Recall: All the normal forms that we have learned so far:

\[f: V \rightarrow V \text{ linear}, \quad b_1, \ldots, b_n \text{ & } c_1, \ldots, c_n \text{ two bases of } V. \]

\[\Rightarrow \left[\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right] \mapsto \left[\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right] = \left[\begin{array}{c} e_1 \\ \vdots \\ e_n \end{array} \right] = \left[\begin{array}{c} y_1 \\ \vdots \\ y_n \end{array} \right] \]

Matrix of \(f \) w.r.t. this basis.

these two matrices are inverse to each other.

Notation: \(GL_n(F) \): invertible \(n \times n \) matrices over \(F \)
\(O_n(F) \): orthogonal \(n \times n \) matrices over \(F \) (makes sense for \(\mathbb{R}/\mathbb{C} \))
\(M_n(F) \): all \(n \times n \) matrices over \(F \).

1. \(\text{RREF: } f: V \rightarrow W \text{ given, Basis of } V \text{ given.} \)

Then there is a basis \(C \) of \(W \) s.t. \(\left[f \right]_C^C \) has \(\text{RREF & RREF is unique} \)

Matrix version: \(A : m \times n \text{-matrix over } F \)

Then there is a \(B \in GL_m(F) \) s.t. \(BA \) has \(\text{RREF & RREF is unique} \)

(and for two matrices \(A, A' \) we can find a \(B \in GL_m(F) \) with \(BA = A' \) iff \(A \) and \(A' \) have the same \(\text{RREF's} \).)

2. \(\text{RCEF: } f: V \rightarrow W \text{ and Basis of } W \text{ given.} \)

Then there is a basis of \(V \) s.t. \(\left[f \right]_C^C \) has \(\text{RCEF & uniquenesses} \)

Matrix version: \(A : m \times n \text{-matrix over } F \)

Then there is a \(B \in GL_n(F) \) s.t. \(AB \) has \(\text{RCEF} \) and for two matrices \(A, A' \) we can find \(B \in GL_n(F) \) with \(AB = A' \) iff \(A \) and \(A' \) have the same \(\text{RCEF's} \).
3) \(f : V \to W \) be given.

Then there are bases \(B \) of \(V \) and \(C \) of \(W \) such that
\[
[f]_B^C = \begin{pmatrix}
\phi & 0 \\
0 & 0 \\
0 & 0
\end{pmatrix}
\]

Matrix Version: \(A \): \(m \times n \) matrix over \(\mathbb{F} \). Then there is
\(B \in \text{GL}_m(\mathbb{F}) \) & \(C \in \text{GL}_n(\mathbb{F}) \) : \(BC = \begin{pmatrix}
\phi & 0 \\
0 & 0
\end{pmatrix}
\)

For given \(A \), \(A' \) we can find \(B \in \text{GL}_m(\mathbb{F}) \) & \(C \in \text{GL}_n(\mathbb{F}) \) with
\(BC = A' \) \(\Rightarrow \) Their normal forms are the same,
shorter invariant: \(\text{Rank}(A) \),
& all \(\text{Evalues} \) are real.

4) \(f : V \to V \) symmetric. Then there is an ONB of \(\text{Eigen} \) vectors:

Matrix Version: Given a symmetric matrix \(A \) over \(\mathbb{F} \) (\(\mathbb{R} \) or \(\mathbb{C} \)). Then there is an \(\Theta \) \(B \in \text{O}_n(\mathbb{F}) \) with
\(BAB^{-1} = \begin{pmatrix}
\lambda_1 & 0 \\
0 & \lambda_2 \\
0 & \lambda_3 \\
0 & \lambda_4 \\
\end{pmatrix}
\)

For two given symmetric matrices \(A \), we can find \(B \in \text{O}_n(\mathbb{F}) \) with
\(BAB^{-1} = A' \), if they have the same \(\text{Eigen} \) values.
shorter invariant: \(\text{characteristic Polynomial of } A \).

Uniqueness up to rearranging the \(\text{Evalues} \).
(5) \(f : V \to V \) symmetric (\(V \) complex finite-dimensional inner product space).

Then there is an ONB of eigenvectors and all \(\lambda \) values have abs value 1.

Uniqueness: up to reordering the eigenvalues.

Matrix Version: Given \(A \in O_n(C) \), then there is a \(B \in O_n(C) \):

\[
B A B^{-1} = \begin{pmatrix} z_1 & 0 \\ 0 & z_2 \\ \vdots & \ddots & \ddots \\ 0 & \cdots & 0 & z_n \end{pmatrix}
\]

with \(z_i \in \mathbb{C}, \ |z_i| = 1 \).

Shorter invariant: For two given matrices \(A, A' \in O_n(C) \), we can find a \(B \in O_n(C) \) with \(B A B^{-1} = A' \) iff they have the same eigenvalues.

Shorter invariant: characteristic polynomial of \(A \).

(6) \(f : V \to V \) orthogonal (\(V \) real finite-dim. inner product space).

Then there is an ONB \(\mathcal{B} \) of \(V \) s.t. \([f]_{\mathcal{B}} = \begin{pmatrix} A_1 & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & \cdots & A_n \end{pmatrix} \) where \(A_i \) is

- either a \(1 \times 1 \) block with entry \(\pm 1 \)
- or a \(2 \times 2 \) block of the form \(\begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} \) for some \(t \in [0, \pi] \).

Uniqueness: up to reordering the blocks.

Matrix Version: For \(A, A' \in O_n(R) \), there is a \(B \in O_n(R) \) with

\[
B A B^{-1} = \begin{pmatrix} A_1 & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & \cdots & A_n \end{pmatrix}
\]

with \(A_i \) as above.

For given \(A, A' \in O_n(R) \), we can find a \(B \in O_n(R) \) with \(B A B^{-1} = A' \) iff they have the same \(\lambda \) values.

Shorter invariant: characteristic polynomial.
7. \(f : V \to V \) linear / C
(to be continued...) \(\Rightarrow \) Jordan Normal Form.