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The Spectral Boundary Element Method:
a New Window on Boundary Elements
in Rock Mechanics
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This paper describes a novel spectral method based on the FFT for solving
boundary integral equations incorporating the effect of non-linear material
behaviour. The mathematical properties of ‘this method are developed and
illustrated by means of a simple model problem. The spectral boundary element
technique is shown to provide a new framework for volumetric modelling with
easy access to a number of interesting features not available to spatially imple-
mented algorithms. A fundamental set of point Fourier kernels is introduced
from which, a variety of approximation schemes (including standard piecewise
polynomial approximations) can be constructed in the frequency domam by

/ introducing high frequency filters. The frequency d I ion of

these approximation schemes avoids the tedious integrations assoctated with
spatial discretizations of the integral equations and provides considerable flexi-
bility for general-purpose user-defined approximation schemes. Techniques are
described to overcome the periodicity constraint imposed by the FFT so that
general non-repeating geometries can be modelled. It is shown how the same
periodicity can also be exploited to model repeating geometries. Two novel
iterative methods are described to solve the discretized BE equations efficiently.
The first method uses the information provided by the FFT to construct an
approximate inverse extremely efficiently for use in a preconditioned conjugate
gradient algorithm. This method can reduce the operation count for solution
of the discretized problem to O(N log N) operations. The second method is an
adaptation of Jacobi iteration which can roughly double the convergence rate
for linear problems and can help to inhibit undesirable simultaneous failure of
neighbouring elements when modelling brittle rock fracture. Two appendices
containing expressions for the boundary element kernels and their Fourier
transforms are provided.

INTRODUCTION

In the design of deep underground excavations there is
a need to account for the inelastic deformation of the
surrounding rockmass to give a more realistic estimate
of the level of seismicity than the elastic calculations
commonly used [1]. In addition, an understanding of the
fracturing process around underground excavations will
assist in the design of better support systems and help
to explain (and possibly to control) the hard zones of
rock that occur ahead of stope faces which inhibit the
progress of the mining process.
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The boundary element (BE) method [2] is the most
efficient technique for modelling tabular excavations in
2- and 3-D elastic media with isolated slip planes. This is
because the BE method effectively reduces the dimension
of the discretization by one and because it automatically
models infinite domains without requiring special treat-
ment of the infinite boundary by mapped elements.
However, the rock fracture in the vicinity of deep tabular
excavations is often more intensive, pervasive and exten-
sive than can practicably be modelled by traditional BE
models with isolated slip planes. Therefore, a continuum
volumetric damage approach such as is provided by the
finite difference method [3], the finite element method or
the extended BE method [4, 5] for modelling inelastic
behaviour is more appropriate.. Without modification
the extended BE method loses many of its advantages




over the conventional domain discretization procedures
such as the finite difference and finite element methods.
In fact, the fully populated BE matrices serve to make
the extended BE technique much less efficient than the
domain methods. However, the special convolution
structure of the BE matrices can be exploited using the
fast Fourier transform (FFT) to make the BE technique
a viable competitor to the other domain discretization
techniques.

Rather than being merely an efficient way to perform
convolution products, we have discovered that the FFT
provides a whole new set of modelling options. Among
other features the FFT approach allows: the conven-
tional piecewise polynomial collocation approximations
to be implemented almost trivially in a unified fashion by
the implementation of the appropriate high-frequency
filters; a great deal of flexibility in introducing new classes
of approximations by means of filtering; self-replicating
kernels to be generated automatically for the modelling
of periodically repeated geometries; the efficient con-
struction of spectral preconditioners for rapid solution
of the algebraic equations that result from the discretiz-
ation of the boundary integral equations; automati¢
access to frequency domain information about the
solution such as the spectral distribution of plastic strain
—which provides insight into the amount of small-scale
(i.e. high-frequency) damage relative to the amount of
large-scale (i.e. low-frequency) damage.

In the past 20 years the FFT has been extensively used
to provide new approximate solution methods to partial
differential equations known as spectral methods [6, 7).
The basic idea behind these spectral methods is the
accurate representation of derivatives by multiplication
operators in the frequency domain. Although we are also
trying to solve partial differential equations, the class of
numerical algorithms we propose is quite distinct from
these spectral methods. For a linear elastic material
we consider boundary integral representations of the
solution in terms of special solutions. The technique
we propose uses frequency domain representations of
the special solutions and the FFT to arrive at new
approximation schemes. In this paper we explore a
number of features of this new “spectral boundary
element formulation”.

