1. Show that $F(z) = \log(-z) + i\pi$ is a branch of $\log(z)$ with branch cut on the positive real axis. Is it true that $F(z) = \log_+(z)$? Here \log_+ denotes the branch of the log where the argument is chosen in $[0, 2\pi)$. (Hint: don’t forget to check values right on the cut)

Solution: A function $F(z)$ is a branch of $\log(z) \iff F(z) \in \log(z)$ for every $z \iff \exp(F(z)) = z$ for all z. For the given F,

$\exp(F(z)) = \exp(\log(-z) + i\pi) = \exp(\log(-z)) \exp(i\pi) = (-z)(-1) = z$

Thus $F(z)$ is a branch of the log.

Now we find the branch cut of F. The point z is on branch cut for F if $-z$ is on the cut for \log_+ (the principal branch). This means that F has branch cut on $[0, \infty)$.

We now know that F and \log_+ have the same branch cut. Moreover $F(-1) = \log(1) + i\pi = i\pi = \log_+(-1)$. Thus F and \log_+ are branches with the same cut and the same value at a single point. This implies they are equal ... except possibly right on the cut where we have to decide from which side to take a limit. And in fact $F(1) = \log(-1) + \pi i = 2\pi i \neq \log_+(1) = 0$.

Recall that for $z \in \mathbb{C} \setminus \{0\}$ and $\alpha \in \mathbb{C}$, the complex power z^α is defined to be $z^\alpha = \exp(\alpha \log(z))$ (as a multivalued function).

2. Show that $(zw)^\alpha = z^\alpha w^\alpha$ as sets. (The set on the right is $\{a \cdot b : a \in z^\alpha, b \in w^\alpha\}$)

Solution: We have $\xi \in (zw)^\alpha \iff$

$\xi = \exp \left(\alpha \left(\ln(|zw| + i \arg(zw) + i2\pi k) \right) \right)$

for some $k \in \mathbb{Z}$. On the other hand, $\xi \in z^\alpha w^\alpha \iff$

$\xi = \exp \left(\alpha \left(\ln(|z|) + i \arg(z) + i2\pi l \right) \right) \cdot \exp \left(\alpha \left(\ln(|w|) + i \arg(w) + i2\pi m \right) \right)$

$= \exp \left(\alpha \left(\ln(|zw|) + i \arg(zw) + i2\pi (n + l + m) \right) \right)$

for some $l, m, n \in \mathbb{Z}$. Here the integer n is chosen so that $\arg(z) + \arg(w) = \arg(zw) + i2\pi n$

Now the equality of the two sets follows from the fact that given $l, m, n \in \mathbb{Z}$, the sum $l + m + n$ is again in \mathbb{Z}, and conversely that for any choice of integer n, any integer k can be written as $k = n + l + m$.
3. Show that z^α

(a) is single valued if $\alpha \in \mathbb{Z}$,

(b) has q values if $\alpha = p/q$, where $p, q \in \mathbb{Z}$ with no common factors and $q > 0$. (I really should have said p and q are relatively prime.)

(c) has infinitely many values if α is irrational.

Solution:

(a) If $\alpha \in \mathbb{Z}$ then $\exp(2\pi i \alpha k) = 1$ for $k \in \mathbb{Z}$ so

$$z^\alpha = \exp(\alpha \log(z)) = \{\exp(\alpha \Log(z) + i\alpha \Arg(z) + 2\pi i \alpha k) : k \in \mathbb{Z}\} = \{\exp(\alpha \Log(z) + 2\pi i \alpha \Arg(z)) \exp(2\pi i \alpha k) : k \in \mathbb{Z}\} = \{\exp(\alpha \Log(z) + 2\pi i \alpha \Arg(z)) \}. $$

So the set z^α contains a single value.

(b) From the calculation above, we see that the elements of the set z^α can be written as a fixed number $\exp(\alpha \Log(z))$ times the elements in the sequence \{w_k : k \in \mathbb{Z}\}, where $w_k = \exp(2\pi i p k/q)$. So we must determine how many distinct elements are in this sequence. The sequence is periodic with period q so we need only consider \{w_k : k = 0, 1, \ldots, q - 1\}. We can always write $p = nq + r$ with $0 \leq r < q$. Since we are assuming that q and p are relatively prime we must have $r \neq 0$.

Now w_k can also be written $w_k = \exp(2\pi ir k/q)$. If there are repetitions in the finite sequence above, that is, $w_k = w_l$ for $0 \leq k, l < q - 1$ with $k \neq l$ then $\exp(2\pi i r (k - l)/q) = 1$ which implies $r(k - l)/q = m \in \mathbb{Z}$ so that $r(k - l) = mq$. Since $r \neq 0$ and $k - l \neq 0$ we have that $m \neq 0$ so that q divides $r(k - l)$. But $k - l \in \{-q + 1, \ldots, q - 2, q - 1\}$ so q cannot divide $k - l$. Similarly k cannot divide r since $0 \leq r < q - 1$. This is a contradiction. Thus there are no repetitions.

(c) If w^α has only finitely many values then there must be repetitions in the sequence $\exp(2\pi i \alpha k)$ so that $\exp(2\pi i \alpha k) = \exp(2\pi i \alpha l)$ or $\exp(2\pi i \alpha (k - l)) = 1$ for some $k, l \in \mathbb{Z}$ with $k \neq l$. This implies $\alpha (k - l) = m \in \mathbb{Z}$ so that $\alpha = m/(k - l) \in \mathbb{Q}$.

