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1. INTRODUCTION

The concept of unique factorization stretches right back to Greek arithmetic and yet it
plays an important role in modern commutative ring theory. Basically, unique factorization
consists of two properties: existence and uniqueness. Existence means that an element is
representable as a finite product of irreducibles, and uniqueness means that this representa-
tion is unique in a certain sense. Unique factorization first appeared as a property of natural
numbers. This property is called the Fundamental Theorem of Arithmetic (FTA).

The history of the FTA is strangely obscure. We state the FTA as follows. Any natural
number greater than 1 can be represented as a product of primes in one and only one way
(up to the order). As we have stated it, it does not appear in Euclid’sElements[Heath 1908].
Nonetheless, Euclid played a significant role in the history of the FTA. Specifically, Books
VII and IX contain propositions which are related to the FTA.

In hisTadhkirat al-Ahb̄ab fı̄baȳan al-tah̄abb[Rashed 1982] al-F¯arisı̄ proved the existence
of a prime decomposition, and subsequently gave all that is needed to prove its uniqueness.
His Proposition 9 determines all of the divisors of a given number from a prime factorization.
An analogous result can be found in Prestet’sNouveaux Elemens de Mathématiques(1689)
[Goldstein 1992].

Following Prestet we can also mention Euler. In his bookVollständige Einleitung zur
Algebra[Euler 1770] Euler assumed the existence property of the FTA and stated a result
similar to al-Fārisı̄ ’s and Prestet’s to find all the divisors. Later Legendre proved the existence
part of the FTA in his bookThéorie des nombres[Legendre 1798] and assumed uniqueness
when listing the factors of a given number but he did not state the FTA explicity. The first
clear statement and proof of the FTA seem to have been given by Gauss in hisDisquisitiones
Arithmeticae[Gauss 1801]. After Gauss, many mathematicians provided different proofs
of the FTA in their work [Ağargün & Fletcher 1997].
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2. EUCLID AND THE FTA

Euclid’s Elements[Health 1908] consists of 13 books. The arithmetic Books VII to IX
contain basic results in the theory of numbers. Although the FTA does not appear in the
Elements, there are two very significant propositions, VII.30 and VII.31, which have a close
connection with it. There is a third proposition, IX.14, which is a uniqueness theorem. In
fact, the FTA follows from the propositions VII.30 and VII.31.

VII.30. If two numbers by multiplying one another make some number, and any prime number measure
the product, it will also measure one of the original numbers [i.e., if a prime numberc measuresab,
thenc will measurea or b, where “measure” can be translated as “divide,” although repeated subtraction
would be nearer to the spirit of the Greek word].

VII.31. Any composite number is measured by some prime number.

Easily, we get the existence (any natural number greater than 1 can be represented as
a product of primes) by VII.31, and the uniqueness (i.e., this representation is unique up
to the order) by VII.30. Nowadays many mathematicans would prove the FTA by using
these propositions. For the uniqueness supposep1 · · · pn = q1 · · ·qm are two prime de-
compositions of any given positive integer. Then, from VII.30 we havep1 |q1, say, and
hencep1 = q1. Similarly we have the same thing for allp’s and q’s and so it follows
that n = m. However, Euclid did not state the FTA following the above propositions in
Book VII.

In Book IX we meet Proposition 14 which states that “If a number be the least that is
measured by prime numbers, it will not be measured by any other prime number except
those originally measuring it.”

There are many similarities between the FTA and IX.14. Proposition IX.14 is one kind of
uniqueness theorem. It is a good partial demonstration of the uniqueness condition for the
FTA, but it is clear that IX.14 does not cover the case of numbers which possess a square
factor. For this reason some authors (e.g., [Hendy 1975, Mullin 1965]) have examined IX.14,
and have correctly asserted that the two results (IX.14 and the FTA) are not technically
equivalent.

In addition, we have to note that without implying the existence of a prime decomposition
IX.14 starts with a collection of primes while the FTA starts with an integer. The starting
points of the two theorems are completely different.

