Midterm 2
June 13, 2018
Duration: 50 minutes

This test has 4 questions on 8 pages, for a total of 40 points.

- Read all the questions carefully before starting to work.
- Give complete arguments and explanations for all your calculations. Answers without justifications will not be marked, unless otherwise indicated.
- Continue on the closest blank page if you run out of space, and indicate this clearly on the original page.
- Attempt to answer all questions for partial credit.
- This is a closed-book examination. No aids of any kind are allowed, including: documents, cheat sheets, electronic devices of any kind (including calculators, phones, etc.)

First Name: __________________ Last Name: __________________

Student-No: __________________ Section: __________________

Signature: ____________________

<table>
<thead>
<tr>
<th>Question</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Student Conduct during Examinations

1. Each examination candidate must be prepared to produce, upon the request of the invigilator or examiner, his or her UBC card for identification.

2. Examination candidates are not permitted to ask questions of the examiners or invigilators, except in cases of supposed errors or ambiguities in examination questions, illegible or missing material, or the like.

3. No examination candidate shall be permitted to enter the examination room after the expiration of one-half hour from the scheduled starting time, or to leave during the first half hour of the examination. Should the examination run forty-five (45) minutes or less, no examination candidate shall be permitted to enter the examination room once the examination has begun.

4. Examination candidates must conduct themselves honestly and in accordance with established rules for a given examination, which will be articulated by the examiner or invigilator prior to the examination commencing. Should dishonest behaviour be observed by the examiner(s) or invigilator(s), pleas of accident or forgetfulness shall not be received.

5. Examination candidates suspected of any of the following, or any other similar practices, may be immediately dismissed from the examination by the examiner/invigilator, and may be subject to disciplinary action:
 (i) speaking or communicating with other examination candidates, unless otherwise authorized;
 (ii) purposely exposing written papers to the view of other examination candidates or imaging devices;
 (iii) purposely viewing the written papers of other examination candidates;
 (iv) using or having visible at the place of writing any books, papers or other memory aid devices other than those authorized by the examiner(s); and,
 (v) using or operating electronic devices including but not limited to telephones, calculators, computers, or similar devices other than those authorized by the examiner(s)—(electronic devices other than those authorized by the examiner(s) must be completely powered down if present at the place of writing).

6. Examination candidates must not destroy or damage any examination material, must hand in all examination papers, and must not take any examination material from the examination room without permission of the examiner or invigilator.

7. Notwithstanding the above, for any mode of examination that does not fall into the traditional, paper-based method, examination candidates shall adhere to any special rules for conduct as established and articulated by the examiner.

8. Examination candidates must follow any additional examination rules or directions communicated by the examiner(s) or invigilator(s).
1. Consider the surface described by the equation \(z^2(y - x^2) = x + y^2 \).

(a) 1 mark
Find \(G(x, y, z) \) such that \((a, b, c)\) is on the surface if and only if \(G(a, b, c) = 0 \).

Answer:

(b) 3 marks
Compute the gradient of \(G \) at an arbitrary point \((a, b, c)\).

Answer:

(c) 4 marks
Give the equation of the tangent plane to the surface at \((a, b, c) = (0, 1, -1)\) in the form \(Ax + By + Cz + D = 0 \).

Answer:

(d) 2 marks
Give the coordinates of a point \(P \) in the surface such that the tangent plane which passes through \(P \) is orthogonal to the \(xy \)-plane.

Answer:
2. (a) Using the method of Lagrange multipliers, compute all the points in the surface given by the equation $xy - z^2 + 1 = 0$ which are closest to the origin.

Answer:

(b) Are there any points in the surface $xy - z^2 + 1 = 0$ which are furthest from the origin? If the answer is yes, give them, otherwise justify.

Answer:
A differentiable function \(z = f(x, y) \) is unknown, but an alien supercomputer gave us precise values of \(f(x, y) \) and its derivatives on points \(A, B, C \) and \(D \).

<table>
<thead>
<tr>
<th>point</th>
<th>(f)</th>
<th>(f_x)</th>
<th>(f_y)</th>
<th>(f_{xx})</th>
<th>(f_{yy})</th>
<th>(f_{xy})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>(B)</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(C)</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>(D)</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

For points \(A, B, C \) and \(D \) determine whether they are a local minimum, local maximum, a saddle point, or none of the above.

- \(A \) is:
- \(B \) is:
- \(C \) is:
- \(D \) is:
3. A bike rides on the surface given by \(f(x, y) = \sin(x^2 + y^2) \). Seen from the sky it looks as if the bike follows on the ground the trajectory \(\gamma(t) = (x(t), y(t)) = (3t - 5, t^2 - 3) \).

(a) 2 marks
Compute \(\nabla f \) at an arbitrary point \((a, b)\).

Answer:

(b) 2 marks
Compute the directional derivative of \(f \) at \((1, 1)\) in the direction \((3, 4)\).

Answer:

(c) 2 marks
Compute \(\frac{df}{dt} \) at \(t = 2 \) using the chain rule.

Answer:
(d) (Rocket-powered bike). Suppose that, in the parametrization \(\vec{\gamma}(t) \) described above, the variable \(t \) represents time. What would be the speed of the bike over the surface at time \(t = 2 \)? Hint: recall that the speed of the bike is the norm of its 3D-velocity vector.

Answer:

(e) (Monkey-powered bike) A second bike –which is being driven by a monkey– travels on the same trajectory but its speed projected to the \(xy \)-plane is constant and equal to 1. How faster is the rocket-powered bike compared to the monkey-powered bike when they pass through \((1, 1, \sin(2)) \)?

Answer:
4. (a) Compute the integral \(I = \int_0^1 \int_{y^2}^1 y \sin(x^2) \, dx \, dy \).

Answer:

(b) Let \(P \) be the quarter-pizza region on \(x \geq 0 \) bounded by the curves \(y = -x, y = x \) and \(x^2 + y^2 = 1 \). Compute \(J = \int \int_P \sqrt{1 - x^2} \, dA \). Hint: you may want to try integrating first in \(y \) and thus separate the integral into two parts as in the figure below.

Answer:

(c) Use the answer to the previous question to compute the volume of the solid bounded by the cylinders \(x^2 + y^2 = 1 \), \(x^2 + z^2 = 1 \) and \(y^2 + z^2 = 1 \). You may leave your answer expressed as a function of \(J \) as defined in the previous question.

Answer:
This page has been left blank for your rough work and calculations.