Proposition Let \(f(z) \) be analytic inside and on a closed counterclockwise curve \(C \), then,

\[
\frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} \, dz = \mathcal{N}_0(f)
\]

\(\mathcal{N}_0(f) = \# \) zeros of \(f(z) \) inside \(C \)

(Counting multiplicity: i.e., a zero of order \(m \) is counted \(m \) times.)

Proof Define \(g(z) = \frac{f'(z)}{f(z)} \). Then \(g(z) \) is analytic inside \(C \) except at \(\# \) poles that occur when \(f(z) = 0 \).

Therefore,

\[
\frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} \, dz = \sum_{j=1}^{K} \text{Res} \left[\frac{f'(z)}{f(z)} ; z_j \right]
\]

\(K = \# \) zeroes of \(f(z) \)

Now \(\text{Res} \left[\frac{f'(z)}{f(z)} ; z_j \right] \) we must calculate.

Near \(z = z_j \) we have \(f(z) = (z-z_j)^{m_j} h(z) \), where \(h(z) \) is analytic and \(h(z_j) \neq 0 \). Here \(m_j \) is the order of the zero at \(z_j \).

Now

\[
\frac{f'(z)}{f(z)} = \frac{m_j (z-z_j)^{m_j-1} h(z) + (z-z_j)^{m_j} h'(z)}{(z-z_j)^m h(z)} = \frac{m_j + h'(z)}{(z-z_j) h(z)}
\]

Now let \(z \to z_j \), we have

\[
\frac{f'(z)}{f(z)} \to \frac{m_j}{(z-z_j) h(z)}
\]

We calculate

\[
\text{Res} \left[\frac{f'(z)}{f(z)} ; z_j \right] = m_j.
\]

Hence, we calculate

\[
\frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} \, dz = \sum_{j=1}^{K} m_j = \mathcal{N}_0(f).
\]

For simple zeroes, \(m_j = 1 \) \(\forall j \), and \(\mathcal{N}_0(f) \leq K \).

Now we let \(z = z(t) \) parametrize \(C \), then,

\[
I = \frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} \, dz = \frac{1}{2\pi i} \int_a^b \frac{f'(z(t))}{f(z(t))} z'(t) \, dt = \frac{1}{2\pi i} \int_a^b \frac{d}{dt} \left[\log(f(z(t))) \right] \, dt
\]
Integrating once, we get

\[I = \frac{1}{2\pi i} \left[\log(F(z)) - \log(F(z(a))) \right] \]

Hence

\[I = \frac{1}{2\pi i} \left[\Delta(\log|F(z)|) + i \Delta(\arg(F(z))) \right] \]

\[\Delta = \text{change over the circuit.} \]

However, \(F(z(a)) = F(z(b)) \) since \(z(a) = z(b) \).

Thus

\[I = \frac{1}{2\pi} \Delta(\arg(F(z))). \]

Therefore, we have the final result,

\[\frac{1}{2\pi} \Delta(\arg(F(z))) = N_0(F). \]

Example

<table>
<thead>
<tr>
<th>z-plane</th>
<th>w-plane</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[w = f(z) \]

\[\Delta(\arg(w)) = 6\pi \]

Hence \(N_0(F) = 3 \) inside \(C \).

Application (Nyquist)

Let \(F(z) = a_0 z^n + a_1 z^{n-1} + \ldots + a_n \) \(a_i \)'s are real.

Assume \(F(z) \) has no zeros on imaginary axis. Then, the claim is that there are no zeros in right half-plane when

\[\Delta \Pi \left[\arg(F(iy)) \right] = -n\pi \]

where \(n = \text{degree}(F) \).

\(\Pi \) = imaginary axis directed downwards.
Proof Consider the contour as shown below.

In the z-plane,

\[
\lim_{R \to \infty} \left[\frac{1}{2\pi i} \sum_{C_R} \arg(f(z)) + \frac{1}{2\pi} \Delta_n \arg(f(z)) \right] = N_0(f).
\]

Now \(f(z) = a_0 z^n \left(1 + \frac{a_1}{a_0 z} + \frac{a_2}{a_0 z^2} + \cdots \right) \)

\[\arg(f(z)) \approx n\pi \text{ as } R \to \infty. \]

Therefore, \(\lim_{R \to \infty} \Delta_{C_R} \arg(f(z)) = n\pi. \)

This gives

\[
N_0(f) = \frac{1}{2\pi} \left[n\pi + \Delta_n \arg(f(iy)) \right] \leftarrow \text{Argument Principle}.
\]

Therefore, if \(\Delta_n \arg(f(iy)) = -n\pi, \) then \(N_0(f) = 0. \)

Example 1 Show that there are no zeroes of \(f(z) = z^3 + 2z^2 + z + 1 \)

lie in the left \(\frac{1}{2} \) plane.

