Some tests for the convergence or divergence of series

1. DIVERGENCE TEST:

If $(a_n)_{n=1}^{\infty}$ does not converge to zero, then $\sum_{n=1}^{\infty} a_n$ diverges. Note: If $(a_n)_{n=1}^{\infty}$ converges to zero, then the test does not give any information.

- 2. Comparison Test:
 - 1. If $\sum_{n=1}^{\infty} b_n$ converges and $0 \le a_n \le b_n$ for all $n \in \mathbb{N}$, then $\sum_{n=1}^{\infty} a_n$ converges.
 - 2. If $\sum_{n=1}^{\infty} b_n$ diverges and $0 \le b_n \le a_n$ for all $n \in \mathbb{N}$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Note: 'for all $n \in \mathbb{N}$ ' can be replaced by 'for all $n \ge N_0$ '.

3. LIMIT COMPARISON TEST:

Let $(b_n)_{n=1}^{\infty}$ be a sequence s.t. $b_n > 0$ for all $n \in \mathbb{N}$. Let $(a_n)_{n=1}^{\infty}$ be another sequence. Assume that

$$\lim_{n \to \infty} \frac{a_n}{b_n} = I$$

exists. If $L \neq 0$, then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} b_n$ converges. Note: In the case L = 0, we only have that if $\sum_{n=1}^{\infty} b_n$ converges then $\sum_{n=1}^{\infty} a_n$ converges.

4. RATIO TEST: Let $(a_n)_{n=1}^{\infty}$ be s.t. $a_n \neq 0$ for all $n \geq N_0$. Assume that

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L$$

exists. The sum $\sum_{n=1}^{\infty} a_n$ converges if L < 1 and diverges if L > 1. Note: The test does not give any information in the case L = 1.

5. ALTERNATING SERIES TEST: Let $(a_n)_{n=1}^{\infty}$ be s.t. $a_n \ge 0$ for all $n \in \mathbb{N}$. If

$$a_{n+1} \le a_n$$
 and $\lim_{n \to \infty} a_n = 0$

Then the series $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ converges.

S. Bachmann