7.3 #2: Find the image of the boundary first. The boundary consists of two lines: R and R+it. Since ELT's maps circles/lines to circles/lines we need only check three points. \(f(i) = (2-i)i \) maps \(0 \rightarrow \infty, 1 \rightarrow 1-i, \infty \rightarrow 1 \). So the image of \(R \) is a line through \(1 \) and \(1-i \). \(f(i) \) maps \(i \rightarrow 0 \), \(i + i \rightarrow \frac{1-i}{2} = \frac{1}{2} - \frac{1}{2}i \), \(\infty \rightarrow 1 \), so the image is a circle centred at \(\frac{1}{2} \) with radius \(\frac{1}{2} \). Checking orientations, we can draw the image.

7.3 #3: (a) This is a translation. The image is \(|W-(2-2i)| = 1 \).

(b) This is a scaling. \(|z-2| = \left| \frac{3i}{2} - 6i \right| = \left| \frac{1}{3} \right| |W-6i| \).

So \(|z-2| = 1 \) \(\implies \) \(|W-6i| = 3 \).

(c) The image is a circle or line. Check 3 points: \(i \rightarrow \infty \), \(2+i \rightarrow \frac{i(1-i)}{2} = \frac{1+i}{2} \), \(3 \rightarrow \frac{1}{2} \), so the image is a vertical line through \(\frac{1}{2} \).

(d) \(i \rightarrow \frac{3}{2}, 2+i \rightarrow \frac{-2+i}{-1+i} = \frac{(-2+i)(-1-i)}{2} = \frac{2-i+1}{2} = \frac{3+i}{2}, 3 \rightarrow \infty \).

So the image is a vertical line through \(\frac{3}{2} \).
7.3 #6 Let \(z_1, z_2, z_3 \) be fixed points of a F.L.T. \(f(z) \). We know there is a unique F.L.T. \(g(z) \) mapping \(z_1 \rightarrow 0 \), \(z_2 \rightarrow 1 \) and \(z_3 \rightarrow \infty \).

Prove: Let \(g(z) = \frac{az+b}{cz+d} \) then \(g(z_1) = 0 \Rightarrow a z_1 + b = 0 \) and \(g(z_3) = \infty \Rightarrow c z_3 + d = 0 \), so \(g(z) = \frac{a z - a z_1}{c z - c z_3} = \left(\frac{a}{c} \right) \left(\frac{z - z_1}{z - z_3} \right) \). Now \(g(z_2) = 1 \) implies \(\left(\frac{a}{c} \right) = \frac{z_2 - z_1}{z_2 - z_3} \) so \(g(z) \) is determined. \(g \) of \(g^{-1}(z) \) is both.

Apply \(g^{-1}(z) \) to both sides to conclude \(f(z) = z \).

7.3 #9 Under the map \(w = z/(z-1) \) \(0 \rightarrow 0 \), \(\infty \rightarrow 1 \) so the image of the boundary rays are arcs of circle through \(0 \) and \(1 \). Note \(1+i \rightarrow 1-i \) so the image looks like this.

How can we find the centre of the circle? The brute force method would be to solve \(|a-0|^2 = |a-1|^2 = |a-i-1|^2 \) for \(a \). But we could also note the by conformality, the line tangent to the circle at \(0 \) makes an angle of \(-\pi/4 \) with the \(x \) axis, so the diameter makes an angle of \(-\pi/4 \). So the midpoint is \(\frac{1-i}{2} \).
and the radius is \(\frac{11-11}{2} = \frac{1}{12} \), so the circle is \(1 - \frac{1}{12}^{1} = \frac{1}{12} \).

The upper circle will be \(1 - \frac{1}{2}^{1} = \frac{1}{12} \).

7.3 #11 Use the map \(f(z) = \frac{2\pi i z}{z - 2} \). Then \(z \to \infty, 0 \to 0, -2 \to 2\pi i \).

Since the circle only intersected at 2, the images will be parallel lines through 0 and \(2\pi i \). Since \(f(-1) = \frac{\pi}{2} \) the image will lie between the lines. Thus \(\exp(z) \) will map this region to a strip.

7.4 #14 Let \(f(z) = (z, z_1, z_2, z_3) \) then \(f \circ T^{-1} \) maps

\(T(z_2) \to 0, T(z_3) \to 1, T(z_4) \to \infty \). Thus \(f(T^{-1}(z)) = (z, T(z_2), T(z_3), T(z_4)) \).

Now set \(z = T(z_2) \).

7.4 #8 If \(S \) and \(T \) both map \(z_1 \to \infty, z_2 \to z_3, z_3 \to z_1 \), then \(S^{-1} \circ T \) fixes \(z_1, z_2, z_3 \). Thus \(S^{-1} \circ T(z) = z \) (from previous problem), so \(T(z) = S(z) \).

7.4 #9 Since \(1, -1 \) are symmetric with the imaginary axis, \(f(1) = \infty \) and \(f(-1) = 0 \) are symmetric with the unit circle. Thus \(f(-1) = 0 \).
1. \(f_{(a\ b)} \left(f_{(a'\ b')} \left(z \right) \right) = f_{(a'\ b')} \left(\frac{a'z + b'}{c'z + d'} \right) \)

\[= \frac{a \left(a'z + b' \right) + b \left(c'z + d' \right)}{c \left(a'z + b' \right) + d \left(c'z + d' \right)} = \frac{(aa' + bc')z + (ab' + bd')}{(ca' + db')z + (cb' + dd')} \]

\[= f_{(a\ b)} \left((a'\ b') \left(z \right) \right) \]

2. \(f_{(a\ b)} \left((z) \right) = \frac{a \cdot z + b}{c \cdot z + d} = \frac{az + b}{cz + d} = f_{(ab)} \left(z \right) \)

3. Since \(f_{A^{-1}} \circ f_{A} \left(z \right) = f_{AA} \left(z \right) = f_{I} \left(z \right) = z \),

\(f_{A^{-1}} = (f_{A})^{-1} \). Since \((a\ b)^{-1} = \frac{1}{ad-bc} \left(\begin{array}{c} d \ -b \\ -c \ a \end{array} \right) \),

\(f_{(a\ b)}^{-1} = f_{\frac{1}{ad-bc}} \left(\begin{array}{c} -b \\ -c \ a \end{array} \right) = f_{(-c\ a)} \).