1. Consider the differential equation

\[2x^2 y'' - xy' + (1 + x^2)y = 0 \]

(a) Classify the points \(0 \leq x < \infty \) as ordinary points, regular singular points, or irregular singular points.

(b) Find two values of \(r \) such that there are solutions of the form \(y(x) = \sum_{n=0}^{\infty} a_n x^{n+r} \).

(c) Use the series expansion in (b) to determine two independent solutions of (1). You only need to calculate the first three non-zero terms in each case.

[20 marks]

2. Consider a conducting metal bar of length \(\pi/2 \) whose initial temperature is \(u(x, 0) = x \) and which loses heat to its surroundings. Assume that the left end of the bar is maintained at a zero temperature while the right end is insulated. The temperature distribution in the bar \(u(x, t) \) is determined by the following initial boundary value problem for the heat equation:

\[u_t = u_{xx} - u, \quad 0 < x < \pi/2, \quad t > 0 \]

\[u(0, t) = 0, \quad u(x, \pi/2, t) = 0 \]

\[u(x, 0) = x \]

(a) Determine the solution to the boundary value problem (2) by separation of variables.

[14 marks]

(b) Briefly describe how you would use the method of finite differences to obtain an approximate solution this boundary value problem that is accurate to \(O(\Delta x^2, \Delta t) \) terms. Use the notation \(u_n^k \approx u(x_n, t_k) \) to represent the nodal values on the finite difference mesh. Explain how you propose to approximate the boundary condition \(u_x(\pi/2, t) = 0 \) with \(O(\Delta x^2) \) accuracy.

Hint: Taylor’s expansion may prove useful: \(f(x + \Delta x) = f(x) + f'(x)\Delta x + \frac{f''(x)}{2!}\Delta x^2 + O(\Delta x^3) \).

[6 marks]

[total 20 marks]

3. The motion of a damped string subject to an imposed load satisfies the following initial-boundary value problem:

\[u_{tt} + 2\gamma u_t = u_{xx} - 8 \sin x \cos x, \quad 0 < x < \pi, \quad t > 0 \]

\[u(0, t) = 0, \quad u(\pi, t) = 0 \]

\[u(x, 0) = 0, \quad u_t(x, 0) = \sin 3x. \]

(a) Determine the static deflection \(w(x) \) of the string (i.e., the steady solution), which is determined by solving (3) with \(u_{tt} = u_t = 0 \) and subject to the boundary conditions (4).

[5 marks]

(b) Let \(u(x, t) = w(x) + v(x, t) \) and determine the corresponding boundary value problem for \(v(x, t) \).

[5 marks]

(c) Assuming that \(\gamma < 1 \) use the method of separation of variables to solve for \(v(x, t) \) and therefore \(u(x, t) \).

[10 marks]

[total 20 marks]

4. Consider the eigenvalue problem

\[x^2 y'' + xy' + \lambda y = 0 \]

\[y'(1) = 0 = y(e^{\pi/2}) \]

(a) Reduce this problem to the form of a Sturm-Liouville eigenvalue problem. Determine the eigenvalues and corresponding eigenfunctions.

[8 marks]

(b) Use the eigenfunctions in (a) to solve the following mixed boundary value problem for Laplace’s equation

...
on the semi-annular region:

\[u_{rr} + \frac{1}{r} u_r + \frac{1}{r^2} u_{\theta\theta} = 0, \quad 1 < r < e^{\pi/2}, \quad 0 < \theta < \pi \]

\[u(r, 0) = 0 \quad \text{and} \quad u(r, \pi) = f(r) \]

\[\frac{\partial u(1, \theta)}{\partial r} = 0 \quad \text{and} \quad u(e^{\pi/2}, \theta) = 0 \]

[12 marks]

[total 20 marks]

5. Solve the inhomogeneous heat conduction problem subject to time dependent boundary conditions:

\[u_t = \alpha^2 u_{xx} + 1 - xe^{-t}, \quad 0 < x < 1, \quad t > 0 \]

\[u_x(0, t) = e^{-t}, \quad \text{and} \quad u(1, t) = t \]

\[u(x, 0) = x. \]

[20 marks]