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Abstract. Simple random walk is well understood. However, if we condition a random
walk not to intersect itself, so that it is a self-avoiding walk, then it is much more difficult
to analyse and many of the important mathematical problems remain unsolved. This
paper provides an overview of some of what is known about the critical behaviour of the
self-avoiding walk, including some old and some more recent results, using methods that
touch on combinatorics, probability, and statistical mechanics.
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1. Self-avoiding walks

This article provides an overview of the critical behaviour of the self-avoiding walk
model on Zd, and in particular discusses how this behaviour differs as the dimension
d is varied. The books [29, 40] are general references for the model. Our emphasis
will be on dimensions d = 4 and d ≥ 5, where results have been obtained using the
renormalisation group and the lace expansion, respectively.

An n-step self-avoiding walk from x ∈ Zd to y ∈ Zd is a map ω : {0, 1, . . . , n} →
Zd with: ω(0) = x, ω(n) = y, |ω(i + 1) − ω(i)| = 1 (Euclidean norm), and
ω(i) 6= ω(j) for all i 6= j. The last of these conditions is what makes the walk
self-avoiding, and the second last restricts our attention to walks taking nearest-
neighbour steps.

Let d ≥ 1. Let Sn(x) be the set of n-step self-avoiding walks on Zd from 0 to x.
Let Sn = ∪x∈ZdSn(x). Let cn(x) = |Sn(x)|, and let cn =

∑

x∈Zd cn(x) = |Sn|. We
declare all walks in Sn to be equally likely: each has probability c−1

n . See Figure 1.
We write En for expectation with respect to this uniform measure on Sn.

What it is not:

• It is not the so-called “true” or “myopic” self-avoiding walk, i.e., the stochastic
process which at each step looks at its neighbours and chooses uniformly from those
visited least often in the past — the two models have different critical behaviour
(see [28, 50] for recent progress on the “true” self-avoiding walk).
• It is by no means Markovian.
• It is not a stochastic process: the uniform measures on Sn do not form a consistent
family.
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Figure 1. A random self-avoiding walk on Z
2 with 106 steps. Illustration by T. Kennedy.

Figure 2. Appearance of real linear polymer chains as recorded using an atomic force
microscope on surface under liquid medium. Chain contour length is ≈204 nm; thickness
is ≈0.4 nm. [47]

2. Motivations

There are several motivations for studying the self-avoiding walk.

It provides an interesting and difficult problem in enumerative combinatorics:
the determination of the probability of a walk in Sn requires the determination of
cn. It is also a challenging problem in probability, one that has proved resistant to
the standard methods that have been successful for stochastic processes.

In addition, it is a fundamental example in the theory of critical phenomena
in equilibrium statistical mechanics, and in particular is formally the N → 0 limit
of the N -vector model [15]. Finally, it is the standard model in polymer science
of long chain polymers, with the self-avoidance condition modelling the excluded
volume effect [14]. Figure 2 shows some 2-dimensional physical linear polymers,
which may be compared with Figure 1.
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3. Basic questions

Three basic questions are to determine the behaviour of:

• cn = number of n-step self-avoiding walks,

• En|ω(n)|2 = 1
cn

∑

ω∈Sn
|ω(n)|2 = mean-square displacement,

• the scaling limit, i.e., find ν and X such that n−νω(bntc) ⇒ X(t).

The inequality cn+m ≤ cncm follows from the fact that the right-hand side
counts the number of ways that an m-step self-avoiding walk can be concate-
nated onto the end of an n-step self-avoiding walk, and such concatenations pro-
duce all (n + m)-step self-avoiding walks as well as contributions where the two
pieces intersect each other. A consequence of this is that the connective constant

µ = limn→∞ c
1/n
n exists, with cn ≥ µn for all n (see [40, Lemma 1.2.2] for the

elementary proof). Since the dn n-step walks that take steps only in the positive
coordinate directions must be self-avoiding, we have µ ≥ d. And since the set
of n-step walks without immediate reversals has cardinality (2d)(2d − 1)n−1 and
contains all n-step self-avoiding walks, we have µ ≤ 2d− 1. Several authors have
considered the problem of tightening these bounds. For example, for d = 2 it
is known that µ ∈ [2.625 622, 2.679 193] [33, 46] and the non-rigorous estimate1

µ = 2.638 158 530 31(3) was obtained in [31].