Nowadays, textbooks commonly take the FTA as a fundamental theorem. They begin
with the definition of prime numbers and prove the uniqueness of factorization into primes.
This is followed by the properties of relatively prime integers and greatest common divisors.
This approach seems to have originated with Gauss. In Euclid’s number theory things are
organized just in the reverse order. Euclid begins with the division algorithm to find the
greatest common divisor of integers, and then he obtains an operative definition of relatively
prime integers. From the investigation of being relatively prime, he eventually finds results
on prime numbers, including in particular the important Proposition VII.30, and then he
states Proposition VII.31 (see above) in the reverse order again. In Euclid’s theory the FTA
would lose much of its significance. Far from being fundamental, IX.14 is placed at the end
of Euclid’s arithmetic theory. It does not make use of propositions other than VII.30 and
VII.36. It cannot be considered the culmination of any major part of the theory, nor it is
used in any subsequent result.
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3. AL-FĀRISĪ AND THE FTA

Kamāl al-Dı̄n al-Fārisı̄, who died ca. 1320, was a great Persian mathematician, physicist,
and astronomer. His work represents perhaps the most significant step toward the FTA
made by mathematicians before Gauss. His results appear inTadhkirat al-Ahb̄ab fı̄baȳan
al-tahābb (which means “memorandum for friends explaining the proof of amicability”).
His main concern was amicable numbers, and his aim was to prove by a different method
the theorem of Ibn Qurra that states “if three numbersp = 3.2n−1− 1, q = 3.2n − 1, and
r = 9.22n−1− 1 are prime, and ifp,q > 2, then the pair 2n pq and 2nr are amicable”
[Hogendijk 1985]. Ibn Qurra (836–901) had worked only lightly on the decomposition of
integers and combinatorial methods. Al-F¯arisı̄ was led to develop new ideas in the theory
of numbers, and he investigated the decomposition of integers more thoroughly than Ibn
Qurra did. Before he could introduce combinatorial methods it was necessary to consider
the existence of the factorization of an integer into prime numbers and to use uniqueness
properties to determine the divisors.

In [Ağargün & Fletcher 1994] we produced an English translation of his first nine propo-
sitions and provided a commentary on al-Farisi’s methods. The main aim of these nine
propositions is to know and to find the divisors of a given number and hence is a preparation
for the work on amicable numbers.

One could say that Euclid takes the first step on the way to the existence of prime
factorization, and al-F¯arisı̄ takes the final step by actually proving the existence of a finite
prime factorization in his first proposition.

PROPOSITION1. Each composite number can be decomposed into a finite number of prime factors of
which it is the product.

Suppose thata > 1 is a composite integer. Therefore, from Euclid VII.31 it possesses a
prime divisorb. Then for 1< c < a,

a = bc.

If c is prime then the proposition is proved; otherwisec possesses a prime divisord and for
1< e< c we write

c = de.

If e is prime then the proposition is proved sincea = bde. Otherwise we repeat the process
a finite number of times and at the end we decompose a composite factor into two prime
factors since a finite number cannot be made up of an infinite product of numbers. Then we
write for primek

a = bd · · · k

This proposition is the first known statement and proof of the existence of a prime
factorization for any composite number. After al-F¯arisı̄, Prestet did not state it but used it
to determine all the divisors of a given integer. Euler stated and used it to find divisors.
Eventually Legendre stated and proved it.
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Al-Fārisı̄’s propositions 2 to 5 are the following:

PROPOSITION2. When three numbers a, b, c, are given, the ratio of the first to the third is composed
from the ratio of the first to the second and from the ratio of the second to the third.

PROPOSITION3. The ratio of1 to any composite number is composed of its ratio to each of the prime
factors.

PROPOSITION4. Any two composite numbers which have the same decomposition into factors are
identical.

PROPOSITION5. Any two distinct composite numbers do not have the same decomposition into factors.

After Proposition 5 al-F¯arisı̄ took the first step to determine all the divisors of an integer.
He did not consider the integer itself as a divisor. There, as with Prestet and Euler, the main
starting point was the prime decomposition.

