
BOUNDS ON THE SELF-AVOIDING-WALK
CONNECTIVE CONSTANT

by Gordon SLADE

This lecture reviews the current status of upper and lower bounds on the
connective constant for self-avoiding walks on the hypercubic lattice Zd, for
dimensions d ≥ 2.

1 Introduction

An n-step self-avoiding walk on the d-dimensional hypercubic lattice Zd is an
ordered set ω = (ω(0), ω(1), . . . , ω(n)), with each ω(i) ∈ Zd, |ω(i+1)−ω(i)| =
1 for all i (Euclidean distance), and ω(i) 6= ω(j) for i 6= j. Let cn denote
the number of n-step self-avoiding walks with ω(0) = 0. It is clear that
cn+m ≤ cncm, and hence the sequence {log cn} is subadditive. From this it
follows that the limit µ ≡ limn→∞ c

1/n
n exists, and that cn ≥ µn for all n.

This limit µ is known as the connective constant, and was first noted to exist
in [14].

In fact it is believed that cn ∼ Aµnnγ−1 as n → ∞, with γ a universal
critical exponent. “Universal” means dependent only on the spatial dimen-
sion and not on other details of the walk’s definition; for example γ is believed
to be the same for self-avoiding walks on all two-dimensional lattices such as
the square lattice or the triangular lattice. By contrast µ, being roughly a
measure of the average number of possible next steps available for a long self-
avoiding walk, is not a universal quantity. Because of this lack of universality,
the connective constant has received less attention in the literature than the
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critical exponents, but nevertheless the determination of the value of µ has
been a question considered by many authors since the earliest mathematical
work on self-avoiding walks.

The author’s own interest in bounds on µ was aroused in the course of
joint work with Takashi Hara [16, 15], in which a computer-assisted proof
of existence of critical exponents for the self-avoiding walk in dimensions
d ≥ 5 required accurate numerical lower bounds on µ. We developed a new
method for obtaining such bounds [15, Appendix A], based on loop-erasure
and restoration, which was further extended in collaboration with Alan Sokal
[18], and which is described below. It gives the current best lower bounds
in dimensions d ≥ 3. For d = 2 the best lower bound is due to Conway
and Guttmann [3] and makes use of extensive walk enumerations; it also is
described below. The best upper bounds on µ are due to Alm [1], and are
described in the final section. These bounds also make use of enumeration
data.

The precise value of µ is of course not known in any dimension d ≥ 2
(µ = 1 for the trivial case of d = 1). Early guesses that in two dimensions
µ equals 1 +

√
2 = 2.4142... or e = 2.7182... have been ruled out by the

rigorous bounds. There is one exception where µ is believed to be known
exactly: for the 2-dimensional hexagonal (also called the honeycomb) lattice

there is strong evidence [24], but as yet no proof, that µ =
√

2 +
√

2.
The simplest bounds on µ are d ≤ µ ≤ 2d − 1. This follows from the

bounds dn ≤ cn ≤ (2d)(2d−1)n−1, which themselves follow by counting walks
which only take steps in positive coordinate directions (for the lower bound),
and by counting walks having no steps which reverse their predecessor (the
upper bound). Table 1 gives the current status of improvements to these
simple bounds, for dimensions two through six. Table 1 also gives estimates
of the precise value of µ, which have been obtained from series extrapolation
methods: values of cn are enumerated on a computer for n as large as is
feasible, and then µ is estimated from this data. For d = 2 the current world
record [2] is c39 = 113 101 676 587 853 932, but larger values of n are likely in
the near future. For d = 3 the record [11] is c21 = 235 710 090 502 158.
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d lower bound estimate upper bound

2 2.620 02a 2.638 158 5 (10)d 2.695 76b

3 4.572 140c 4.683 907 (22)e 4.756b

4 6.742 945c 6.772 0 (5)f 6.832b

5 8.828 529c 8.838 6 (8)g 8.881b

6 10.874 038c 10.878 8 (9)g 10.903b

Table 1: Rigorous lower and upper bounds on the connective constant µ,
together with estimates of actual values, for dimensions 2,3,4,5,6. Estimated
errors in the last digit(s) are shown in parentheses. References: a) [3], b) [1],
c) [18], d) [12, 2], e) [7], f) [8], g) [9].