In the next section we introduce the classic boundary
integral formulation for homogeneous elastic materials
and the enhanced BE method for modelling inelastic
material behaviour. In the third section we introduce the
Fourier transform (FT), Fourier series and the discrete
Fourier transform as well as some of their important
properties. Since Fourier transforms are not widely
used in rock mechanics, this section has been included
to make the paper as self-contained as possible for
the benefit of those readers unfamilar with the FT. In
the fourth section, we briefly describe the piecewise
polynomial collocation technique which is commonly
used for the approximate solution of the boundary
integral equations. In addition, we describe a model
problem which is used throughout the paper-to illustrate

. the spectral BE technique. We introduce the- “point

Fourier kernels”, demonstrate some of their properties,
and show how they can be used to construct approxi-
mation schemes in the frequency domain by introducing
high-frequency filters. We demonstrate how the period-
icity assumption of the FFT can be avoided if desired
and how it can be exploited to model repeating
geometries. In the fifth section, we discuss two iterative
methods that can be used to solve the discretized BE
equations efficiently. The first method uses the FFT to
construct an approximate inverse extremely efficiently for
use in a preconditioned conjugate gradient algorithm.
The second method is an adaptation of Jacobi iteration
which can roughly double the convergence rate for linear
problems and inhibits undesirable simultaneous failure
of neighbouring elements when modelling brittle rock
fracture. In the last section, we summarize the findings
of the paper. In Appendix A we derive a harmonic—
biharmonic representation of the fundamental solutions
required for the boundary integral equations. In
Appendix B we provide the Fourier transforms of the
fundamental solutions used to construct the discrete
Fourier approximations.

THE BOUNDARY ELEMENT FORMULATION

Consider a region B in R” bounded by @B and let B
be that part of R” exterior to B (see Fig. 1). Assume that
B and B are occupied by homogeneous, isotropic elastic
media. Let o, 4; and 65, % be the stresses and displace-
ments in B and B, respectively. The stresses in body B
satisfy the equilibrium equations of elastostatics:

o+ fi=0

and the stresses are related to the strains according to
Hooke’s law:

E 2v
o= | T 2 )

where E is Young’s modulus, v is Poisson’s ratio for the
elastic medium and the definition of the strain tensor ¢
in terms of the displacement field is:

€y =30+ )

The stress and displacement fields in B satisfy the same
system of partial differential equations.

wl

Fig. 1. Homogeneous, isotropic elastic media occupy the inner and

_ outer regions B and B in R* which are bounded by 8. The inward

normal to the boundary 4B at point ¢ has components n,(g) and 3
point force with components &,(p) is applied at a point p € B.
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An application of Green's theorem to the. above
equations {5, 8] yields the following integral equations
for u, and oy

uk(p)=.[ 29> PTH9)
B

— G(gy pny(@)Di(g) ds(g), (19)

ou(p) = Lv(q,-, 2)Ti9)
- r(qa,Pu)"j(Q)Dx(Q) ds(g), (1b)

where Ti(q) =[6,(q) — 0;(g)In{(g) is the traction dis-
continuity and D,(¢) = #i(g) — %(g) is the displacement
discontinuity between the bodies B and B. The kernels
are defined as follows: g(g;, p,) is the kth displacement
component at point p due to the ith traction dis-
continuity component at g; G(g; pi)n(q) is the kth
displacement component at point p due to the ith
displacement discontinuity component at g; y(qis Pur) IS
the klth stress component at point p due to thé ith
traction discontinuity component at g; I'(gy, Px)n;(q) is
the k/th stress component at point p due to the ith
displacement discontinuity component at g.