PROPOSITION6. If a composite number a is decomposed into prime numbers b, c, d, e, . . . , k, then
two by two bc, bd, be, . . . , etc., three by three bcd, bce, . . . , etc., and so on, all of these are divisors of a.

Then al-Fārisı̄ proved Proposition 7, which he used in proving Proposition 8.

PROPOSITION 7. If a6 |b, then for n= 3, 4, . . . ,a26 |ba and an6 |ba; a36 |ba2 and an+16 |ba2;
a46 | ba3 and an+26 | ba3 and so on.

Here we give Proposition 8, which is used in the succeeding proposition.

PROPOSITION8. Here, if a composite number a is decomposed into its prime factors as a= bcd· · · k,
then if one of them, say b, does not repeat in a then b26 |a and for n= 3, 4, . . . ,bn6 |a. And if b repeats
once only then b2 | a but bn6 |a. And if b repeats twice only then b2 | a, b3 | a, but bn+16 |a.

To determine all of the divisors of a given composite integer, al-F¯arisı̄ proved Proposi-
tion 9. In this proposition we observe that all of the previous propositions are used directly
or indirectly. We see a similar result in Prestet and Euler, but of course Proposition 9 was
presented long before, and as far as we know this is the first known result to determine all
the divisors of a given composite number. Once more, there the main starting point was the
prime decomposition.

PROPOSITION9. If a composite number a is decomposed into its prime factors as a= bcdh· · · kl,
then a has no divisor except1 and b, c, d, h, . . . ,k, l , and two by two bc, bd, . . . , etc., and three by three
bcd, bch, . . . , etc., . . . , and the products of all factors except one: cdh· · · kl, bdh· · · kl, . . . ,bcdh· · · k.

Obviously 1,b, c, d, . . . , k, l are divisors ofa. The others are immediately divisors from
Proposition 6. Supposea has another divisorz which is either prime or composite. Ifz
is a prime then we considera asb (cdh· · · l ) andz | b(cd · · · l ) impliesz | cdh· · · l from
Euclid VII.30. Similarlyz | c(dh · · · l ) impliesz | dh · · · l . Therefore, by the same process
we havez | kl. Hencez | k or z | l and this impliesz= k or z= l . This is a contradiction.
Suppose nowz is a composite number and it is distinct from those previous divisors already
stated. Therefore, from Proposition 5 there exists one among the prime factors ofz which
does not appear among the factors ofa, or if this one factor does not exist, then there is one
factor ofz which does not repeat the same number of times inz anda. Thus we have three
possible cases: (i)z has a prime factor which does not appear among the factors ofa, or if
z has no such factor then (ii) one factor ofz has more repetitions than in the factors ofa, or
(iii) one factor ofa repeats itself more than in the factors ofz.
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If it is the first andh is a prime number distinct from all factors ofa, then this is a
contradiction from the previous case, wherez is assumed to be a prime number.

If it is the second, that is one factor ofz, sayp, repeatsn times inz but less thann times
in a, thenpn+1 | z and pn+1 | a, which is impossible, from Proposition 8.

If it is the third, that is, all factors ofz do not repeat more times than in the factors ofa,
thenz becomes a divisor ofa, which had been mentioned, and this is a contradiction.

We see that al-F¯arisı̄ made an important advance towards the FTA, although he did not
state it. He stated and proved the existence part of the FTA, but he did not state and did not
intend to prove the uniqueness of prime factorization since the FTA was not important for
him. This does not mean he did not know the uniqueness. If al-F¯arisı̄ had wished to state
and prove the uniqueness, he would have been able to do so. al-F¯arisı̄ knew the uniqueness
very well as can be seen from both the statement and the proof of his Proposition 9. In fact,
he proved Proposition 9 in order to determine all the divisors of a composite number and
he used it to give a new proof of ibn Qurra’s theorem on amicable numbers. However, he
showed all that is needed to prove the uniqueness. Therefore we can consider Proposition
9 to be equivalent to the uniqueness part of the FTA.