2 Lower bounds

Section 2.1 below describes the d = 2 Conway-Guttmann lower bound of Ta-
ble 1, which is obtained using walk enumerations combined with a method
due to Kesten [19]. This method works in all dimensions, but sufficient enu-
merations for good bounds have been done only for d = 2. Section 2.2 de-
scribes the Hara-Slade-Sokal lower bounds, which are based on loop-erasure
and do not use enumeration data; this method gives good results in dimen-
sions d ≥ 3.

2.1 The irreducible-bridge method

Given a walk ω we denote the components of a site ω(i) ∈ Zd by (ω1(i), . . . ,
ωd(i)). An n-step bridge in Zd is an n-step self-avoiding walk ω with ω(0) = 0,
ω(1) = (1, 0, . . . , 0), and 1 ≤ ω1(i) ≤ ω1(n) for all i = 1, . . . , n. Let bn denote
the number of n-step bridges for n ≥ 1, and set b0 = 1. An n-step irreducible
bridge is an n-step bridge which cannot be broken into an m-step and an
(n − m)-step subwalk (with m 6= 0, n) such that each subwalk is itself a
bridge (or a translate of a bridge). Let in denote the number of n-step
irreducible bridges. These counts satisfy the renewal equation

bn = δn,0 +
n∑
k=1

ikbn−k . (2.1)
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We define for z ≥ 0 the generating functions

B(z) =
∞∑
n=0

bnz
n (2.2)

I(z) =
∞∑
n=1

inz
n. (2.3)

It is known that B(z) and I(z) both have radius of convergence equal to µ−1,
with limz↗µ−1 B(z) = ∞ (see [22] for proofs and references to the original
literature). Hence it follows from (2.1) that

B(z) =
1

1− I(z)
for z ≤ µ−1, (2.4)

with

I(µ−1) =
∞∑
n=1

inµ
−n = 1. (2.5)

Suppose now that we have a sequence ln of nonnegative lower bounds for
in, i.e., 0 ≤ ln ≤ in for all n ≥ 1, and define

L(z) =
∞∑
n=1

lnz
n. (2.6)

Both L and I are increasing, and L(z) ≤ I(z). It follows that the root z∗ of
the equation L(z∗) = 1 obeys z∗ ≥ µ−1 and hence gives a lower bound for µ:

µ ≥ 1

z∗
. (2.7)

This method is due to Kesten [19].
In two dimensions, Conway and Guttmann used (2.7) with ln = in for

n ≤ 40; ln equal to a good lower bound on in for 41 ≤ n ≤ 124; and ln = 0
for n ≥ 125. With this highly nontrivial enumeration done, the resulting
bound µ ≥ 2.62 is within 0.7% of the best numerical estimate. Details of the
method of enumeration can be found in [3].
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2.2 The loop-erasure method

The loop-erasure method has several refinements, and here the focus will be
on the simplest version. The description closely follows [18].

First some notation is needed. Let Ω(x, y) denote the set of all self-
avoiding walks of any length (including zero if x = y) which begin at x and
end at y. Let Ω0(x, y) denote the corresponding set of simple random walks.
We denote the two-point function or Green function for self-avoiding walks
by

G(x, y; z) =
∑

ω∈Ω(x,y)

z|ω|, (2.8)

where |ω| denotes the length of ω and z is a nonnegative parameter. This
series converges when z < µ−1, and is known to diverge when z > µ−1 [13].
The susceptibility

χ(z) =
∑
x∈Zd

G(0, x; z) =
∞∑
n=0

cnz
n (2.9)

also has radius of convergence µ−1. Given a set of sites A ⊂ Zd, the simple
random walk Green function is given by