Another basic question is to determine the behaviour of the two-point function
Gz(x) =

∑∞
n=0 cn(x)z

n, when z equals the radius of convergence zc = µ−1 (see
[40, Corollary 3.2.6] for a proof that zc = µ−1 for all x). There is now a strong
body of evidence in favour of the predicted asymptotic behaviours:

cn ∼ Aµnnγ−1, En|ω(n)|2 ∼ Dn2ν , Gzc(x) ∼ c|x|−(d−2+η), (3.1)

with universal critical exponents γ, ν, η obeying Fisher’s relation γ = (2 − η)ν.
The exponents are written as in (3.1) to conform with a larger narrative in the
theory of critical phenomena. For d = 4, logarithmic corrections are predicted: a
factor (log n)1/4 should be inserted on the right-hand sides of the formulas for cn
and En|ω(n)|2 (but no logarithmic correction to the leading behaviour of Gzc(x)).
A prediction of universality is the statement that the critical exponents depend
only on the dimension d and not on fine details of how the model is defined. For
example, the exponents are predicted to be the same for self-avoiding walks on the
square, triangular and hexagonal lattices in two dimensions. This will not be the
case for the connective constant or the amplitudes A,D, c, and for this reason the
critical exponents have greater importance.

In the remainder of this paper, we discuss what has been proved concerning
(3.1), dimension by dimension.

1The notation µ = 2.638 158 530 31(3) is an abbreviation, common in the literature, for µ =
2.638 158 530 31 ± 0.000 000 000 03.
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4. Dimension d = 1

At first glance it appears that for d = 1 the problem is trivial: cn = 2 and
|ω(n)| = n for all n, so γ = ν = 1, and the walk moves ballistically left or right
with speed 1.

However, the 1-dimensional problem is interesting for weakly self-avoiding walk.
Let g > 0, let Pn be the uniform measure on all n-step nearest-neighbour walks
S = (S0, S1, . . . , Sn) (with or without intersections), and let

Qn(S) =
1

Zn
exp



−g
n

∑

i,j=0,i6=j
δSi,Sj



Pn(S), (4.1)

where Zn is a normalisation constant.

Theorem 4.1. [17, 36] For every g ∈ (0,∞) there exists θ(g) ∈ (0, 1) and σ(g) ∈
(0,∞) such that

lim
n→∞

Qn

( |Sn| − θn

σ
√
n

≤ C

)

=
1√
2π

∫ C

−∞
e−x

2/2dx. (4.2)

Note the ballistic behaviour for all g > 0: weakly self-avoiding walk is in the
universality class of strictly self-avoiding walk. In particular, ν = 1, in contrast to
ν = 1

2 for g = 0. For any g > 0, no matter how small, the 1-dimensional weakly
self-avoiding walk behaves in the same manner as the strictly self-avoiding walk,
which corresponds to g = ∞. This is predicted to be the case in all dimensions.

The proof of Theorem 4.1 is based on large deviation methods. For a different
approach based on the lace expansion, see [25]. The natural conjecture that g 7→
θ(g) is (strictly) increasing remains unproved. For reviews of the case d = 1, see
[26, 27].

5. Dimension d = 2

It was predicted by Nienhuis [44] that γ = 43
32 and ν = 3

4 for d = 2. According to
Fisher’s relation, this gives η = 5

24 . This prediction has been verified by extensive
Monte Carlo experiments (see, e.g., [39]), and by exact enumeration plus series
analysis. For the latter, cn is determined exactly for n = 1, 2, . . . , N and the
partial sequence is analysed to determine its asymptotic behaviour. The finite
lattice method is remarkable for d = 2, where cn is known for all n ≤ 71 [32]; in
particular,

c71 = 4 190 893 020 903 935 054 619 120 005 916≈ 4.2× 1030. (5.1)

Concerning critical exponents and the scaling limit, a major breakthrough oc-
curred in 2004 with the following result which connects self-avoiding walks and the
Schramm–Loewner evolution (SLE).
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Theorem 5.1. [37] (loosely stated). If the scaling limit of the 2-dimensional self-
avoiding walk exists and has a certain conformal invariance property, then the
scaling limit must be SLE8/3.

Moreover, known properties of SLE8/3 lead to calculations that rederive the

values γ = 43
32 , ν = 3

4 , assuming that SLE8/3 is indeed the scaling limit [37].
The above theorem is a breakthrough because it identifies the stochastic process
SLE8/3 as the candidate scaling limit. However, the theorem makes a conditional
statement, and the existence of the scaling limit (and therefore also its confor-
mal invariance) remains as a difficult open problem. Numerical verifications that
SLE8/3 is the scaling limit were performed in [34].

Current results fall soberingly short of existence of the scaling limit and critical
exponents for d = 2. In fact, for d = 2, 3, 4 the best rigorous bounds on cn are

µn ≤ cn ≤
{

µneCn
1/2

(d = 2)

µneCn
2/(d+2) logn (d = 3, 4).