Equations (1) are quite general in that all the direct
and indirect BE formulations can be obtained from these
equations. For example, if we remove the exterior body
B and set the stresses and displacements 6, = &; = 0 then
(1a) reduces to the classical direct BE formulation. If we
assume that the tractions (alternatively displacements)
across 0B are continuous then equations (1) reduce to
the indirect BE formulation known as the displacement
discontinuity (DD) method (alternatively the force
discontinuity method). Because we are interested in
representing the effect of geological discontinuities we
shall pay particular attention to the DD formulation
in the development of the FFT algorithms that follow.
However, the techniques presented in this paper apply
equally well to the other BE formulations. The kernels
2(gi.pe), Gy, o). 7(dinPu) and I'(ggpu) can be
expressed in a succinct form in terms of derivatives of a
biharmonic and a harmonic potential (see Appendix A).

The BE technique for a linear elastic medium can be
extended {4, 5] to include inelastic material behaviour
within the region B. This extension involves augmenting
(la) and (1b) by the following volume integrals
representing the influence of the inelastic strain €’
throughout the body B:

(1a) + L G(gy» po)eP (@) do(g) (2a)

(1b) + LT gy, Pu)elf (q) du(q)- (2b)

One of the primary advantages of the classical BE

technique for elastic problems over domain discretization

~methods. (such as finite differences and finite clements)

is that equations (1) involve only unknowns on the

boundary dB. This effectively reduces the problem from
an n-dimensional problem to one in which unknowns
are being sought in n — 1 dimensions. The discretized
BE equations (1) have small, fully populated matrices
whereas the corresponding domain discretization
methods involve large, sparse matrices. This makes the
BE technique extremely competitive particularly for
problems with small surface-to-volume ratios, which are
typically found in geomechanics. However, when the
effect of inelastic deformation is included, the BE tech-
nique would seem to lose much of its computational
advantage particularly for problems involving extensive
regions of inelastic deformation.

However, the integral equations (2) are convolution
equations since their kernels are translation invariant in
that their functional form depends only on the distance
|p —g| between the sending and receiving points.
Discretization of (2) results in matrix equations that are
fully populated but which inherit the convolution
structure of the integral equations. For problems with
significant amounts of inelastic strain €{f’ storage of the
fully-populated influence matrices would be prohibitive.
Direct elimination methods are, therefore, not suitable
for solving these equations whereas iterative methods
allow the convolution structure of the matrices to be
exploited. The major computational burden in the
iterative solution of these equations arises from the
matrix-vector products associated with the volume
integrals in (2), which are referred to as convolution
products. If there are N volume elements then O(N?)
operations are required to evaluate these products
directly. There are two distinct ways of accelerating this
process. The first technique, referred to as “lumping”,
exploits the rapid decay of the kernels G and I' with
distance r = [(g;— p:)(g:—p)I'® to calculate far-field
influences by averaging the strain field ¢}’ over a number
of volume elements [5,9]. Depending on the lumping
scheme used it is possible to reduce the convolution
computation from 'O(N?) to O(N) operations. The
second procedure uses the fast Fourier transform (FFT)
to evaluate the convolution integrals in (2) {10]. Effect-
ively the FFT diagonalizes the kernel matrices G and I
so that the convolution products can be performed in N
operations. Since the FFT for an N vector involves
N log N operations the total asymptotic operation count
is O(N log N).

The FFT was first exploited in this context by Stewart
[11] to perform the convolution integrals in (1b) for DDs
on a planar surface in three dimensions. In this paper we
discuss the use of the FFT for evaluating the convolution
products that result from discretizing planar surface
integrals and the volume integrals in (2). We also use the
FFT to obtain a new class of numerical approximations
to the integral equations (2), which use kernels calculated
from analytic Fourier transforms of G and I'. This
new class of kernels, which we refer to as the “point
Fourier kernels”, are quite fundamental in that all the
standard piecewise polynomial approximations to (2)
can be obtained as special cases as well as a_number of
new approximation schemes. ) -




THE FOURIER TRANSFORM

In this section we introduce the basic definitions and
properties of the Fourier transforms we will use in this
paper. As Fourier transforms are not widely applied in
rock mechanics we will also attempt to demonstrate how
Fourier transforms provide a new perspective on the
physical world.

