Math 257/316 PDE Assignment 4
Due in class on Wednesday October 3, 2018

1. **Separation of variables**: Determine whether the method of separation of variables can be used to replace the following PDE’s by a pair of ODE’s. If so, find the equations.
 (a) $x^2u_{xx} = tu_t$.
 (b) $u_{xx} + (x + y)u_{yy} = 0$.

2. **Eigenvalue Problems**: Find all eigenvalues and corresponding eigenfunctions for the following problems
 (a) $y'' + \lambda y = 0$ \hspace{1cm} (0 < x < 1), \hspace{1cm} y'(0) = 0, \hspace{1cm} y(1) = 0.
 (b) $y'' + 2y' + \lambda y = 0$, \hspace{1cm} (0 < x < \pi), \hspace{1cm} y(0) = 0, \hspace{1cm} y(\pi) = 0.$

3. **Finite Difference Approximations**: Use Taylor’s series about the point x for $f(x + \Delta x)$, and $f(x + 2\Delta x)$ to determine the order p in each of the following finite difference approximations
 (a) $\frac{-3f(x) + 4f(x + \Delta x) - f(x + 2\Delta x)}{2\Delta x} = f'(x) + O(\Delta x^p)$
 (b) $\frac{f(x) - 2f(x + \Delta x) + f(x + 2\Delta x)}{\Delta x^2} = f''(x) + O(\Delta x^p)$

4. **(Will be marked) Modes of vibration of a cantilever beam.** The vibrations of an elastic bar of length L are governed by the forth order partial differential equation
 \[\alpha^2 \frac{\partial^4 y}{\partial x^4} + \frac{\partial^2 y}{\partial t^2} = 0 \]
 (a) Assuming a sinusoidal time variation of the solution of the form $y(x, t) = \exp(i\omega t)w(x)$ show that the spatial component $w(x)$ satisfies
 \[w'''' - \left(\frac{\omega}{\alpha} \right)^2 w = 0 \] \hspace{1cm} (1)
 (b) Show that the general solution of the 4th order ODE (1) is of the form
 \[w(x) = A \cos \mu x + B \sin \mu x + C \cosh \mu x + D \sinh \mu x \]
 (c) If the beam is clamped at the left endpoint $x = 0$ and can move freely at the other endpoint $x = L$, the cantilever beam is subject to the boundary conditions
 \[w(0) = 0 = w'(0) \] \hspace{1cm} (2)
 \[w''(L) = 0 = w'''(L) \]
 Determine the eigenvalues associated with the eigenvalue problem comprising (1) subject to the boundary conditions (2).
 Hint: First use the conditions $w(0) = 0 = w'(0)$ to show that $A = -C$ and that $B = -D$. Use these conditions to eliminate C and D and the remaining two conditions
$w''(L) = 0 = w'''(L)$ to arrive at a 2×2 system of equations for the remaining constants A and B. Using the condition for a non-trivial solution to this system derive the following transcendental equation for the eigenvalues

$$\cos \mu L = -\frac{1}{\cosh \mu L} \quad (3)$$

(d) Now plot the left and right hand sides of (3) over the range $0 \leq \mu L \leq 5\pi$. Provide a graphical estimate for the smallest crossing point μ_1L say. Interpret this in terms of the lowest frequency of vibration of the beam. From the graph can you give an estimate of the larger frequencies of vibration, i.e. when $\mu_nL \gg 1$.

5. (Will be marked) Find all eigenvalues and corresponding eigenfunctions for the following boundary value problem $x^2y'' + xy' + \lambda y = 0, (1 < x < 2), y(1) = 0 = y'(2)$. Only consider the case $\lambda > 0$.

6. (Will be marked) Flux boundary condition: Consider the following boundary value problem for the heat equation

$$u_t = \alpha^2 u_{xx}, \quad 0 < x < 1, \quad t > 0, \quad \alpha^2 = 0.2$$

$BC : u(0,t) = 0, \quad u_x(1,t) = 0$

$IC : u(x,0) = \sin (\pi x/2)$

(a) Use the method of separation of variables to solve the above boundary value problem.

(b) EXCEL EXERCISE: As shown in class the insulated boundary condition at the right endpoint of the bar $x = 1$ can be approximated by the following difference quotient:

$$\frac{\partial u(1,t)}{\partial x} = \frac{u(1 + \Delta x, t) - u(1 - \Delta x, t)}{2\Delta x} = 0$$

This equation reduces to the condition: $u(1 + \Delta x, t) = u(1 - \Delta x, t)$. Now if $x_N = 1$ is the right endpoint of the bar, then $x = 1 + \Delta x$ which falls outside the bar! However, we can trick the finite difference scheme into imposing this boundary condition by introducing a fictitious meshpoint $x_{N+1} = x_N + \Delta x$ and forcing the value of the solution $u(x_N - \Delta x, t)$ at this point to be the same as $u(x_N + \Delta x, t)$ in accordance with the condition above. Implement this in the spreadsheet: Heat0.xls posted on the web site by placing these fictitious values in column W. Plot $u(x, t = 0.5)$ obtained using the numerical solution and that obtained by separating variables on the same plot, print it out and hand it in with your assignment.