(5.2)

The lower bound comes for free from cn+m ≤ cncm, and the upper bounds were
proved in [19, 35]. Worse, for d = 2, 3, 4, neither of the inequalities C−1n ≤
En|ω(n)|2 ≤ Cn2−ε (for some C, ε > 0) has been proved. Thus, there is no proof
that the self-avoiding walk moves away from its starting point at least as rapidly
as simple random walk, nor sub-ballistically, even though it is preposterous that
these bounds would not hold.

6. Dimension d = 3

For d = 3, there are no rigorous results for critical exponents. An early prediction
for the values of ν, referred to as the Flory values [14], was ν = 3

d+2 for 1 ≤ d ≤ 4.
This does give the correct answer for d = 1, 2, 4, but it is not quite accurate for
d = 3. The Flory argument is very remote from a rigorous mathematical proof.

For d = 3, there are three methods to compute the exponents. Field theory
computations in theoretical physics [18] combine the N → 0 limit for the N -
vector model with an expansion in ε = 4 − d about dimension d = 4, with ε = 1.
Monte Carlo studies now work with walks of length 33,000,000 [12], using the
pivot algorithm [41, 30]. Finally, exact enumeration plus series analysis has been
used; currently the most extensive enumerations in dimensions d ≥ 3 use the lace
expansion [13], and for d = 3 walks have been enumerated to length n = 30, with
the result c30 = 270 569 905 525 454 674 614. The exact enumeration estimates for
d = 3 are µ = 4.684043(12), γ = 1.1568(8), ν = 0.5876(5) [13]. Monte Carlo
estimates are consistent with these values: γ = 1.1575(6) [11] and ν = 0.587597(7)
[12].
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7. Dimension d = 4

7.1. The upper critical dimension. A prediction going back to [1] is that for
d = 4,

cn ∼ Aµn(logn)1/4, E|ω(n)|2 ∼ Dn(logn)1/4. (7.1)

Correspondingly, when the 4-dimensional self-avoiding walk is rescaled by the fac-
tor (Dn)−1/2(log n)−1/8, the scaling limit is predicted to be Brownian motion.
The logarithmic corrections in (7.1) are typical of behaviour at the upper critical
dimension, which is d = 4 for the self-avoiding walk. As discussed in Section 8
below, self-avoiding walks behave like simple random walks in dimensions greater
than 4.

A quick way to guess that 4 is the upper critical dimension is to recall that the
ranges of two independent Brownian motions do not intersect each other if and
only if d ≥ 4, a fact intimately related to the 2-dimensional nature of Brownian
paths. Consequently, one might guess that conditioning a simple random walk not
to intersect itself might have no noticeable effect on the scaling limit when d ≥ 4.

7.2. Continuous-time weakly self-avoiding walk. Let X be the continuous-
time simple random walk on Zd with Exp(1) holding times and right-continuous
sample paths. In other words, the walk takes its nearest neighbour steps at the
events of a rate-1 Poisson process. Let Ex denote expectation for this process
started at X(0) = x. The local time at x up to time T is given by

tx,T =

∫ T

0

�

X(s)=x ds, (7.2)

and the amount of self-intersection experienced by X up to time T is measured by

∫ T

0

ds1

∫ T

0

ds2
�

X(s1)=X(s2) =
∑

x∈Zd

t2x,T . (7.3)

Let g > 0 and x ∈ Zd. The continuous-time weakly self-avoiding walk two-point
function is defined by

Gg,λ(x) =

∫ ∞

0

E0(e
−g

P

z∈Zd t
2
z,T

�

X(T )=x)e
−λT dT, (7.4)

where λ is a parameter (possibly negative) which is chosen in such a way that
the integral converges. A subadditivity argument shows that there exists a critical
value λc = λc(g) such that

∑

x∈Zd Gg,λ(x) <∞ if and only if λ > λc. The following
theorem shows that the asymptotic behaviour of the critical two-point function has
the same |x|2−d decay as simple random walk, i.e., η = 0, in all dimensions greater
than or equal to 4, when g is small. In particular, there is no logarithmic correction
at leading order when d = 4.
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Theorem 7.1. [8, 9] Let d ≥ 4. There exists ḡ > 0 such that for each g ∈ (0, ḡ)
there exists cg > 0 such that as |x| → ∞,

Gg,λc(g)(x) =
cg

|x|d−2
(1 + o(1)) . (7.5)

The proof of Theorem 7.1 is based on a rigorous renormalisation method [8, 9]
(see also [2]), discussed further below.

7.3. Hierarchical lattice and walk. Theorem 7.1 has precursors for the weakly
self-avoiding walk on a 4-dimensional hierarchical lattice. The hierarchical lattice is
a replacement of Zd by a recursive structure which is well-suited to the renormalisa-
tion group, and which has a long tradition of use for development of renormalisation
group methodology.