4. PRESTET’S RESULTS

In this section we present some results published by Jean Prestet in his 1689Nouveaux
Elemens de Math́ematiques[Goldstein 1992]. They confirm that before modern times a
prime factorization was not looked upon as something of interest in its own right, but as a
means of finding divisors.

Prestet stated neither the existence nor the uniqueness of the FTA. He was influenced by
Euclid and was concerned with divisors. Like al-F¯arisı̄ and Euler he gave the main results
in order to find all the divisors of a given number. In particular his Corollary IX has a
significant role. This result makes us believe that Prestet knew the FTA. We think he could
have proved it, but he was not concerned with it.

In Chapter 6 of his first volume, we meet the following theorem.

THEOREM. If two numbers b and c are relatively prime, their product bc is the least number that each
of them can divide exactly and without remainder.

As a corollary of this theorem Prestet stated:

COROLLARY III. If d measures exactly a product bc of two numbers b & c and if c and d are relatively
prime; the number d is a divisor of the other number b.

The object of the next corollaries was to determine all the divisors of a number expressed
as a product of prime factors.

COROLLARY IV. If two different numbers a & b are simple, every divisor of their plane, or product ab,
is 1, or a, or b, or ab.

Prestet continued with Corollaries V and VI using the same argument for a product of
three different prime numbers (solid) and of four prime numbers (supersolid), then five,
and so on indefinitely.

In the following corollary he studied the powers of some prime number.

COROLLARY VIII. If the number a is simple, every divisor of its square aa is one of the three1, a, aa.
And every divisor of its cube a3 one of the four1,a,a2,a3 (· · ·). And so with the others to infinity.
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Finally, he gave

COROLLARY IX. If the numbers a & b aresimple, every divisor(of) aab of the three a, a, b is one of the
three1, a, aa or one of the different products of these three by b; that is to say, one of the six1, a, aa,
1b, ab, aab. Because all the alternative planes[i.e., obtained by multiplying the different factors two
by two] of the simple a, a, b are aa & ab.[Analogous statements foraabb; aabbb; aab3cc; aab3ccd].
And so with the others.

It is clear that Prestet does not state the FTA in his work because his aim was to make
explicit the relationship between any factorization of a given number into primes and all its
possible divisors. However, Prestet’s results are very close to the FTA, and in the sense of
implying each other his Corollary IX may be considered as equivalent to the uniqueness of
the prime factorization.

5. EULER’S STATEMENTS

In hisVollständige Einleitung zur Algebra[Euler 1770] Leonard Euler stated the existence
part of the FTA without proving it properly, and also he gave a statement for the uniqueness
part analogous to al-F¯arisı̄’s Proposition 9 and Prestet’s Corollary IX.

In Article 41 of Chapter IV of Section I of Part I Euler stated the existence of prime
factorization and provided a partial proof of it. But his proof omits some details.

41. All composite numbers, which may be represented by factors, result from the prime numbers
above mentioned; that is to say, all their factors are prime numbers. For if we find a factor which is not
a prime number, it may always be decomposed and represented by two or more prime numbers. When
we have represented, for instance, the number 30 by 5× 6, it is evident that 6 not being a prime number,
but being produced by 2× 3, we might have represented 30 by 5× 2× 3, or by 2× 3× 5; that is to
say, by factors which are all prime numbers.

In Article 43, for instance, Euler gave a method for finding the decomposition of any
number into its prime factors:

43. Hence, it is easy to find a method for analysing any number, or resolving it into its simple factors.
Let there be proposed, for instance, the number 360; we shall represent it first by 2× 180. Now 180 is
equal to 2× 90, and

90 is the same as 2× 45
45 is the same as 3× 15

and last
15 is the same as 3× 5,

so that the number 360 may be represented by the simple factors 2× 2× 2× 3× 3× 5, since all these
numbers multiplied together produce 360.

Euler did not state the uniqueness of factorization into primes, but he gave a related
statement without proof in Article 65 of Chap. VI of Sect. 1 of Part 1 of Euler [1770].