The hierarchy of Fourier transforms

The Fourier transform on an infinite interval. Let
g € L'(— o0, o) then we define the Fourier transform of
g to be:

9{g}=£(f)=r exp(—2nf)gC) dx  (3a)

and the corresponding inversion formula is:

F g} =g(x) = _[ ® expQuifc)(f)df.  (b)

Thus g(f) represents the Fourier amplitude of the
function g at the frequency /. It is also common to define
the FT in terms of the angular frequency o = 27nfand we
shall use the two frequencies interchangeably in the
remainder of this paper. We refer to g and £ as a
transform pair one of which is sufficient to determine the
other. Thus a function g can either be defined in physical
space by prescribing all its values g(x) or. equivalently,
it can be defined by giving all its Fourier amplitudes
£(f) in frequency (or wave number) space. We note that
other than the integrability condition on g there are no
other restrictions on g. Similarly for a function g(x, y, z)
of three variables the 3-D Fourier transform is defined
to be:

sosm=[ ]

x exp[—2ni(fix + oy +£2)]
x g(x,y,z)dx dy dz

= J. exp[—2ni(f-n)lg(r) dF 30)
R3
and its corresponding inversion formula is:

g = L’ exp| — 2ni(f- N} () &

Some useful properties of Fourier transforms:

Property (FT P1) implies that differentiation can be

performed in the transformed space by the algebraic
process of multiplication by i(2xf ). Parseval’s relation
(FT P3) provides insight into the distribution of strain
energy in the spatial and wavenumber domains. The
linearity property (FT P4) of the governing partial
differential equations for an elastic body is exploited to

_derive the fundamental kernels in (1) and (2). The
. asymptotic behaviour (FT P7) provides useful insight

into the relation between the smoothness of a function
and the rate at which its high frequency Fourier ampli-
tudes decay. Property (FT P8) enables spatial averages
of a function to be established directly from its FT.

Fourier series. If we approximate the integral in the
definition (3a) of the FT by a Riemann sum then we
have:

r exp(~ 2nifi)g (x) dx

=8 5 gaerp(-2nf) =80 ()

-—c0

Here A is the sampling width and x, = kA. The inverse
transform corresponding to (/) is:

12
glx) = J_mﬁ(f Jexp(2nifx) df. @b)

Thus the Fourier series (4) is an approximation to the
Fourier transform (3) in which the function g is sampled
at an infinite number of discrete points while the Fourier
amplitude g(f) is sampled throughout the finite band
of frequencies [—1/24,1/2A]. Alternatively, we note
that the symmetric pair of Fourier transforms (3) could
equally well have been approximated by sampling the
function g (x) over a finite interval while £(f) is sampled
at an infinite number of discrete frequencies. In this case
the Fourier series representation is of the form:

f= j"’ gEep(-2mik)dx (@)
"
and
s0)= 5 g explanien) @

We note that the representation (4d) is periodic. If g
is not a periodic function then (4d) will give a faithful
representation of g on the sample interval (—,1) but
it will ignore the actual values of g outside this interval

(FT P1) Transform of a derivative: g'(x)=irNE)
(FT P2) Transform of a convolntion: F{f=,, g(x —y)h(y) dy}=£(NAS)
(FT P3) Parseval’s relation: J=, g%(x) dx = [, §(f)I* df

(FT P4) Lincarity: ag+ph =of + ph
(FT P5) If g is even [i.e. g(—x)=g(x)] then:
(FT P6) £(x)=g(—x)

£(f)=2 §& cos(2nfx)g(x) dx

(FT P7) Asymptotic behaviour of FT: if d*g/dx* (x)e L' then §(S) =o(ljf as f>

(FT P8) Average value: £(0)=f>,g(x)dx.




48600 H e

d)

ul
nt
al

PEIRCE et al.. SPECTRAL BOUNDARY ELEMENT METHOD ) 383

and only give periodic continuations of the values of g
on the interval (—1/2, 1/2).

The sampling theorem. A function whose frequency
components are zero above a certain frequency [i.e.
£(f)=0 for |f|>f] is called a “band limited func-
tion”. An important feature of a band limited function
g is that it can be expressed in the following form:

sinf2nf,(x — x,)]
n(x - xn) )

g)=A 3 g(x)

nm -0

®)

This representation implies that all the values g(x) of
the function g are completely determined by the discrete
samples g(x,) taken at an interval A = 1/2f.. Thus for
a band-limited function, sampling the function more
frequently than the spacing A will only give redundant
information. In the numerical schemes based on the
discrete FT we will be making the assumption that the
approximate solutions are band limited. In this case
representation (5) provides a means of interpolating
between the known nodal values g(x,) to obtain the
function values g(x).

