publications & preprints | |||
---|---|---|---|

Richard Froese and Ira Herbst, Resonances lost and found
arXiv:1703.03172
| |||

Richard Froese, Darrick Lee, Christian Sadel, Wolfgang Spitzer, Günter Stolz, Localization for transversally periodic random potentials on binary trees, to appear in Journal of Spectral Theory.
arXiv:1408.3961
| |||

R. Froese, F. Halasan and D. Hasler, Absolutely continuous spectrum for the Anderson model on a product of a tree with a finite graph, Journal of Functional Analysis, Volume 262, Issue 3, (2012) 1011-1042 doi:10.1016/j.jfa.2011.10.009,
arXiv:1008.2949v3
| |||

R. Froese, D. Hasler and W. Spitzer, A geometric approach to absolutely continuous spectrum for discrete Schrödinger operators, Progress in Probability, Vol. 64, (2011) 201-226
arXiv:1004.4843v1 [math-ph]
| |||

R. Froese, D. Hasler and W. Spitzer, On the AC Spectrum of One-dimensional Random Schrödinger Operators with Matrix-valued Potentials, Mathematical Physics, Analysis and Geometry, Vol. 13, No. 3 (2010) 219--233
arXiv:0912.0294v1 [math-ph]
| |||

R. Froese, D. Hasler and W. Spitzer, Absolutely continuous spectrum for a random potential on a tree with strong transverse correlations and large weighted loops, Rev. Math. Phys., Vol. 21 no. 6 (2009) 709-733
pdf
| |||

R. Froese, Barry Simon's contributions to non-relativistic quantum mechanics: two-body and N-body Schrödinger operators and resonances, in Fritz Gesztesy et. al. eds., Spectral Theory and Mathematical Physics: a Festschrift in Honor of Barry Simon's 60th Birthday Proc. Sympos. Pure Math, (2007) 153-168
pdf
| |||

R. Froese, D. Hasler and W. Spitzer, Absolutely continuous spectrum for the Anderson Model on a tree: a geometric proof of Klein's theorem, Comm. in Math. Phys., Vol. 269 no. 1 (2007) 239-257
pdf
| |||

R. Froese, D. Hasler and W. Spitzer, Transfer matrices, hyperbolic geometry and absolutely continuous spectrum for some discrete Schrodinger operators on graphs, Journal of Functional Analysis 230 (2006) 184-221
pdf
ps
| |||

R. Froese, Liouville's theorem in the radially symmetric case, Canadian Math Bulletin vol. 48 no. 3 (2005) pp. 405-408
pdf
ps
| |||

R. Froese and I. Herbst, Realizing constraints in classical and quantum mechanics, Comm. Math. Phys. 220, 489-535 (2001)
pdf
ps
| |||

R. Froese and P.Hislop, On the distribution of resonances for some asymptotically hyperbolic manifolds, Journées Equations aux derivées partielles (2000) 1-16,
dvi
pdf
ps
| |||

R. Froese and I. Herbst, Realizing constraints in classical and quantum mechanics, AMS/IP Studies in Advanced Mathematics, Vol. 16 (2000) 121-131
dvi
pdf
ps
| |||

C. Allard and R. Froese, A Mourre estimate for a Schrödinger operator on a binary tree, Reviews in Mathematical Physics, Vol. 12, No. 12 (2000), 1655-1667
dvi
pdf
ps
| |||

R. Froese, Upper bounds for the resonance counting function of Schrödinger operators in odd dimensions, Canadian Journal of Mathematics 50 (3) (1998) 538-546
dvi
pdf
ps
Correction, Vol 53, No 4, 756-757
dvi
pdf
ps
| |||

R. Froese, Asymptotic distribution of resonances in one dimension, Journal of Differential Equations, Volume 137, Number 2 (1997) 251-272
dvi
pdf
ps
| |||

J. Feldman, R. Froese, N. Ghoussoub, C. Gui, An improved Moser-Aubin-Onofri inequality for axially symmetric functions on S^2, Calculus of Variations 6 (1998) 95-104
| |||

R. Froese and R. Waxler, Ground state resonances of a hydrogen atom in an intense magnetic field, Reviews in Mathematical Physics, Volume 7, Number 3 (1995) 311-361
| |||

R. Froese and R. Waxler, The hydrogen atom in an intense magnetic field: discrete spectrum, Reviews in Mathematical Physics, Volume 6, Number 5 (1994) 699-832
| |||

R. Froese and M. Zworski, Finite volume surfaces with resonances far from the unitarity axis, Duke Math Journal IMRN 72, (1993) 275-277
| |||

R. Froese, P. Hislop and P. Perry, The Laplace operator on hyperbolic three manifolds with cusps of non-maximal rank, Invent. math. 106, 295-333 (1991)
| |||

R. Froese, P. Hislop and P. Perry, A Mourre estimate and related bounds for the Laplace operator on a quotient of hyperbolic space with cusps of non-maximal rank, Journal of Functional Analysis 98 Number 2 (1991) 292-310
| |||

R. Froese and P.Hislop, Spectral analysis of second order elliptic operators on non-compact manifolds, Duke Math Journal 58 (1989) 103-129
| |||

R. Froese and I. Herbst, Patterns of exponential decay for solutions to second order elliptic equations in a sector of R^2, Journal d'Analyse Math 49 (1987) 106-134
| |||

J. Agler and R. Froese, Existence of Stark ladder resonances, Commun Math Phys, 100 (1985) 161-171
| |||

R. Froese and I. Herbst, Exponential lower bounds to solutions of the Schrodinger equation: lower bounds for the spherical average, Commun Math Phys, 92 (1983) 71-80
| |||

R. Froese, I. Herbst, M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof, L^2-lower bounds to solutions of one-body Schrodinger equations, Proc Roy Soc Edinburgh 95A (1983) 71-80
| |||

R. Froese, I. Herbst, M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof, On the absence of positive eigenvalues for one-body Schrodinger operators, Journal d'Analyse Math 41 (1982) 272-284
| |||

R. Froese and I. Herbst, A new proof of the Mourre estimate, Duke Math Journal 49 (1982) 1075-1085
| |||

R. Froese and I. Herbst, Exponential bounds and absence of positive eigenvalues of N-body Schrodinger operators, Commun Math Phys, 87 (1982) 429-447
| |||

R. Froese, I. Herbst, M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof, L^2-exponential lower bounds to solutions of the Schrodinger equation, Commun Math Phys, 87 (1982) 265-286
| |||

T.A. Osborn, R.G. Froese and S.F Howes, Sum rule dynamics, Phys. Rev. Lett. 45 (1980) 1987
| |||

T.A. Osborn, R.G. Froese and S.F Howes, Levinson's theorems in classical scattering, Phys. Rev. A 22 (1980) 101
| |||