65. When, therefore, we have represented any number assumed at pleasure, by its simple factors, it
will be very easy to exhibit all the numbers by which it is divisible. For we have only, first, to take the
simple factors one by one, and then to multiply them together two by two, three by three, four by four,
&c. till we arrive at the number proposed.

We observe that Euler was only interested in finding all divisors of a number and he was
following the tradition of al-F¯arisı̄ and Prestet. In Article 65, Euler tells us that all divisors
of a number are obtained from the prime factors which appear in the representation of the
number as a product of prime numbers and this is the only way to have all the divisors of
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the number. Therefore this may be considered as the uniqueness of the prime factorization.
Euler also gave an example at the end of Article 64: It follows that 60, or 2× 2× 3× 5,
may be divided not only by these simple numbers, but also by those which are composed
of any two of them; that is to say, by 4, 6, 10 and 15; and also by those which are composed
of any three of its simple factors; that is to say, by 12, 20, 30, and last also, by 60 itself.

6. LEGENDRE

Here we give Legendre’s statement which can be found in [Legendre 1798, Art. VIII]:

Any not prime numberN can be represented by a product of several prime numbersα, β, γ , etc.,
each raised to some power, so that one can always supposeN = αmβnγ p, etc.

Then his proof immediately follows as:

The method to follow in order to perform this decomposition, consists in trying to divideN by each
of the prime numbers 2, 3, 5, 7, 11, etc., starting with the smallest. When the division is successful with
one of these numbersα, one repeats it as many times as is possible, for example,m times, and calling
the last quotientP, we have

N = αmP.

The numberP cannot be divided byα, and it is useless to try to divideP by a prime number less than
α, for if P were divisible byθ , whereθ is less thanα, it is clear thatN would also be divisible byθ ,
contrary to the hypothesis. We must therefore try to divideP by prime numbers greater thanα; thus we
will obtain in succession

P = βn Q, Q = γ p R, etc.,

which will give N = αmβnγ p, etc.

As we see by this proof, for any number we always have the same decomposition into
prime factors according to Legendre’s method. Clearly we cannot suppose that this is
equivalent to the uniqueness part of the FTA. However, a statement related to uniqueness
is given in Article X:

A numberN being expressed in the formαmβnγ p, etc., each divisor ofN will also be of the form
αµβνγ π , etc., where the exponentsµ, ν, π , etc. will not be greater thanm, n, p, etc. . . .

In this article, in fact, Legendre intended to find the number of all divisors of a number,
and at the same time the sum of these same divisors. From this statement we can easily
prove uniqueness.

7. GAUSS

Gauss gave the unique factorization property for positive integers in Article 16 of his
Disquisitiones Arithmeticae[Gauss 1801]. Section II opens with the following article.

13. THEOREM. The product of two positive numbers each of which is smaller than a given prime number
cannot be divided by this prime number.

Then Gauss reproduced Theorem VII.32 of Euclid’sElementsand its generalization.

14. If neithera or b can be divided bya prime numberp, the productab cannot be divided byp.
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15. If none of the numbersa, b, c, d,etc. can be divided by a primep neither can their productabcd,
etc.

Here we give his Article 16.

16. THEOREM. A composite number can be resolved into prime factors in only one way.

Gauss himself did not spell out a proof of the existence part of the FTA. He claimed that
it is clear from elementary considerations, which of course is. He began his demonstration
by stating that “It is clear from elementary considerations that any composite number
can be resolved into prime factors, but it is tacitly supposed and generally without proof
that this cannot be done in many various ways.” Then he considered a composite number
A = aαbβcγ etc. witha, b, c, etc. unequal prime numbers and showed thatA cannot be
resolved into prime factors in another way which has any other primes excepta, b, c, etc.,
or which has some prime numbers which appear in one decomposition more often than in
the other.

Thus, the first clear statement and proof of the FTA seem to have been given by Gauss
in his Disquisitiones Arithmeticae. Since then many different proofs have been given. In
[Ağargün & Fletcher 1997], we have investigated different proofs of the FTA and classified
them.
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