Analogous operational properties can be derived for
the Fourier series as those given above for the Fourier
transform in (FT P1-FT P8).

The discrete Fourier transform. The Fourier series is
still not suitable for numerical modelling as function
values are required at an infinite number of discrete
points in (4a) or equivalently at the continuum of
frequencies in (4b). We therefore introduce a further
approximation by sampling g(x) at only a finite number
of points N on the interval LY. Consider the N
mesh points x;=j/N =jA; j= -N/2 .,N/2, and
the following approximation to the Founer uansform of
g(x):

8= r exp(—2nif, x)g(x) dx

-1
~A Y g(x)exp(—2nif,x). ®)

J=~Ni2

If we assume that g is periodic [i.e. g(x_nz) = &(Xxp)]
then (6) represents a trapezoidal approximation to the
Fourier transform g(f,). Motivated by this approxi-
mation we define the discrete Fourier transform:
assuming f, = n/NA:

N=1
F =% Y. g(x;)exp(—2minj/N). (7a)
J=0

The corresponding inverse transform of (7a) can be
determined by using the identity:

q #nN,

g =nN, (7)

1% s

- 2nigj/N) =

lejoexp( 7igj/N) {1’
to obtain: )

8(x) = Z gn exp(2ninjN).

(7)

sin(2xz;) and sin(2x9x,)

-~ B e RE o BEERE -

i i Y i i\
s 06 07 08 09 1
z

01 02 03 04

o

Fig. 2. The two modes s1n(21:x,) and sin(2x9x,). When sampled at the
mesh points {x,=j4;j=0,...,N=8 A={/N) which are marked
with asterisks, the two mods are indistinguishable.

We note that the discrete spatial sampling of g in
(7a) results in an inverse representation (7c) in terms of
a finite band of discrete frequencies. We also note that
(7a) is often known as the discrete Fourier transform
whereas the FFT refers to an efficient algorithm to
calculate (7a) or its inverse (7c) (see e.g. [10]). However,
since the FFT is always used to calculate (7a and c)
we shall simply refer to (7a and c) as FFTs to avoid
confusion.

Aliasing. In practice g(x) is not band limited and we
approximate g by a band-limited function. In this case
the error made by assuming that the function is band
limited can be seen by substituting (4d) into (7a) and
using the identity (7b) to yield:

gn + Z gu» Nk~ (8)

-®
luiO

Thus the FFT amplitude of the nth mode is equal to the
nth Fourier coefficient plus the amplitudes of all those
Fourier modes that “alias” the nth mode on the discrete
mesh. Any mode that has the same values throughout
the mesh x; as the nth mode is said to alias the nth mode,
because it is indistinguishable on the mesh from the nth
mode. For an aliased mode m: exp[2ni(n/NA)x)] =
exp[2ai(m/NA)x;}<>m =n + kN for k #0, which are
just the modes that form the sum in (8). In Fig. 2 we plot
the two modes sin(2rx;) and sin(279x;) and mark with
asterisks the values of these two functions for those
abscissae on the mesh: N =8 and A = 1/N. We observe
that when sampled at the mesh point x; these two modes
are indistinguishable.

Some useful properties of the discrete Fourier transform:

(FFT P1) Periodicity:
p=0,%1,...;

8k+pN = 8k

B ) =g p=0%1
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(FFT P2) Transform of a convolution:
FFT{(a % b),},= FFT{Z}Z{a,_nmb,} = 4,5,

(FFT P3) Parseval’s relation:
LT {EAIEED U FALY

Property (FFT P1) demonstrates the periodicity imposed
by the FFT representation and its inverse. Property
(FFT P2) is fundamental to this paper as it allows the
costly process of convolution of two sequences [taking
O(N?) operations if calculated directly] to be performed
by calculating the product of the FFTs of the two
sequences at each frequency [reducing the cost to
O(N log N) operations). :

Some useful transform pairs

In this section we give the Fourier transforms of some
simple functions to illustrate some of the properties of
the Fourier transform and provide information that will
be used in the fourth section.