CA(x, y; z) =
∑

ω∈Ω0(x,y):ω∩A=∅
z|ω|. (2.10)

If A is the empty set then it will be omitted as a superscript. The series
converges for z ≤ 1/2d when A = ∅ and d > 2, and converges for z ≤ 1/2d in
all dimensions d > 0 if A is nonempty. The simple random walk susceptibility
is given by

χ0(z) =
∑
x∈Zd

C(0, x; z) =
1

1− 2dz
. (2.11)

A relationship between the self-avoiding walk and simple random walk
Green functions can be derived using a loop-erasure algorithm which has
been studied extensively by Lawler [21]. Given a walk ω ∈ Ω0(x, y), the
algorithm associates to ω a self-avoiding walk ρ ∈ Ω(x, y) by erasing loops
chronologically, as follows. Let t1 be the last time such that ω(t1) = ω(0) = x,
and then replace the loop L0 = (ω(0), ω(1), . . . , ω(t1)) by the single site ω(0),
producing a new walk ρ(1) ∈ Ω(x, y). In other words we have erased the
largest possible loop at the site x. (If t1 = 0 then we have erased nothing.)
The walk ρ(1) visits x exactly once, but it may visit the site ρ(1)(1) repeatedly.
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Let t2 denote the last time that ρ(1)(t2) = ρ(1)(1), and replace the loop
L1 = (ρ(1)(1), . . . , ρ(1)(t2)) by the single site ρ(1)(1) as before. Note that the
erased loop L1 cannot pass through ω(0) = x. This procedure gives rise to
a walk ρ(2), which visits each of ρ(2)(0) and ρ(2)(1) exactly once. Repeating
this procedure by removing loops successively yields a result which is devoid
of loops, or in other words which is self-avoiding.

This defines a mapping from Ω0(x, y) into the set R(x, y) whose elements
are of the form (ρ, L0, L1, . . . , Ln), where ρ ∈ Ω(x, y) is an n-step self-avoiding
walk (for some n) and each Li ∈ Ω0(ρ(i), ρ(i)) corresponds to an erased loop.
We refer to ρ as the self-avoiding backbone of ω. In fact this mapping is
a bijection between Ω0(x, y) and the subset of R(x, y) for which the loop
Li attached at ρ(i) does not intersect any of the previous backbone sites
ρ(0), . . . , ρ(i− 1), for all i = 1, . . . , |ρ|.

Let ρ[0, j) denote the set of sites {ρ(0), . . . , ρ(j − 1)}, for j = 1, . . . , |ω|,
and let ρ[0, 0) be the empty set. In view of the above bijection,

C(x, y; z) =
∑

ρ∈Ω(x,y)

z|ρ|
|ρ|∏
j=0

C
ρ[0,j)
0 (ρ(j), ρ(j); z). (2.12)

An upper bound on (2.12) can be obtained by relaxing the avoidance con-
straints on the attached loops. We do this by replacing the restriction that
the loop attached at ρ(j) avoid all of ρ[0, j) by the weaker restriction that it
avoid only the smaller set

ρ[j − k, j) ≡ {ρ(j − k), . . . , ρ(j − 1)} , (2.13)

where k is a (small) fixed nonnegative integer. [For k = 0, ρ[j, j) = ∅; and
for k > j we omit the nonexistent points ρ(i) with i < 0.] This gives the
inequality

C(x, y; z) ≤
∑

ρ∈Ω(x,y)

z|ρ|
|ρ|∏
j=0

Cρ[j−k,j)(ρ(j), ρ(j); z). (2.14)

For j ≥ k, the set of sites ρ[j−k, j) is the range of a (k−1)-step self-avoiding
walk starting at a nearest neighbour of ρ(j), so a further upper bound follows
by taking the maximum over all such sets. Taking into account translation
invariance, this leads us to define

