Decomposing a vector space as direct sums of f-invariant subspaces

1. Polynomials over a field.

Def. A polynomial p is called **irreducible** a unit if there is another polynomial q with $p \cdot q = 1$.

(\Rightarrow Units are all polynomials of degree 0 (except the zero polynomial).

A polynomial is called **irreducible**, if it cannot be written as a product of two other polynomials (that are not units).

(Example: all polynomials of degree 1 are irreducible).

A polynomial p is called **prime**, if whenever p divides a product $a \cdot b$ of two polynomials, it has to divide one of the factors.

Remark: These notions make sense for general rings (like \mathbb{Z}). For polynomials over a field these "prime" and "irreducible" are the same.

Then: A polynomial can be uniquely factored as a product of irreducible polynomials (Of course the same irreducible factors might appear more than once in this factorization).

(Uniqueness: Up to reordering them, like $6 = 2 \cdot 3 = 3 \cdot 2$).
Goal: Decompose V as a direct sum of f-invariant subspaces (as (until you cannot decompose these subspaces further).

Theorem: Let $p(t)$ be the characteristic polynomial of f.

Factor it as $p(t) = p_1(t)^{n_1} \cdots p_n(t)^{n_n}$ where each $p_i(t)$ is irreducible.

Then, V is a direct sum of all the f-invariant subspaces $N(p_i(t)^{i_i})$, $i = 1, \ldots, n$.

The proof follows from the following lemma:

Lemma: If $p(t)$ is the characteristic polynomial of f, then we write it as a product of two coprime polynomials, say $p(t) = q(t)r(t)$, then V is the direct sum of $N(q(t))$ and $N(r(t))$.

Proof: Let $v \in V$ be an arbitrary vector.

Claim 1: $q(t)(v) \in N(r(t))$ (and analogously $r(t)(v) \in N(q(t))$).

Proof: $r(t)(q(t)) (v) = (r \cdot q)(t)(v) = p(t)(v) = 0$

Claim 2: There exist polynomials $a(t)$, $b(t)$ with

$$1 = a(t)q(t) + b(t)r(t)$$

(This follows from the Euclidean Algorithm & the assumption that q and r are coprime.)
Claim (3): \(N(q(f)) \) and \(N(v(f)) \) are \(f \)-invariant.

To show: \(\forall v \in N(q(f)) \implies f(v) \in N(q(f)) \)

\[\iff \forall v \in N(q(f)) \implies f(q(f)(v)) = 0 \]

\[= q(f) \circ f \mid v = f \left(\frac{q(f)(v)}{\|v\|} \right) = 0 \quad \forall v \]

Claim (4): The restriction of \(r(f) \) to \(N(q(f)) \) is invertible.

\[I = a(f) \cdot q(f) + b(f) \cdot r(f) \quad \text{Plug in } f \]

\[id = a(f) \cdot q(f) + b(f) \cdot r(f) \quad \text{Plug in } \nu \]

\[\nu = a(f) \left(q(f)(\nu) \right) + b(f) \left(r(f)(\nu) \right) \]

\[= 0 \quad \text{The inverse that we are looking for.} \]

Claim (5): We have \(\forall v \in V \) can be written as a sum \(v = v_q + v_r \) with \(v_q \in N(q(f)) \) and \(v_r \in N(v(f)) \).

\[v = q(f) \left(a(f)(v) \right) + r(f) \left(b(f)(v) \right) \]

\[\in N(v(f)) \quad \subseteq V_q \]

\[\in N(q(f)) \quad \subseteq V_r \]

Claim (6): \(N(q(f)) \cap N(v(f)) = 0 \). Let \(v \) be in this intersection.

\[v = a(f) \left(q(f)(v) \right) + b(f) \left(v(f)(v) \right) = 0 \]

\[= 0 \]

\[= 0 \]
Maps whose characteristic polynomial is a power of an irreducible polynomial.

Special case: \(f : V \to V \). Suppose the characteristic polynomial of \(f \) is irreducible (say \(a_n x^n + \ldots + a_0 \)).

Pick \(v \in V \), \(v \neq 0 \). Then we obtain a basis for the smallest \(f \)-invariant subspace containing \(v \) by as follows:

\[v, f(v), f^2(v), \ldots, f^{n-1}(v). \]

The matrix of \(f \) w.r.t. this basis is

\[
\begin{pmatrix}
0 & \cdots & 0 & -a_0 \\
0 & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & -a_{n-1} \\
0 & \cdots & 1 & -a_n
\end{pmatrix}
\]

\(\Rightarrow \) If the \(A \), suppose \(A, A' \) have the same irreducible characteristic polynomial. Then there is a \(B \) with \(BAB^{-1} = A' \).

Does this also hold for non-irreducible char. polynomials?

Example: \(A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad A' = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \)

\(A \) and \(A' \) have the same char. polynomial \(t^4 \) and the same rank. Can there be such a \(B \) as above?

No! look at \(A^2 = 0 \), \(A^2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \neq 0 \).
Prop: Let $f: V \to V$ be a linear map and suppose the characteristic polynomial of A is a power of an irreducible polynomial, say $p(t)^m$. Then we can look at the numbers

$$\dim \left(N\left(p(A) \right) \right) \text{ for } i = 1, \ldots, m.$$

Then A and A' are conjugate, if those sequence of numbers again.