The hierarchical lattice Hd,L ia a countable group which depends on two integer
parameters L ≥ 2 and d ≥ 1. It is defined to be the direct sum of infinitely many
copies of the additive group Zn = {0, 1, . . . , n − 1} with n = Ld. A vertex in the
hierarchical lattice has the form x = (. . . , x3, x2, x1) with each xi ∈ Zn and with
all but finitely many entries equal to 0. For x ∈ Hd,L, let

|x| =

{

0 if all entries of x are 0

LN if xN 6= 0 and xi = 0 for all i > N.
(7.6)

A metric (in fact an ultra-metric) on Hd,L is then defined by

ρ(x, y) = |x− y|. (7.7)

level-1 blocks

level-2 blocks

level-3 block

Figure 3. Vertices of the hierarchical lattice with L = 2, d = 2.

To visualise the hierarchical lattice, an example of the vertices of a finite piece of
the d-dimensional hierarchical lattice with parameters L = 2 and d = 2 is depicted
in Figure 3. Vertices are arranged in nested blocks of cardinality Ldj where j is
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the block level. Every pair of vertices is joined by a bond, with the bonds labelled
according to their level as depicted in Figure 4. The level `(x, y) of a bond {x, y}
is defined to be the level of the smallest block that contains both x and y. The
metric ρ on the hierarchical lattice is then given in terms of the level by

ρ(x, y) = L`(x,y). (7.8)

There is more structure present in Figure 3 than actually exists within the hierar-
chical lattice. In particular, all vertices within a single level-1 block are distance
L from each other, and their arrangement in a square in the figure has no rel-
evance for the metric. With this in mind, the arrangement of the vertices as in
Figure 3 serves to emphasise the difference between the hierarchical lattice and the
Euclidean lattice Zd.

level-3 bonds

level-1 bonds

level-2 bonds

Figure 4. Bonds of the hierarchical lattice with L = 2, d = 2.

We now define a random walk on Hd,L, in which the probability P (x, y) of a
jump from x to y in a single step is given by

P (x, y) = const ρ(x, y)−(d+2). (7.9)

We consider both the discrete-time random walk, in which steps are taken at
times 1, 2, 3, . . ., and also the continuous-time random walk in which steps are
taken according to a rate-1 Poisson process. For the continuous-time process, the
random walk Green function is defined to be

G(x, y) =

∫ ∞

0

dT Ex(
�

X(T )=y), (7.10)

where Ex denotes expectation for the process X started at x. It is shown in [3]
that for d > 2

G(x, y) = const
1

ρ(x, y)d−2
if x 6= y, (7.11)
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and in this sense the random walk on the hierarchical lattice behaves like a d-
dimensional random walk.

The continuous-time weakly self-avoiding walk is defined as in Section 7.2,
namely we modify the probability of a continuous-time random walk X on Hd,L

by a factor exp[−g∑

x tx,T (X)2]. The prediction is that for all g > 0 and all L ≥ 2
the weakly self-avoiding walk (with continuous or discrete time) on Hd,L has the
same critical behaviour as the strictly self-avoiding on Zd (at least for d > 2 where
(7.11) holds). This has been exemplified for d = 4 in the series of papers [3, 5, 6],
where, in particular, the following theorem is obtained. There are some details
omitted here that are required for a precise statement, and we content ourselves
with a loose statement that captures the main message from [5].

Theorem 7.2. [5] (loosely stated). Fix L ≥ 2. For the continuous-time weakly
self-avoiding walk on the 4-dimensional hierarchical lattice H4,L, if g ∈ (0, g0) with
g0 sufficiently small, then there is a constant c = c(g, L) such that

E
T
0,g |ω(T )| ≈ cT 1/2(logL T )1/8

[

1 +
logL logL T

32 logL T
+O

(

1

logL T

)]

, (7.12)

where the expectation on the left-hand side is that of weakly self-avoiding walk
started at 0 and up to time T , and where the symbol ≈ requires an appropriate
interpretation; see [5, p. 525] for the details of this interpretation.

It is also shown in [3] that η = 0 in the setting of Theorem 7.2. Very recently,
related results for the critical two-point function and the susceptibility have been
obtained in [21] for the discrete-time weakly self-avoiding walk on H4,L with g
sufficiently small and L sufficiently large. These results produce the predicted
logarithmic correction for the susceptibility, closely related to (7.1).

