Instructions. Please justify your answers to each of the following problems. Answers without any explanation (or work shown) will not receive credit.

(1) Compute the derivatives of the following functions:
 (a) \(h(x) = e^{\sqrt{x}} \)
 (b) \(p(x) = \sqrt{x^3 + \sin x + 2} \)
 (c) \(w(x) = (\cos x)^2 \)

(2) Explain the geometric meaning behind \(\int_{a}^{b} f(x) \, dx \). Draw a picture for illustration.

(3) Consider the function \(f(x) \) defined piecewise:

\[
 f(x) = \begin{cases}
 -2x + 3 & \text{for } -2 \leq x < 1 \\
 x & \text{for } 1 \leq x \leq 3
\end{cases}
\]

(a) Draw an accurate sketch for the graph of \(f(x) \).
(b) Find the exact area under the graph of \(f(x) \) from \(x = -2 \) to \(x = 3 \) using geometry rules (using formulas for the areas of rectangles, triangles, trapezoids, etc).
(c) Find the exact area under the graph of \(f(x) \) from \(x = -2 \) to \(x = 3 \) using the Fundamental Theorem of Calculus (FTC). Hint: The area you want is given by the integral \(\int_{-2}^{3} f(x) \, dx \). To evaluate this integral, split it into two pieces, \(\int_{-2}^{1} + \int_{1}^{3} \) where you need to fill in the blanks, and then apply FTC to each integral.

(4) Recall the definition of anti-derivative. We say that \(F(x) \) is anti-derivative of \(f(x) \) if \(F'(x) = f(x) \). For example, an anti-derivative of \(2x \) is \(x^2 \) because \((x^2)' = 2x \). Note that \((x^2 + 3)' = 2x \), so \(x^2 + 3 \) is another anti-derivative. Similarly, \((x^2 + 17)' = 2x \), so \(x^2 + 17 \) should also be anti-derivative of \(2x \). We see that any function of the form \(F(x) = x^2 + C \) is a legitimate anti-derivative of \(f(x) = 2x \). Here \(C \) is an arbitrary constant. We say that \(x^2 + C \) is a general anti-derivative of \(f(x) = 2x \). As another example, the general anti-derivative of \(g(x) = 2 \cos x \) is \(G(x) = 2 \sin x + C \). Find the general anti-derivative of the following functions below:
 (a) \(f(x) = 5 \)
 (b) \(f(x) = x + 3 \)
 (c) \(f(x) = 3x^2 + \sin x \)
(d) \(f(x) = 1/x \)

(e) \(f(x) = x^n \) where \(n \neq -1 \)

(5) Use the Fundamental Theorem of Calculus (FTC) to find the area under the curve given by the graph of \(f(x) = x^2 + 1 \) from \(x = 1 \) to \(x = 3 \). Draw a picture to illustrate the area that you have computed.

(6) Use the Fundamental Theorem of Calculus (FTC) to find the area under the curve given by the graph of \(f(x) = \frac{2}{x} \) from \(x = 1 \) to \(x = e^3 \). Draw a picture to illustrate the area that you have computed.

(7) Use the Fundamental Theorem of Calculus (FTC) to find the area under the curve given by the graph of \(f(x) = e^x \) from \(x = 0 \) to \(x = 2 \). Draw a picture to illustrate the area that you have computed.

(8) Use the Fundamental Theorem of Calculus (FTC) to evaluate the following integrals:

(a) \(\int_{\pi/6}^{\pi} (\sin x + \cos x + x) \, dx \)

(b) \(\int_{1}^{3} \frac{x^3 + 4x^2}{x} \, dx \)

(c) \(\int_{2}^{4} e^x + \sqrt{x} \, dx \)

(d) \(\int_{-2}^{2} 3x^2 + 4x - 5 \, dx \)