The Dirac delta function. The FT of the delta function
4(x) is given by:

5=J‘w exp(—iwx ) 5(x) dx = 1 ©
or .
1= ()
where
w =2xf.

Thus the FT of the spike is a constant function in the
wavenumber domain.

The rectangular box. The box function b(x, A)
defined by:

0, |x|>A/2,
bes 8= ‘{1, x| <A, (10)
has the following FT:
. (wA)
sin ——2—-
b@,A)=A—>"1 (10b)

wA\ ’
3

b(x, A) and b(w , A) are plotted in Fig. 3a.
The Gibbs phenomenon. Numerical models based
on the FT sometimes exhibit oscillations in the
stress field known as the Gibbs phenomenon. The
FT of the box function can be used to illustrate
and explain this effect. The Gibbs phenomenon occurs
when we try to approximate a discontinuous func-
tion such as b(x, A) [whose Fourier transform decays
fairly slowly according to (FT P7)] by a band-limited
Fourier expansion. Substituting £(w, A) from (10b) into
(3b) we_obtain the representation:

sin(2zf Af2)
[0

T by, A)=fm exp(2nif,) o -
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Fig. 3a. The box function b(x, A) and its Fourier transform b(w, A).

Gibbs phenomenon

+2+ SIS - =)

a
z
2

{sill(

1
H

Wz, A)
<

05

0 005 0.1 015 02 0.35 03 035 04

Fig. 3b. The function b(x, A) and the band-limited approximation (12)

for L =50 (-~-) and L = 100 (- - -). Observe that the approximation

(12) overshoots b(x, A) by a maximum of about 9% and which is

located at the points x = +A/2 F n/L. If we increase L we only make

the positions of the peaks of successive approximations closer to the

points x = +A/2 but the amount of overshoot is the same for all
L<ow.

045 0S5

1 J’“’ sin w(A/2 + x) + sin w(A/2 — x) do
o ;

4 w
0, |xI>4/2,

={L Ix|<Af2, (€2))
holxl=an

If instead of evaluating the above integral we truncate it
after a finite length L then:

b(x, A) :i {Si[L(§+ x)] + Si[L(% - x)]} (12

where Si(x) = [} (sin s/s) ds.

From Fig. 3b we observe that the band-limited
approximation overshoots the function b(x,A) by a
maximum of 9%. Since Si(x) ~§+ 1/n¥(1 - 2//n?+- ")
is the maximum of Si(x) on (0, o), we observe that the
location of the maximum overshoot is at x = +A2
F n/L. Thusif we increase L we only make the positions
of the peaks of successive approximations of the form

(12) closer to the points x = +A/2 but the amount of - -

overshoot is the same for all L < oo. It is only in the limit
L —co that the correct Fourier representation (11) is
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Fig. 3c. The hat function k(x, A) and its Fourier transform h(w, ).
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Fig. 3d. The Gaussian function g(x, ) and its Fourier transform

£(w, 8) for two distinct values of 4:6 = 0.1—solid line and 6 =0.3—

dashed line. Notice that decreasing  makes g narrower and has the

effect of making the FT of the Gaussian § more spread out since it
contains more high-frequency components.

achieved. The Gibbs phenomenon is due to the slow rate
of decay of the Fourier amplitudes

" b, A) = 0(1jw)

which causes appreciable errors when the Fourier expan-
sion is truncated. The remedy to the Gibbs phenomenon
is to introduce filters to remove the high frequencies. We
shall exploit filters in this paper and demonstrate how
they can be used to introduce various approximation
schemes. .

The triangular hat. The triangular hat function h(x, A)
defined by:

0, |x|>A
h(x,A)= 1x]

e

- (13a)

x| <A.

has the following FT:
sin’(ﬁ)
Ao, ) =A 2

385
15, 1
14
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1
":— 038 - <;- 04
L4 T
06t
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02t _ .
02
1 05 0 05 1 o s 0 50 100
M w
Fig. 3e. The cosine hat function c(x,A) and its Fourier transform
é(w, A).

We notice that A (x, A) can be generated by convolving
b(x, A) with itself so that:

h(x,A)=(b* b)(x —%)/A.

