of the q-expansion at infinity is given by (q− 1)/24. Since there are only two cusps
on Γ0(q) and since the sum of the residues is zero, we see that the residue at zero is given by (1 − q)/24.
Since q ≡ 1 (mod 9) it follows that these residues are divisible by 3. Obviously the same is true for the
residual divisor of Eq on Γ1(q). Furthermore, the same argument as in the proof of (2.10) shows that Eq

represents an integral cohomology class. Observe that the eigenvalue for Uq on Eq is equal to 1.
Now since q is a prime of good reduction for C, we may use (22) to conclude that the roots of the Hecke

polynomial at q for C has both roots congruent to 1 modulo 3. Let fq denote the form obtained from f by
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removing one of the Euler factors at q arbitrarily. Then the eigenvalue of Uq on fq is also congruent to 1
modulo 3.00

We would like to adjust Eq by removing Euler factors so that the resulting form has Hecke eigenvalues
congruent to those of fq . It is actually more convenient for the study of these Euler factors to work in a
more general context. For a positive integer r let sr denote the matrix(

r 0
0 1

)
.

Then, for any integer T , there is a map Γ1(Tr) → Γ1(T ) defined by γ �→ srγs
−1
r . This induces a map

πr : Y1(Tr) → Y1(T ) given locally on H by z �→ rz. Then is g(z) is a weight-two modular form of level R,
we find that π∗(g(z)dz) = rg(rz)dz. Thus If we write ϕr for the cocycle on Γ1(Tr) obtained by integrating
rg(rz), then ϕr(γ) = ϕ(srγs−1

r ), where ϕ is the cocycle on Γ1(T ) attached to g. Thus rg(rz) defines an
integral class on Γ1(Tr) whenever g(z) defines an integral class on Γ1(T ). Furthermore, since conjugation by
sr takes parabolic elements to parabolic elements, we see that ϕr vanishes modulo 3 if on parabolic elements
of Γ1(Tr) if ϕ has this property at level T . If r is not divisible by 3, then these conclusions are also valid for
g(rz).

We now iterate this, removing Euler factors as appropriate, at primes B of bad reduction for C. We will
only treat the nonsplit multiplicative case, as the other possibilities are similar but easier. Write the Fourier
expansion of f as f =

∑
an(f)qn . In the nonsplit case it is known that that a�(f) = −1. Furthermore, a

theorem of Langlands and Deligne (see [Car86]) shows that c�(f) arises as the eigenvalue of Frob (B) on the
maximal unramified quotient of Ta3(C). It follows from the fact that the composition factors on the mod
3 representation for C are 1 and ω that B must be such that ω(B) = −1. Thus we may replace Eq(z) by
Eq(z) − Eq(Bz) to obtain a form with eigenvalue congruent to −1 at B. Since B is a 3-adic unit this form
represents an integral class and has residues divisible by 3 in Z3.

Thus we finally obtain an Eisenstein series E of level qN , where N is the conductor of E, and such that
E ≡ fq , where fq is the form previously defined. To check the eigenvalue at 3, we need Theorem 2.1.4 of
[Wil88]. We may write E = E(ψ1, ψ2) where each ψi is the trivial character, but viewed as having nontrivial
conductors Ni, as follows. If B is a prime of split multiplicative reduction, then we may assume that B divides
N2. If B is a prime of nonsplit multiplicative reduction then B divides N1. Primes of additive reduction divide
both Ni, and q divides the conductor of N2.

In view of (2.10), it remains only to compute the special values of E. A brief calculation shows that these
are given explicitly as follows:

τ (χD)
L(1, E, χD)

−2πi
=

1
2

∏
�|N1

(1− χD(B)/B)
∏
�|N2

(1 − χD(B)) · L(0, χD)2. (24)

This completes the proof of the theorem.

Corollary (3.4). Let C be as in the theorem. Assume that each prime of additive reduction is congruent
to 1 modulo p. Let D be such that χD(B) = −1 for primes B of additive or split multiplicative reduction,
and such that χD(B)/B ≡ −1 (mod p) for primes of nonsplit reduction. Then L(1, C ⊗ χD) �= 0 if the class
number h(D) of Q(

√
D) is prime to p.

Proof. We note first of all the hypothesis on D ensures that the Euler factors at prime B|Np on the right-
hand-side of (23) are nonzero modulo p. Given D we may choose q so that the Euler q-factors on both sides
are nonzero. The corollary now follows from the analytic class number formula.
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Corollary (3.5). Take p = 3, and let C be as in the corollary. Then there exists an arithmetic progression
S modulo N if N is odd and modulo l.c.m.(N, 4) if N is even, such that, for all square-free integers D < 0 in
S, the value L(1, f ⊗ χD) �= 0 if the class number of Q(

√
D) is prime to 3. Let T be the set of fundamental

discriminants D in S; then the subset of D for which L(1, C ⊗ χD) �= 0 has proportion at least 1/2 in T .

Proof. The existence of S follows from quadratic reciprocity. The last statement is a consequence of a
theorem due to Nakagawa and Horie [NH88]; see [Jam], Thm. 3.4 and Cor. 3.5. One has to check that the
conditions of James’ Cor. 3.5 are satisfied but the verification is elementary.

Remark (3.6). It can be shown (see [Won]) that there are infinitely many nonisomorphic curves satisfying
the conditions of (3.2), with p = 3. There are even infinitely many such curves whose conductor is square-free.

Example (3.7). Let C be the elliptic curve 19B in Cremona’s tables [Cre92]. An equation for C is y2 +y =
x3+x2−9x−15. Then C has a rational point of order three and is of conductor 19. The associated modular
form f is ordinary at three, so that C has ordinary reduction. The epsilon factor in the functional equation
is 1 (all these facts can be checked in Cremona). We conclude that the epsilon factor for C ⊗ χD is given
by χD(−19), whenever D is prime to 19. This will be positive iff χD(19) = −1. A conjecture of Goldfeld
[Gol79] predicts that L(1, C ⊗ χD) �= 0 for essentially ‘all’ such D; our theorem asserts that this is the case
for a subset of D with proportion at least 1/2.

Remark (3.8). Given a cusp form f , one can attempt an analysis similar to that above whenever the p-adic
Galois representation associated to f is reducible modulo p, for some prime p. The results of this paper
show that one obtains a congruence between the special values of f and the class numbers of certain abelian
number fields. It would be interesting to unwind the Cohen-Lenstra heuristics to obtain conditional results
for nonvanishing. For example, one can work with elliptic curves with 5 or 7 torsion points. It is clear that
one should get a better proportion of nonvanishing twists.
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