Λ(k; z) = max
A

CA(0, 0; z) , (2.15)
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where the maximum ranges over all k-element sets A which are the range of
a (k−1)-step self-avoiding walk starting at a nearest neighbour of the origin.
Then we have

C(x, y; z) ≤
∑

ρ∈Ω(x,y)

z|ρ|Λ(0; z)Λ(1; z) · · ·Λ(k − 1; z)Λ(k; z)|ρ|+1−k

≡ αk(z)G(x, y; zΛ(k; z)) , (2.16)

where

αk(z) ≡
[
k−1∏
i=0

Λ(i; z)

]
Λ(k; z)1−k . (2.17)

Summing over y ∈ Zd, this gives the basic loop-erasure-and-restoration in-
equality

χ0(z)

αk(z)
≤ χ(zΛ(k; z)) . (2.18)

Elementary facts about simple random walk imply that

lim
z↑(2d)−1

χ0(z)

αk(z)
= ∞ (2.19)

for all k ≥ 0 and all d > 0; this is simplest in dimensions d > 2 since the
denominator on the left side remains bounded away from zero and infinity in
the limit. From this, it is now easy to obtain a lower bound on µ. By (2.19)
and (2.18), χ((2d)−1Λ(k; (2d)−1)) = +∞. Since χ(x) < ∞ for x < 1/µ, we
have

Λ(k; (2d)−1)

2d
≥ 1

µ
, (2.20)

or in other words

µ ≥ 2d

Λ(k; (2d)−1)
for k ≥ 0, d > 0 . (2.21)

The k = 0 version of this bound is not new: it is an immediate consequence
of combined results of Fisher [4] and of Fröhlich, Simon and Spencer [6], and
was also proved by Lawler [20] for d > 4 using loop erasure in a different
way.

With k = 1, (2.21) gives the exact answer µ ≥ 1 in the trivial case
d = 1. For d = 2 and k = 1, it gives the rather poor bound µ ≥ 2. For
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d = 3 and k = 1, it already does better than all previously known bounds,
yielding µ ≥ 4.4758 . This improves the bound µ ≥ 4.352 obtained using the
irreducible-bridge method with ln = in for n ≤ 11 and ln = 0 otherwise [10].

The evaluation of the lower bound (2.21) requires calculation of the de-
nominator. This involves special difficulties for d = 2, so we restrict attention
in the following to d > 2. In this case, for k = 0 the denominator of (2.21) is
simply C(0, 0; 1/2d), for which there is an integral representation

C(x, y; 1/2d) =
∫

[−π,π]d

eik·(x−y)

1− d−1
∑d
j=1 cos kj

ddk

(2π)d
. (2.22)

This integral can be transformed into a 1-dimensional integral of modified
Bessel functions, and then accurately evaluated numerically using the meth-
ods of [15, Appendix B]. Larger values of k (we used k ≤ 4) can then be
handled using the recursion (for b 6∈A)

CA∪{b}(x, y; z) = CA(x, y; z) − CA(x, b; z)CA(b, y; z)

CA(b, b; z)
. (2.23)

The maximum in (2.15) is computed by evaluating the right side for all
possible configurations of A, making the obvious use of symmetry. The
optimization problem of predicting which set A gives the maximum for fixed
|A| = k appears to be difficult.

Improvements to the results described above were obtained by using the
loop-erasure algorithm in conjunction with memory-2 walk rather than sim-
ple random walk. Memory-2 walk is obtained by putting the uniform mea-
sure on the set of n-step simple random walks having no immediate rever-
sals, which means that ω(i + 2) 6= ω(i) for all i. The above analysis can
be extended to memory-2 walks, with some changes, and leads to improved
bounds. This involves evaluation of the memory-2 Green function, which
can be reduced to the integrals (2.22). Some further improvements can be
obtained by partially recovering losses suffered when the maximum over A is
taken in deriving (2.16), yielding the d ≥ 3 lower bounds of Table 1. Details
can be found in [18].