The proofs of all these results for the 4-dimensional hierarchical lattice are
based on renormalisation group methods, but very different approaches are used
in [3, 5, 6] and in [21]. The approach of [21] is based on a direct analysis of the
self-avoiding paths themselves. In contrast, the approach of [3, 5, 6], as well as
the proof of Theorem 7.1, are based on a functional integral representation for the
two-point function with no direct path analysis.

7.4. Functional integral representation. The point of departure of the proofs
of Theorems 7.1–7.2, and more generally of the analysis in [3, 5, 6, 8, 9, 16, 43], is
a functional integral representation for self-avoiding walks. Such representations
have their roots in [45, 42, 38, 3] and recently have been summarised and extended
in [7]. We now describe the representation for the continuous-time weakly self-
avoiding walk on Z4.

In fact, the representation is valid for weakly self-avoiding walk on any finite set
Λ, and an extension to Z4 requires a finite volume approximation followed by an
infinite volume limit; the latter is not discussed here. For the present discussion, let
Λ be an finite box in Zd, of cardinality M , and with periodic boundary conditions.
Let ∆ denote the lattice Laplacian on Λ. Let X be the continuous-time Markov
process on Λ with generator ∆, and let Ex denote the expectation for this process
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started from x ∈ Λ. We define the weakly self-avoiding walk two-point function
on Λ by

Gwsaw,Λ
x,y =

∫ ∞

0

Ex

(

e−g
P

z∈Λ t
2
z,T

�

X(T )=y

)

e−λT dT, (7.13)

where g > 0 and where λ ∈ R is chosen so that the integral converges.
Given ϕ : Λ → C, we write ψx = 1√

2πi
dϕx, where dϕx denotes the differential

and we fix any particular choice of the square root. For x ∈ Λ, we define

τx = ϕxϕ̄x + ψx ∧ ψ̄x, (7.14)

where the wedge product is the usual anti-commuting product of differential forms,
ϕ̄x denotes the complex conjugate of ϕx, and ψ̄x = 1√

2πi
dϕ̄x. Forms are always

multiplied using the wedge product, and we drop the wedge from the notation in
what follows. We also define

S =
∑

x,y∈Λ

(−∆x,y)ϕxϕ̄y +
∑

x,y∈Λ

(−∆x,y)ψxψ̄y. (7.15)

The integral representation for Gwsaw,Λ
x,y is

Gwsaw,Λ
x,y =

∫

e−Se−
P

x∈Λ(gτ2
x+λτx)ϕ̄xϕy, (7.16)

where the integral is defined by the following procedure.
First, the integrand, which involves functions of differential forms, is defined

by its formal power series about its degree-zero part. For example, with the ab-
breviated notation S = −ϕ∆ϕ̄− ψ∆ψ̄, the expansion of e−S is

e−S = eϕ∆ϕ̄+ψ∆ψ̄ = eϕ∆ϕ̄

|Λ|
∑

N=1

1

N !

(

ψ∆ψ̄
)N

, (7.17)

where the sum is a finite sum due to the anti-commutativity of the wedge product.
Second, in the expansion of the integrand, we keep only terms with one factor dϕx
and one dϕ̄x for each x ∈ Λ, and discard the rest. Then we write ϕx = ux + ivx,
ϕ̄x = ux− ivx and similarly for the differentials, use the anti-commutativity of the
wedge product to rearrange the differentials to

∏

x∈Λ duxdvx, and finally perform

the resulting Lebesgue integral over R2|Λ|. For further discussion and a proof of
(7.16), see [7].

The approach of [3, 5, 6, 8, 9] to the weakly self-avoiding walk is to study
the integral on the right-hand side of (7.16), and simply to forget about the walks
themselves. The differential form e−Se−V (Λ), where V (Λ) =

∑

x∈Λ(gτ2
x+λτx), has

a property called supersymmetry (see [7] for a discussion of this in our context). In
physics, roughly speaking, this corresponds to symmetry under an interchange of
bosons and fermions. Supersymmetry has interesting consequences. For example,
a general theorem (see [6, 7]) implies that

∫

e−Se−V (Λ) = 1. (7.18)
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We redefine S as S = ϕ(εI−∆)ϕ̄−ψ(εI−∆)ψ̄ for some (small) choice of ε > 0,
where I denotes the |Λ|× |Λ| identity matrix. This can be regarded an adjustment
of the parameter λ. Then, given a form F , we write

ECF =

∫

e−SF, (7.19)

where C = (εI − ∆)−1. By (7.18), EC1 = 1. We regard EC as a mixed bosonic-
fermionic Gaussian expectation, with covariance C. The operation EC has much
in common with standard Gaussian integration, and for this reason we write E for
expectation, but this is not ordinary probability theory and the expectations are
actually Grassmannian integrals.