We have \(\lim_{R \to \infty} \Delta_{C_R} \arg(f(z)) = 3\pi. \)

Hence,

\[
N_0(f) = \frac{1}{2\pi} \left(3\pi + \Delta_n \arg(f(iy)) \right).
\]

We calculate \(f(iy) = (iy)^3 + 2(iy)^2 + iy + 1 \)

\(\text{Re } f = 0 \rightarrow y_{R_2} = \pm \sqrt[3]{2} \)

We write \(f(iy) = 1 - 2y^2 + i(y - y^3) \)

\(\text{Im } f = 0 \rightarrow y = 0, \ y_{x_2} = \pm 1. \)

<table>
<thead>
<tr>
<th>Y</th>
<th>Re(f)</th>
<th>Im(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-∞</td>
<td><0</td>
</tr>
<tr>
<td>B</td>
<td>y_{x_+}</td>
<td><0</td>
</tr>
<tr>
<td>C</td>
<td>y_{R_+}</td>
<td>=0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>>0</td>
</tr>
<tr>
<td>E</td>
<td>y_{R_-}</td>
<td>=0</td>
</tr>
<tr>
<td>F</td>
<td>y_{x_-}</td>
<td><0</td>
</tr>
<tr>
<td>G</td>
<td>-∞</td>
<td><0</td>
</tr>
</tbody>
</table>

Now at A: \(\text{im}[f]/\text{re}[f] \to \infty \)

Now at G: \(\text{im}[f]/\text{re}[f] \to -\infty \)

We get \(\Delta_n \arg(f(iy)) = -3\pi. \)

Therefore, we get \(N_0(f) = 0 \)

→ no zeroes in right half-plane.
EXAMPLE 2

Find the number of zeroes of

\[f(z) = z^3 - 2z^2 + 4 \] **in right half-plane.**

Now

\[\lim_{R \to \infty} \frac{1}{2\pi i} \oint_{C_R} \frac{f'(z)}{f(z)} \, dz = \# \text{zeroes}. \]

Now we calculate

\[\lim_{R \to \infty} \Delta_C \left(\arg(f(z)) \right) = 3\pi. \]

Now

\[f(iy) = 2y^3 + 4 - iy^3 \]

\[\text{RE} \to 0 \quad \text{as} \quad y \to \pm \infty. \]

\[\text{IM} = 0 \quad \text{when} \quad y = 0 \]

\[\text{RE} = 2y^3 + 4 \quad \text{IM} = -y^3. \]

\[
\begin{array}{c|c|c|c}
 y & \text{RE}(f) & \text{IM}(f) \\
 \hline
 A & > 0 & < 0 \\
 B & > 0 & = 0 \\
 C & > 0 & > 0 \\
 \hline
\end{array}
\]

Therefore,

\[\# \text{zeroes} = \frac{1}{2\pi} (3\pi + \pi) = 2. \quad \Rightarrow \quad \# \text{zeroes} = 2, \text{in the right half-plane}. \]

Application

Consider the differential equation

\[d(y) = f(t) \] **with initial conditions.**

We take Laplace transform to get

\[Y(s) = \frac{P(s)}{Q(s)} \]

where, suppose, Q(s) is a polynomial in s, and that P(s) is analytic in s.

Suppose, that we can use the Argument Principle to show that there are no zeroes of Q(s) in the right half-plane. Then since

\[Y(t) = \sum_{j=1}^{K} \text{Res} \left[\frac{P(s)}{Q(s)}; s_j \right] e^{s_j t}. \]

We have Y bounded as t \to \infty.

\[
\begin{array}{c|c|c|c|c|c}
 \text{zeros of } Q & \text{S-plane} \\
 \hline
 x & \times & x & \times & \times & \times \\
 \hline
\end{array}
\]
Example: Find the number of zeroes of \(p(z) \) in right-half-plane

\[
p(z) = z^4 + 2z^3 + 3z^2 + z + 2.
\]

Recall

\[
\text{No}(p) = \frac{1}{2\pi} \left[4\pi + \Delta_p \arg(p(iy)) \right].
\]

Now

\[
p(iy) = y^4 - 2iy^3 - 3y^2 + iy + 2 = (y^4 - 3y^2 + 2) + i(y - y^3)
\]

so

\[
p(iy) = (y^2 - 1)(y^2 - 2) + i(y(1 - 2y^2))
\]

\[
\text{RE}[p(iy)] = 0 \quad \text{when} \quad y_{R_1} = \pm \sqrt{2}, \quad y_{R_2} = \pm 1
\]

\[
\text{IM}[p(iy)] = 0 \quad \text{when} \quad y = 0, \quad y_{I_2} = \pm 1/\sqrt{2}
\]

As \(y \to +\infty \), \(\text{RE} / \text{IM} \to -\infty \) or \(\text{IM} / \text{RE} \to 0^- \)

As \(y \to -\infty \), \(\text{IM} / \text{RE} \to 0^+ \)

<table>
<thead>
<tr>
<th>(y)</th>
<th>(\text{RE}(p))</th>
<th>(\text{IM}(p))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\infty)</td>
<td>> 0</td>
<td>< 0</td>
</tr>
<tr>
<td>(y_{R_1})</td>
<td>= 0</td>
<td>< 0</td>
</tr>
<tr>
<td>(y_{R_2})</td>
<td>< 0</td>
<td>< 0</td>
</tr>
<tr>
<td>(y_{I_1})</td>
<td>> 0</td>
<td>= 0</td>
</tr>
<tr>
<td>(y_{I_2})</td>
<td>> 0</td>
<td>= 0</td>
</tr>
<tr>
<td>(y_{I_3})</td>
<td>> 0</td>
<td>< 0</td>
</tr>
<tr>
<td>(y_{R_2})</td>
<td>= 0</td>
<td>< 0</td>
</tr>
<tr>
<td>(y_{I_1})</td>
<td>< 0</td>
<td>> 0</td>
</tr>
<tr>
<td>(-\infty)</td>
<td>> 0</td>
<td>> 0</td>
</tr>
</tbody>
</table>

Notice it is does not circle the origin.

Hence \(\Delta_p \arg(p(iy)) = 0 \)

so

\[
\text{No} = \frac{1}{2\pi} (4\pi + 0) = 2
\]

\[\rightarrow\] There are two zeroes in RHP.