This relationship in the frequency domain can be
expressed in the form:

h(w, A) = b(w, AY/A,

which can be verified directly using (10b) and (13b).
The way in which convolution with b(x,A) is a
smoothing process becomes transparent when viewed in
the frequency domain. In particular, multiplication by

b(w, A= 0(1w)

implies that the high frequencies of the resulting function
decay by a factor 1/w faster so that according to (FT P7)
the resulting function will have one more derivative. This
smoothing process can be repeated to obtain functions
with continuous derivatives. In fact by taking successive
convolutions of the rectangular box with itself we
can obtain gth order splines: A(sin?* (wAf2)/(wA[2)**")
(see for example Ref. [12]).

This example illustrates that convolution is a smooth-
ing process since the convolution of two discontinuous
functions, b(x, A) in this case, resulted in a continuous
function h(x, A). We also notice that the Fourier co-
efficients of the continuous function 4(x, A) decay more
rapidly O(1/w?) than those of the discontinuous function
b(x, A) as the frequency w — co. We shall exploit the
smoothing effect of convolution later when we introduce
filters to smooth the high frequency Fourier components
of the singular kernels of the integral equations (1)
and (2).

Gaussians. The Gaussian function g(x, §) defined by:

g(x,a)=m

T (14a)
(13b) has the following FT: -
8(,0)= ixp[ —(w—:)l] - (14b)




Here the parameter &, which is distinct from the mesh
parameter A, is used to adjust the width of the Gaussian
function. g(x, 8) and g(w, &) are plotted in Fig. 3d. We
observe that £ is also a Gaussian, and that if we decrease
& which makes g narrower then its FT § becomes
more spread out (i.e. it contains more high-frequency
components). In fact, since g(x, d) is a delta sequence
function, i.e.

g(x,8Y="5(x)
we see from (14) that
(0, 8Y="1,

which is another way of deriving (9).

The cosine hat. The cosine hat function c(x, A) defined .

Here the subscripts have been used to denote the respect-
ive stress and strain components and the superscripts
are used for the node numbers of the collocation points.
The integrated kernels I';%/~! are usually evaluated
analytically (see for example Ref. [5]).

The model problem

. As another illustratign of the typical discretization
process used in the collocation method for solving the
integral equations (1) and (2) we consider the special case
of (1b) which represents a model of a crack located along
the line y =0 in a 2-D elastic body subjected to the
normal stress distribution p(x). In this case the DD
distribution U(&) is governed by [2]:

E U .
4 —v) .[ g )=l U (T

Equation (17a) expresses the fact that the superposition
of the mining-induced stresses, represented by the integral
in (17a), and the pre-existing stresses p(x) should balance
the load o[x, U(x)] carried by material within the crack

* when it has been compressed by an amount U(x). In

by:
0, Ix}>A,
c(x,A) = % cos(%), x| <A, (15a)
has the following FT:
Y. CL (15b)

Both c(x, A) and é(w, A) are plotted in Fig. 3e.

DISCRETIZATION AND THE POINT FOURIER
KERNELS

In this section we describe the procedure commonly
used to discretize the integral equations (2). We also
introduce the notion of the “the point Fourier kernels”
which are essentially frequency domain representations
of the point force discontinuity and displacement
discontinuity kernels in (1) and (2). We will demonstrate
that the point Fourier kernels form a fundamental set of
kernels from which a variety of approximation schemes
(e.g. expansion of the solution in terms of piecewise
constant or piecewise linear basis functions) can be
obtained by the application of the appropriate filters in
the frequency domain.

Discretization

The procedure commonly used to discretize the integral
equations (2) is to divide the boundary 9B into line
segments and the region B into triangular or rectangular
elements. The unknown fields T, or D, and €{f’ are then
assumed to be constant, to vary linearly or quadratically
over each of these elements. For example in the discretiz-
ation of a 2-D problem, the contribution of the inelastic
strain integral in (2b) can be expressed in the following
form:

§ =¥ [imb- MM
a;_gr,, P

a6y .

the absence of material within the crack (17a) expresses
the condition that superposition of the mining-induced
stresses and the pre-existing stresses should leave the
boundary of the excavation stress free. In this paper
(17a) will be used as a model problem to demonstrate the
properties of a number of FFT algorithms. This model
problem serves as a test for the performance of FFT-
based discretizations of the classic DD integral equations
(1b) as well as the DD integral equations (2b) which have
been extended to model non-linear material behaviour.