7.5. The renormalisation group map. The renormalisation group approach of
[8, 9] (and of several other authors as well) is based on a finite-range decomposition
of the covariance C = (εI − ∆)−1, due to [4]. Fix a large integer L and suppose
that |Λ| = LNd. Using the results of [4], it is possible to write

C =

N
∑

j=1

Cj (7.20)

where the Cj ’s are positive semi-definite operators with the important finite-range
property

Cj(x, y) = 0 if |x− y| ≥ Lj . (7.21)

The Cj ’s also have a certain self-similarity property, and obey the estimates

sup
x,y

sup
|α|≤α0

∣

∣∇α
x∇α

yCj(x, y)
∣

∣ ≤ constL−2jL−2(j−1)|α| (7.22)

with a j-independent constant. This decomposition induces a field decomposition

ϕ =

N
∑

j=1

ζj , dϕ =

N
∑

j=1

dζj , (7.23)

and allows the expectation to be performed iteratively:

EC = ECN ◦ · · · ◦ EC2 ◦ EC1 , (7.24)

where ECj integrates out the scale-j fields ζj , ζ̄j , dζj , dζ̄j . Under Ej , the scale-j
fields are uncorrelated when separated by distance greater than Lj , in contrast to
the long-range correlations of the full expectation EC .

In what follows, we discuss the approach of [9] towards a direct evaluation of the
integral

∫

e−Se−V (Λ). In fact, as already pointed out above, it is a consequence of
supersymmetry that this integral is equal to 1, so direct evaluation is not necessary.
However, the method described below extends also to evaluate the integral in
(7.16), and it is easier to discuss the method now in the simpler setting without
the factor ϕ̄xϕy in the integrand.
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We write (φ, dφ) = (ϕ, ϕ̄, dϕ, dϕ̄) and (ξ, dξ) = (ζ, ζ̄, dζ, dζ̄). We set φj =
∑N

i=j+1 ξi, with φ0 = φ, φN = 0; this gives

φj = φj+1 + ξj+1. (7.25)

Let Z0 = Z0(φ, dφ) = e−V (Λ), let

Z1(φ1, dφ1) = EC1Z0(φ1 + ξ1, dφ1 + dξ1), (7.26)

Z2(φ2, dφ2) = EC2Z1(φ2 + ξ2, dφ2 + dξ2) = EC2EC1Z0, (7.27)

and, in general, let

Zj(φj , dφj) = ECj · · ·EC1Z0(φ, dφ). (7.28)

Our goal now is to compute directly

ZN = ECZ0 = ECe
−V (Λ). (7.29)

This leads us to study the renormalisation group map Zj 7→ Zj+1 given by

Zj+1(φj+1, dφj+1) = ECj+1Zj(φj+1 + ξj+1, dφj+1 + dξj+1). (7.30)

The finite-range property of Cj , together with our choice of side length LN for
Λ, leads naturally to the consideration of Λ as being paved by blocks of side Lj .
Let Pj denote the set of finite unions of such blocks. Given forms F,G defined on
Pj , we define the product

(F ◦G)(Λ) =
∑

X∈Pj

F (X)G(Λ \X). (7.31)

For X ∈ P0, let

I0(X) = e−V (X), K0(X) =
�
X=∅. (7.32)

Then we can write
Z0 = I0(Λ) = (I0 ◦K0)(Λ). (7.33)

The method of [9] consists in the determination of an inductive parametrisation

Zj = (Ij ◦Kj)(Λ), Zj+1 = ECj+1Zj = (Ij+1 ◦Kj+1)(Λ), (7.34)

with each Ij parametrised in turn by a polynomial Vj evaluated at φj , dφj , given
by

Vj,x = gjτ
2
x + λjτx + zjτ∆,x, (7.35)

with

τ∆,x = ϕx(−∆ϕ̄)x + (−∆ϕ)xϕ̄x + dϕx(−∆dϕ̄)x + (−∆dϕ)xdϕ̄x. (7.36)

The term Kj accumulates error terms. The map Ij 7→ Ij+1 is thus given by
the flow of the coupling constants (gj , λj , zj) 7→ (gj+1, λj+1, zj+1), and hence the
renormalisation group map becomes the dynamical system

(gj , λj , zj ,Kj) 7→ (gj+1, λj+1, zj+1,Kj+1). (7.37)

At the critical point, this dynamical system is driven to zero, and this permits the
asymptotic computation of the two-point function.
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8. Dimensions d ≥ 5

8.1. Results. The following theorem shows that above the upper critical dimen-
sion the self-avoiding walk behaves like simple random walk, in the sense that
γ = 1, ν = 1

2 , η = 0, and the scaling limit is Brownian motion.