4. Identify the branch points of $f(z) = \log(z(z + 1)/(z - 1))$. (Don’t forget to check $z = \infty$.)

If we define a branch for $f(z)$ by choosing the principal branch of $\log(z)$, where are the branch cuts? (Note: this example illustrates that there may be a choice of branch cuts not obeying our “contractible loops” condition that still result in a single valued function.)

Solution:
Since \(f(z) = \log(z) + \log(z + 1) - \log(z - 1) \) there are branch points at \(z = 0, 1, -1 \). In addition, when \(z \) goes around a large circle, the first two terms each increase by \(2\pi \) while the last term decreases by \(2\pi \). So the total change in \(f \) is \(2\pi \) and \(\infty \) is also a branch point.

If we define \(F(z) = \log(z(z+1)/(z-1)) \) then \(F \) is analytic near \(z \) unless \(z(z+1)/(z-1) \) is on the branch cut for \(\log \), i.e., \(z(z+1)/(z-1) = -p \) for some \(p \geq 0 \). For all \(z \) except \(z = 1 \) (which will turn out to be an endpoint of the branch cut) this is equivalent to \(z(z+1)+p(z-1) = z^2+(1+p)z-p = 0 \). This has solutions \(z = \pm \frac{-1+p}{2} \pm \sqrt{\left(\frac{1+p}{2}\right)^2 + p} \). As \(p \) ranges from 0 to \(\infty \), \(z_- \) ranges from \(-1\) to \(-\infty\) along the negative real axis while \(z_+ \) ranges from 0 to 1. (Here we can use that as \(p \to \infty \),
\[
z_+ = -\frac{1+p}{2} + \frac{1+p}{2} \sqrt{1 + \left(2 \frac{(1+p)}{1+p}\right)^2} \approx -\frac{1+p}{2} + \frac{1+p}{2} \left(2 + \frac{2}{1+p}\right)(p) = \frac{1}{2} \frac{2}{1+p} p \to 1.
\]
So we have shown that the branch cut for \(F \) is contained in \((-\infty, -1] \cup [0, 1]\). To be complete we should verify that when we cross these intervals, the value of \(F \) really does jump.

5. Find the branch points of \(f(z) = (z^3 + z^2 - 6z)^{1/2} \). Define a branch \(F(z) \) using the “range of angles” method that is continuous at \(z = -1 \) with \(F(-1) = -\sqrt{6} \).

Solution:

Since \(z^3 + z^2 - 6z = z(z+3)(z-2) \) there are branch points at \(z = 0, -3, 2 \). Also, since \(f(z) = z^{3/2} \left(\frac{1}{1 + \frac{6}{z^2}}\right)^{1/2} \) we see that \(\infty \) is also a branch point. To use the range of angles method we define \(r_i, \varphi_i \) for \(i = 1, 2, 3 \) by
\[
 z - 2 = r_1 e^{i\varphi_1} \quad z - 3 = r_2 e^{i\varphi_2} \quad z + 3 = r_3 e^{i\varphi_3}
\]
Then \(f(z) = (r_1 r_2 r_3)^{1/2} e^{i(\varphi_1 + \varphi_2 + \varphi_3)/2} \) and we can define a branch by choosing a range of angles for each \(\varphi_i \). Take \(\varphi_1 \in [0, 2\pi) \), \(\varphi_2 \in [0, 2\pi) \) and \(\varphi_3 \in (-\pi, \pi] \). Then for \(z \) close to \(-1 \), \(\varphi_1 \) is close to \(\pi \), \(\varphi_2 \) is close to \(\pi \), and \(\varphi_3 \) is close to \(0 \), that is, they are away from the endpoints of their respective ranges. So there are no jumps near \(z = -1 \). The value of this branch at \(-1 \) is \((3 \cdot 1 \cdot 2)^{1/2} e^{i(\pi+\pi+0)/2} = \sqrt{6} e^{i\pi} = -\sqrt{6} \).

6. Construct a branch \(F(z) \) of \((z^2 + 1)^{1/2} \) that is
\[
 (i) \text{ analytic inside the unit circle, } \\
 (ii) \text{ analytic away from the imaginary axis, } \\
 (iii) \text{ equals } \sqrt{x^2 + 1} \text{ for } x \in \mathbb{R}. \\
 (iv) \text{ is continuous on the imaginary axis from the right.}
\]

Give an algorithm (i.e., a sequence of steps) that takes as input two real numbers \(x \) and \(y \) and computes \(F(x + iy) \)
Solution: Using the range of angles method we let \((z - i) = |z - i|e^{i\phi_1}\) and \((z + i) = |z + i|e^{i\phi_2}\) and define \(F(z) = |z - i|^{1/2}|z + i|^{1/2}e^{i(\phi_1 + \phi_2)/2} = \sqrt{|z^2 + 1|}e^{i(\phi_1 + \phi_2)/2}\) where \(\varphi_1 \in (-3\pi/2, \pi/2]\) and \(\varphi_2 \in [-\pi/2, 3\pi/2).\) With this choice the cuts are \([i, i\infty)\) and \((-i\infty, -i]\) on the imaginary axis so (i) and (ii) hold. We have \(\phi_1 + \phi_2 = 0\) when \(z \in \mathbb{R}\) which implies (iii). Finally, the open and closed endpoints have been chosen to make (iv) true.

The algorithm could be something like

```plaintext
# define the angles
phi1 = atan2(x, y-1);
phi2 = atan2(x, y+1);

# the angles will (probably) be in (-\pi, \pi] so we adjust
if (phi1 > Pi/2) then phi1 = phi1-2*Pi end;
if (phi2 < -Pi/2) then phi2 = phi2+2*Pi end;

# the function output would then be
F = sqrt(abs(z^2+1))*exp(i*(phi1+phi2)/2);
```

4