1. Show that \(F(z) = \log(-z) + i\pi \) is a branch of \(\log(z) \) with branch cut on the positive real axis. Is it true that \(F(z) = \log_+(z) \)? (Hint: don’t forget to check values right on the cut)

Recall that for \(z \in \mathbb{C}\setminus\{0\} \) and \(\alpha \in \mathbb{C} \), the complex power \(z^\alpha \) is defined to be \(z^\alpha = \exp(\alpha \log(z)) \) (as a multivalued function).

2. Show that \((zw)^\alpha = z^\alpha w^\alpha \) as sets. (The set on the right is \(\{a \cdot b : a \in z^\alpha, b \in w^\alpha\} \})

3. Show that \(z^\alpha \)
 (a) is single valued if \(\alpha \in \mathbb{Z} \),
 (b) has \(q \) values if \(\alpha = p/q \), where \(p, q \in \mathbb{Z} \) with no common factors and \(q > 0 \).
 (c) has infinitely many values if \(\alpha \) is irrational.

4. Identify the branch points of \(f(z) = \log(z(z + 1)/(z - 1)) \). (Don’t forget to check \(z = \infty \).)
 If we define a branch for \(f(z) \) by choosing the principal branch of \(\log(z) \), where are the branch cuts? (Note: this example illustrates that there may be a choice of branch cuts not obeying our “contractible loops” condition that still result in a single valued function.)

5. Find the branch points of \(f(z) = (z^3 + z^2 - 6z)^{1/2} \). Define a branch \(F(z) \) using the “range of angles” method that is continuous at \(z = -1 \) with \(F(-1) = -\sqrt{6} \).

6. Construct a branch \(F(z) \) of \((z^2 + 1)^{1/2} \) that is
 (i) analytic inside the unit circle,
 (ii) analytic away from the imaginary axis,
 (iii) equals \(\sqrt{x^2 + 1} \) for \(x \in \mathbb{R} \).
 (iv) is continuous on the imaginary axis from the right.
Give an algorithm (i.e., a sequence of steps) that takes as input two real numbers \(x \) and \(y \) and computes \(F(x + iy) \)