
Least Squares Approximation – Comparison
of Methods
In this course, we have learned three different ways to find the least squares

approximation to a system . In theory, all of them give the same unique answer

when is full rank. However, due to differences in numerical stability, the computed

answers might still be different.

We will first generate some data points. For this example, we take 15 points that come

from a quadratic function with some added randomness.

Ax ≈ b

A

In [1]: import numpy as np
import scipy.linalg as la
import matplotlib.pyplot as plt
import math

In [2]: t = np.arange(0, 30, 2)
y = 0.1*(t-10)**2+15*np.random.rand(15)
plt.scatter(t,y,alpha=1,lw=0);
plt.show()

We now try to fit a polynomial of degree at most 7,

to all the data points. This means that we want to solve the system , where

This is an overdetermined system (more equations than unknown variables), so most

likely there is no exact solution. Instead, we find the least squares approximation. We will

do it using the three different methods we have seen and compare the answers. The key

thing to note here is that the matrix is a Vandermonde matrix with a high condition

number.

32655847788.324223

First we find the solution by solving the normal equations:

This is the fastest method of the three, but as we square the (already large) condition

number in the process, the solution is not so reliable. We get a warning about this when

running the Python script.

[9.92954932e+00 4.63772060e+00 -1.67872924e+00 1.75776739e-01
 -7.15567601e-03 1.02389603e-04 -1.90072261e-11 -2.31447569e-13]
/tmp/ipykernel_88/3759883772.py:1: LinAlgWarning: Ill-conditioned matrix (rco
nd=6.90854e-20): result may not be accurate.
 c1 = la.solve(A.T @ A, A.T @ y)

We have now found the coefficients for the best-fitting degree 7 polynomial.

Next we compute the solution using the QR method instead, to see if we get the same

answer. In other words, we find the solution to

where is the thin QR decomposition of the matrix .

p(t) = c0 + c1t + ⋯ + c7t7

Ac = y

A =

⎡⎢⎢⎢⎢⎢⎢⎣

1 t1 t2
1 … t7

1

1 t2 t2
2 … t7

2

⋮ ⋮ ⋮ ⋱ ⋮
1 t15 t2

15 … t7
15

⎤⎥⎥⎥⎥⎥⎥⎦
, c =

⎡⎢⎢⎢⎢⎣

c0

c1

⋮
c7

⎤⎥⎥⎥⎥⎦
, y =

⎡⎢⎢⎢⎢⎢⎣

y1

y2

⋮
y15

⎤⎥⎥⎥⎥⎥⎦
.

A

In [3]: A = np.vander(t, 8, increasing='true')
np.linalg.cond(A)

Out[3]:

AT Ac = AT y.

In [4]: c1 = la.solve(A.T @ A, A.T @ y)
print(c1)

c0, … , c7

R1c = QT
1 y,

A = Q1R1 A

[1.14136424e+01 -1.81825477e+00 1.22897059e+00 -3.04103746e-01
 3.00857892e-02 -1.34794130e-03 2.68681189e-05 -1.81000453e-07]

There are noticeable differences between this answer and the previous one above. Even

though both methods should theoretically give the same solution, if calculations were

done exactly, there is a difference due to computational errors. Below is a plot of both

solutions; the normal equations solution is in red and the QR solution in blue.

In [5]: Q1,R1 = la.qr(A,mode='economic')
b = Q1.T @ y
c2 = la.solve(R1,b)
print(c2)

In [6]: tf = np.linspace(0,29,100,endpoint=False)
y1 = c1[0] + c1[1]*tf + c1[2]*tf**2 + c1[3]*tf**3 + c1[4]*tf**4 + c1[5]*tf**
y2 = c2[0] + c2[1]*tf + c2[2]*tf**2 + c2[3]*tf**3 + c2[4]*tf**4 + c2[5]*tf**
plt.plot(tf,y1,'r',linewidth=2)
plt.plot(tf,y2,'b',linewidth=2)
plt.scatter(t,y,alpha=1,lw=0);
plt.show()

Finally, we also have the possibility to find the least squares solution by computing

where is the pseudoinverse of . We can use the function numpy.linalg.pinv to find

the pseudoinverse.

[1.14136442e+01 -1.81825492e+00 1.22897058e+00 -3.04103745e-01
 3.00857892e-02 -1.34794130e-03 2.68681189e-05 -1.81000454e-07]

There are some minor differences compared to the QR solution, but the pseudoinverse

and QR solutions are very close. If we add a plot of the pseudoinverse solution in green,

we can see that the difference to the blue curve is minimal.

c = A+y,

A+ A

In [7]: c3 = np.linalg.pinv(A) @ y
print(c3)

In [8]: y3 = c3[0] + c3[1]*tf + c3[2]*tf**2 + c3[3]*tf**3 + c3[4]*tf**4 + c3[5]*tf**
plt.plot(tf,y1,'r',linewidth=2)
plt.plot(tf,y2,'b',linewidth=2)
plt.plot(tf,y3,'g',linewidth=2)
plt.scatter(t,y,alpha=1,lw=0);
plt.show()

https://numpy.org/doc/stable/reference/generated/numpy.linalg.pinv.html

So the there options we have are:

1. Normal equations: This is the fastest method of the three. If we know that the

matrix is well-conditioned, then we may use this method for efficiency. However,

in practice it is seldom used due to its worse numerical stability.

2. QR method: This is likely the most common choice for finding the least squares

solution in practice. It requires more computations than solving the normal

equations, but it is significantly more stable.

3. Pseudoinverse: This method is even more costly to compute than QR, but it is also

the most reliable, so it is a good choice if you are not concerned about computing

times (e.g. if the matrix is small). This would also be the preferred method if the

matrix is not of full rank.

A

A

In []:

