1. Let V be an \mathbb{R}-vector space and let V^* be the vector space of all linear maps from V to \mathbb{R} (which is also denoted sometimes by $\text{Hom}(V, \mathbb{R})$). The vector space V^* is also called the dual space of V. Let B be a basis of V. For each basis vector $b \in B$, let f_b denote the linear map $V \to \mathbb{R}$ that sends that basis vector to 1 and all other basis vectors from B to 0. The list of those maps $\{f_b \mid b \in B\}$ is also called the dual basis of B.

1. Show that if V is finite-dimensional, then the dual basis is a basis for the dual space.

2. Let $g : V \to W$ be a map of finite-dimensional vector spaces. Then g induces a linear map (usually called g^*) between the dual spaces in the other direction sending an element $f : W \to \mathbb{R}$ of the dual space of W to the element $f \circ g : V \to \mathbb{R}$ in the dualspace of V. Suppose that the matrix of g with respect to some chosen bases is

$$
\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
\end{pmatrix}.
$$

Find the matrix of g^* with respect to the dual bases.

3. Show that if V is infinite-dimensional, then the dual basis is NOT a basis for the dual space (Find a linear map that cannot be written as a linear combination of the maps in the dual basis).

2. Given two vector spaces V, W. Let $\text{Hom}(V, W)$ denote the vector space of all linear maps from V to W. Proof that the map $\Psi : V^* \times W \to \text{Hom}(V, W)$ sending a pair f, w to the map $V \to W$ sending $v \in V$ to $f(v) \cdot w$ is bilinear.