1. [3 marks] Proof the rank-nullity theorem, i.e. if $f : V \to W$ is linear and $\dim(V) < \infty$, then
 \[\dim(V) = \dim(N(f)) + \dim(R(f)). \]
 (Being able to choose bases as we like is great!)

2. [7 marks] The goal of this question is to show the uniqueness of the reduced row echelon form (proof also works for the reduced column echelon form). Given any linear map $f : \mathbb{R}^n \to V$, where V is a finite-dimensional vector space. We have seen an algorithm that produces a basis of V such that the matrix of f with respect to this basis and the standard basis of \mathbb{R}^n has reduced row echelon form.

 1. The first step is to show that the pivot elements are on the same positions.

 Let W_k denote the subspace of \mathbb{R}^n spanned by the first k vectors of the standard basis ($W_0 = 0$). Now consider the images of these subspaces under f.

 Show that $\dim(f(W_{k+1})) > \dim(f(W_k))$ holds if and only if there is a pivot entry in the k-th column of the matrix of f in reduced row echelon form.

 This gives an intrinsic characterisation of the position of the pivot elements, i.e. a characterisation that does not depend on the choice of basis of V.

 2. Suppose A, B are two reduced row echelon forms for a map f. Recall that this means that they differ by left multiplication with a square matrix M, i.e. $MA = B$.

 By the previous part we know that the pivot elements occur in the same columns in A and B. Show that $M \cdot e_k = e_k$ where e_k is the k-th vector of the standard basis.

 3. Conclude that $MA = A$ and thus $A = B$.