Theorem 8.1. [22, 23] For d ≥ 5, there are positive constants A,D, c, ε such that

cn = Aµn[1 +O(n−ε)], (8.1)

En|ω(n)|2 = Dn[1 +O(n−ε)], (8.2)

and the rescaled self-avoiding walk converges weakly to Brownian motion:

ω(bntc)√
Dn

⇒ Bt. (8.3)

Also [20], as |x| → ∞,

Gzc(x) = c|x|−(d−2)[1 +O(|x|−ε)]. (8.4)

The proofs of these results are based on the lace expansion, a technique that
was introduced by Brydges and Spencer [10] to study the weakly self-avoiding
walk in dimensions d > 4. Since 1985, the method has been highly developed
and extended to several other models: percolation (d > 6), oriented percolation
(d + 1 > 4 + 1), contact process (d > 4), lattice trees and lattice animals (d > 8),
and the Ising model (d > 4). For a review and references, see [49].

The lace expansion requires a small parameter for its convergence. For the
nearest-neighbour model in dimensions d ≥ 5, the small parameter is proportional
to (d − 4)−1, which is not very small when d = 5. Because of this, the proof of
Theorem 8.1 is computer assisted. The weakly self-avoiding walk has an intrinsic
small parameter g, and it is therefore easier to analyse than the strictly self-avoiding
walk. Another option for the introduction of a small parameter is to consider the
spread-out strictly self-avoiding walk, which takes steps within a box of side length
L centred at its current position; this model also can be more easily analysed by
taking L large to provide a small parameter L−1.

The spread-out model can be generalised to have non-uniform step weights. For
example, given α > 0, and an n-step self-avoiding walk ω on Zd taking arbitrary
steps, we define the weight

W (ω) =

n
∏

i=1

1

(L−1|ω(i− 1) − ω(i)| ∧ 1)d+α
, (8.5)

and consider the probability distribution on self-avoiding walks that corresponds
to this weight. The following theorem, which is proved using the lace expansion,
shows how the upper critical dimension changes once α ≤ 2 and the step weights
have infinite variance.
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Theorem 8.2. [24] Let α > 0 and

fα(n) = aα

{

n−1/(α∧2) α 6= 2

(n logn)−1/2 α = 2,
(8.6)

for a suitably chosen (explicit) constant aα. For d > 2(α∧2) and for L sufficiently
large, the process Xn(t) = fα(n)ω(bntc) converges in distribution to an α-stable
Lévy process if α < 2 and to Brownian motion if α ≥ 2.

In [43], the weakly self-avoiding walk with long-range steps characterised by
α = 3+ε

2 , with small ε > 0, is studied in dimension 3, which is below the upper
critical dimension 3 + ε. The main result is the control of the renormalisation
group trajectory, a first step towards the computation of the asymptotics for the
critical two-point function below the upper critical dimension. This is a rigorous
version, for the weakly self-avoiding walk, of the expansion in ε = 4 − d discussed
in [51]. The work of [43] is based on the functional integral representation outlined
in Section 7.4.

8.2. The lace expansion. The original formulation of the lace expansion in
[10] made use of a particular class of ordered graphs which Brydges and Spencer
called “laces.” Later it was realised that the same expansion can be obtained by
repeated use of inclusion-exclusion [48]. We now sketch the inclusion-exclusion
approach very briefly; further details can be found in [40] or [49].

The lace expansion identifies a function πm(x) such that for n ≥ 1,

cn(x) =
∑

y∈Zd

c1(y)cn−1(x− y) +

n
∑

m=2

∑

y∈Zd

πm(y)cn−m(x− y). (8.7)

In fact, it is possible to see that (8.7) defines πm(x), but the expansion will produce
a useful expression for πm(x). We begin with the identity

cn(x) =
∑

y∈Zd

c1(y)cn−1(x− y) −R(1)
n (x), (8.8)

where R
(1)
n (x) counts the number of terms which are included on the first term of

the right-hand side but excluded on the left, namely the number of n-step walks
which start at 0, end at x, and are self-avoiding except for an obligatory single
return to 0. This is denoted schematically by

R(1)
n (x) = 0 x . (8.9)

If we relax the constraint that the loop in the above diagram avoid the vertices in
the “tail,” then we are led to

R(1)
n (x) =

n
∑

m=2

umcn−m(x) −R(2)
n (x), (8.10)
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where um is the number of m-step self-avoiding returns, and

R(2)
n (x) = 0 x . (8.11)

In the above diagram, the proper line represents a self-avoiding return, while the
wavy line represents a self-avoiding walk from 0 to x constrained to intersect the
proper line. Repetition of the inclusion-exclusion process leads to

cn(x) =
∑

y∈Zd

c1(y)cn−1(x− y) +

n
∑

m=2

∑

y∈Zd

πm(y)cn−m(x− y) (8.12)

with

πm(y) = −δ0,y 0 + y0 −

0 y

+ · · · (8.13)

and where there are specific rules for which lines may intersect which in the dia-
grams on the right-hand side. These rules can be conveniently accounted for using
the concept of lace.