Example:

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad p(t) = t^2 \quad \Rightarrow \quad \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 4 & 4 & 4 \end{array} \quad m = 4$$

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad p(t) = t^3 \quad \Rightarrow \quad \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 4 \end{array} \quad m = 4$$

\Rightarrow not conjugate.

To prove this proposition, we start with a map $f: V \to V$ and we will construct a basis for V such that the matrix of f w.r.t. this basis only depends on those numbers.
Finding bases such that the matrix of f has Jordan Normal Form

Recall: $f: V \rightarrow V$ linear, char poly of f is assumed to be a product of linear factors $(t - a_1)(t - a_2)\ldots(t - a_n)$

$N(a_1(t)), \ldots, N(a_n(t))$

So if we choose bases for all those subspaces and take the union of those bases, we get a basis for V s.t. the matrix of f has block form

$\begin{pmatrix} A_1 & \mathbf{0} \\ \mathbf{0} & A_n \end{pmatrix}$

and each A_i is a block whose characteristic polynomial is $q_i(t^a)$ (a power of an irreducible polynomial). We can improve the bases of those blocks separately.

Assume $f: V \rightarrow V$ linear, char poly $= \prod q_i(t)^{a_i}$ where q_i is irreducible.

Recall: Dot Diagram: $\tilde{A}^2 = A - 2I$

Now we have to choose a basis of V.

(\text{Note: V is 8-dim.}) so we have to choose a basis vector for each dot.

$\text{Ker}(A), \text{Ker}(A^2), \text{Ker}(A^3)$

Here $= V$

Look at the last column first. We have $\dim(N(A^2)) = 6, \dim(V) = 8$.

Choose 2 vectors that extend a/some basis of $N(A^2)$ to a basis of V, say v_1, v_2.

If $\lambda_1 v_1 + \lambda_2 v_2 \in N(A^2)$, then $\lambda_1 = \lambda_2 = 0$.

Look at $\tilde{A}v_1, \tilde{A}v_2 \in N(A)$ and we have:

$\lambda_1 \tilde{A}v_1 + \lambda_2 \tilde{A}v_2 \in N(A) \Rightarrow \lambda_1 v_1 + \lambda_2 v_2 \in N(A^2) \Rightarrow \lambda_1 = \lambda_2 = 0$.

$\Rightarrow \tilde{A}v_1, \tilde{A}v_2$ are still lin. indep.)
Repeat this. This gives us 6 of 8 basis vectors.

\[\tilde{A}v_1, \tilde{A}v_2, v_1, v_2 \]

\[\tilde{A}v_2, \tilde{A}v_2, v_2 \]

\[\tilde{A}v_2, \tilde{A}v_2, v_2 \]

Now we have to choose this one.

Find a vector \(v_3 \in \text{null}(\tilde{A}^2) \) such that if we take a basis of \(\text{null}(\tilde{A}^2) \), and we take the vectors \(\tilde{A}v_1, \tilde{A}v_2, v_3 \), we get a basis of \(\text{null}(\tilde{A}^2) \).

\[\tilde{A}v_1, \tilde{A}v_2, v_1, v_2 \]

Repeat...

\[\tilde{A}v_2, \tilde{A}v_2, v_2 \]

\[\tilde{A}v_3, v_3 \]

\[\text{Example: } A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 3 & 1 \\ 0 & 0 & 1 \end{pmatrix} \]

\[\text{Char Poly: } \det \begin{pmatrix} 1-t & 1 & 1 \\ -1 & 3-t & 1 \\ 0 & 0 & 1-z-t \end{pmatrix} \]

\[= (1-z-t)^2 (1-t)(3-t)+1 (2-t) \]

\[= (t^2 - 4t + 4)(2-t) = (2-t)^2 \]

\[= (t^2 - 4t + 4)(2-t) = (t-2)^2 \]

\[\tilde{A} = -2I_3 + A = \begin{pmatrix} -1 & 1 & 1 \\ -1 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \]

\[\tilde{A}^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \]

\[\dim \text{null}(\tilde{A}^2) = 2 \]

\[\text{Dot - Diagonal: } \]

\[\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \]
Pick a vector \(y \) that would complete a basis of \(U(\tilde{A}) \) to a basis of \(\mathbb{R}^3 \) (i.e. a vector that is not in \(U(\tilde{A}) \)), say \(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \).

\[\tilde{A} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \rightarrow \quad \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \]

Pick a vector \(z \) in \(U(\tilde{A}) \) such that \(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \) is a basis of \(U(\tilde{A}) \).

\[\text{e.g. } z = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \]

The basis \(\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \} \) is a basis such that \(\tilde{A} \) has JNF w.r.t. that basis is \(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \)

\[\text{Check: } \]
\[\tilde{A} \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \\ 0 \end{pmatrix} = 2 \cdot \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} \]
\[\tilde{A} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} = 2 \cdot \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + (1) \cdot \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} \]
\[\tilde{A} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \]

The matrix w.r.t. this basis is
\[\begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \\ 2 \end{pmatrix} \text{ JNF } \]