For d = 2 the method produces the very weak bound µ ≥ 2.3057. The
bounds improve as the dimension increases; in fact as d→∞ the best of the
lower bounds has 1/d behaviour given by the right side of

µ ≥ 2d− 1− 1

2d
− 3

(2d)2
− 18

(2d)3
− 122

(2d)4
+O(d−5). (2.24)
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This compares well with the expansion

µ = 2d− 1− 1

2d
− 3

(2d)2
− 16

(2d)3
− 102

(2d)4
+O(d−5) (2.25)

(see [5, 23], and [17] for the error term).

3 Upper bounds

This section briefly describes Alm’s method [1] for obtaining upper bounds on
µ. The basic idea is to take the limiting value of the n-th root of a sequence
of upper bounds on cn. To formulate these bounds some notation is needed.

Given positive integers r < s, and a list of all possible r-step self-avoiding
walks γ(1), . . . , γ(cr), let gi,j(r, s) denote the number of s-step self-avoiding
walks whose first r steps are given by γ(i) and whose last r steps are given by
γ(j). Let G(r, s) denote the cr × cr matrix whose elements are the gi,j(r, s).
Because of the potential for trapping, there are values of i, j, r, s for which
zero matrix entries arise. This can be overcome by taking s large compared to
r, and by discarding any r-step walks which inherently give rise to trapping.
This leads to a possibly smaller matrix with strictly positive entries; for
simplicity the notation G(r, s) will still be used to denote this diminished
matrix. By the Perron-Frobenius theorem, the eigenvalue of G(r, s) having
largest magnitude is simple and positive. Denote this eigenvalue by λ1 =
λ1(r, s). Alm’s method is then based on the fact that

µ ≤ [λ1(r, s)]1/(s−r); (3.1)

the proof of this inequality is discussed below.
To prove (3.1), first note that given two s-step self-avoiding walks, one

beginning with γ(i) and ending with γ(k), and another beginning with γ(k)

and ending with γ(j), these walks can be joined, with an overlap of r steps,
to form an [r + 2(s − r)]-step walk. All possible self-avoiding walks of this
length can be formed in this way, so

gi,j(r, r + 2(s− r)) ≤
∑
k

gi,k(r, s)gk,j(r, s) = [G2(r, s)]i,j. (3.2)

Repitition of this argument gives

gi,j(r, r +m(s− r)) ≤ [Gm(r, s)]i,j. (3.3)
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For a positive matrix A with entries ai,j, we will use the norm ||A|| = ∑
i,j ai,j.

Then ||G(r, s)|| = cs. By (3.3),

cr+m(s−r) = ||G(r, r +m(s− r))|| ≤ ||Gm(r, s)|| (3.4)

and hence

µ = lim
m→∞

||G(r, r +m(s− r)||1/[r+m(s−r)] (3.5)

≤ lim
m→∞

||Gm(r, s)||1/[r+m(s−r)] = [λ1(r, s)]1/(s−r),

where the fact that λ1 is the largest eigenvalue was used in the last step.
This proves (3.1).

Alm computes λ1(r, s) numerically, and observes that [λ1(r, s)]1/(s−r) is
decreasing (and hence gives improved bounds) as a function of r and s with
r < s, and conjectures that this is always the case. The special case r = 0
of this conjecture says that c1/s

s is decreasing; this has not been proved.
According to the conjecture the best bounds are obtained by taking r and
s as large as possible, but this is balanced practically by the exponentially
increasing size of the matrix G(r, s) as r increases and the increase in the
amount of enumeration data needed as s increases.

Symmetry can be used to reduce dramatically the size of the matrix G,
and this is discussed in [1]. The d = 2 upper bound is obtained using s = 24
and r = 8; taking advantage of symmetry reduces the size of the matrix from
c8 × c8 = 5916 × 5916 to 740 × 740. Smaller matrices and less extensive
enumerations are used in higher dimensions.
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