We put (8.7) into a generating function to obtain

Gz(x) =
∞
∑

n=0

cn(x)z
n = δ0,x + z

∑

y∈Zd

c1(y)Gz(x− y) +
∑

y∈Zd

Πz(y)Gz(x− y),

(8.14)

with

Πz(y) =

∞
∑

m=2

πm(y)zm. (8.15)

For k ∈ [−π, π]d, let f̂(k) =
∑

x f(x)eik·x denote the Fourier transform of an
absolutely summable function f on Zd. From (8.14), we obtain

Ĝz(k) =
1

1 − zĉ1(k) − Π̂z(k)
. (8.16)

Note that setting Π̂z(k) equal to zero yields the Fourier transform of the two-point
function of simple random walk, and hence Π̂z(k) encapsulates the self-avoidance.

8.3. One idea from the proof of Theorem 8.1. Let F̂z(k) = 1/Ĝz(k). By

definition, Ĝz(0) =
∑∞

n=0 cnz
n. Since limn→∞ c

1/n
n = µ = z−1

c , Ĝz(0) has radius

of convergence zc, and since cn ≥ µn, F̂zc(0) = 0. Suppose that it is possible to
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perform a joint Taylor expansion of F̂ in k and z about the points k = 0 and
z = zc. The linear term in k vanishes by symmetry, so that

F̂z(k) = F̂z(k) − F̂zc(0) ≈ a|k|2 + b
(

1 − z

zc

)

, for k ≈ 0, z ≈ z−c , (8.17)

with a = 1
2d∇2

kF̂zc(0) and b = −zc∂zF̂zc(0). We assume now that a and b are
finite, although it is an important part of the proof to establish this, and it is not
expected to be true when d ≤ 4. Then

Ĝz(k) ≈
1

a|k|2 + b(1 − z
zc

)
, for k ≈ 0, z ≈ z−c , (8.18)

which is essentially the corresponding generating function for simple random walk.
For this to work, it is necessary in particular that zc∂zΠ̂zc(k) be finite. The

leading term in this derivative, due to the first term
∑∞

m=2 umz
m in the diagram-

matic expansion for Π̂z(k), is
∑∞

m=2mumz
m
c . By considering the factor m to be

the number of ways to choose a nonzero vertex on a self-avoiding return, and by
relaxing the constraint that the two parts of this return (separated by the chosen
vertex) avoid each other, we find that this contribution is bounded above by

∞
∑

m=2

ummz
m
c ≤

∑

x∈Zd

Gzc(x)
2 =

∫

[−π,π]d
Ĝzc(k)

2 ddk

(2π)d
, (8.19)

where the equality follows from Parseval’s relation. A reason to be hopeful that
this might lead to a finite upper bound is that if we insert the simple random walk
behaviour on the right-hand side of (8.18) into (8.19) then we obtain

∫

[−π,π]d
Ĝzc(k)

2 ddk

(2π)d
≈

∫

[−π,π]d

1

|k|4
ddk

(2π)d
<∞ for d > 4. (8.20)

Here we have assumed what it is that we are trying to prove, but the proof finds
a way to exploit this kind of self-consistent argument. For the details, we refer to
[22, 23], or, in the much simpler setting of the spread-out model, to [49].

9. Conclusions

Our current understanding of the critical behaviour of the self-avoiding walk can
be summarised as follows:

• d = 1: ballistic behaviour is trivial for the nearest-neighbour strictly self-
avoiding walk, but is interesting for the weakly self-avoiding walk.

• d = 2: if the scaling limit can be proven to exist and to be conformally
invariant then the scaling limit is SLE8/3, SLE8/3 explains the values γ = 43

32

and ν = 3
4 , currently there is no proof that the scaling limit exists.
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• d = 3: numerically γ ≈ 1.16 and ν ≈ 0.588, there are no rigorous results,
and there is no idea how to describe the scaling limit as a stochastic process.

• d = 4: renormalisation group methods have proved that η = 0 for continuous-
time weakly self-avoiding walk; on a 4-dimensional hierarchical lattice γ = 1
and ν = 1

2 , both with log corrections, and η = 0.

• d ≥ 5: the problem is solved using the lace expansion, γ = 1, ν = 1
2 , η = 0,

and the scaling limit is Brownian motion.
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