As described above we discretize (17a) by dividing
the interval [/, /] into N equal subintervals or elements
of length A and assuming that over each of these
subintervals U(¢) has some polynomial variation. The
equations for the N unknown DD values associated with
the piecewise constant approximation to U(¢) obtained
by collocation at the midpoints x,= —I+(m —1)A,
m=1,..., N of the elements are:

N

Y Aunthn +Pu=0(%,,2,), (17b)

m=1
where

b3 E
4 = ; =
"= wAln —my =1 T H1—v)

and u, is used to denote the numerical approximation
to U(x,)-

As an example we consider the special case when
p(x) = p =constant and o(x,, 4,) =0 in which case the
analytic solution to (17a) and its FT are:

U(x) =§. F—x% U(o) =3"-"’yﬁ)—(’“’), 179

-where J; is the first-order Bessel function. Both this

analytic solution and the solution to the- discretized
equations (17b) are plotted in Fig. 4a in the case N = 16.
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) DD DISTRIBUTION FOR AN ISOLATED CRACK

DD value

0 02 04 06 08 1 12
distance from the centre line z/1

Fig. 4a. The analytic solution (17¢) to (17a) in the case p(x)=y

and the piecewise constant upyc, {see (17b)] and the point Fourier

Upr, approximate solutions for N =16. The point Fourier DD

distribution is more accurate than that of the piecewise constant
approximate.

By using the approximate solution u, the stress distri-
bution along y =0 can be obtained by evaluating the
left-side of (17b) at the desired values of x. The piecewise
constant approximate normalized stress distribution and
the analytic normalized stress distribution:

-1, Ixi<l,
o(x)= x S (17d)

=, ,
poy |x]>1

are plotted in Fig. 4b for x >/ Away from the crack
the approximate normalized stress distribution closely
resembles that of the analytic solution.

BENCHMARK STRESSES
Legend
solid - analytic solution
is ¢ - point kemels

+ - piecewise constant

normalized stress

[ 0.1 02 03 04 05 06 07 08 09 1
distance from the stope face z /I

Fig. 4b. The analytic normalized stress dis|
crack-like ion and the cor p
point Fourier approximates. Because we are using a finite number of
modes to rep a di i function the point Fourier stresses

exhibit Gibbs oscillations about the analytic values.

tribution (17d) ahead of the
i i i and

4

fteration using the FFT

For problems with significant amounts of inelastic
strain € storage of the fully populated influence matrices
would be prohibitive. Direct elimination methods are,
therefore, not suitable for solving these equations
whereas iterative methods allow the convolution struc-
ture of the matrices to be exploited to save storage and
to reduce solution times. The iterative procedure used to
solve (16) and (17b) is outlined in Fig. 5. We notice that
(16) and (17b) both involve convolution products which
form one of the most costly parts of this solution
process. Indeed, if the discretization involves N nodes
then O(N?) operations will be required to evaluate these

KERNELS START & read data
I §

FFT

STRAIN

[emr

[ ] [

FFT!

Tl

CONSTITUTIVE LAW

STRESS ERROR

SELF EFFECTS

UPDATE STRAIN

|

LOOP FOR:

1. Mining steps

2. Iterate until
stress errors are

less tian tolerance

Fig. 5. A flowchart of an iterative procedure that uses the FFT to €valuate the convolution products by multiplication in the

frequency domain. By performing these convolutions in the frequency domain the cost of calculating the trial stresses can be _
. - - - T _.  reduced from O(N?) to O(Nlog N) operations. -
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convolutions directly. If the discretization is on a uni-
form rectangular mesh [as is the case in (17b)] then the
FFT can be used to effectively diagonalize the kernel
matrices I';/~' and 4,,,. In this case, the convolution
products in (16) and (17b) can be evaluated by multi-
plying the FTs of the kernels by the FTs of the current
strains to obtain the FTs of the stresses generated by the
current trial solution. The inverse FFT is then used to
calculate the stresses generated by the current trial
solution in real space. By performing these convolutions
in the frequency domain the cost of calculating the trial
stresses can be reduced from O(N?) to O(NlogN)
operations. These stresses are then used to calculate the
next trial solution by applying the appropriate boundary
conditions or ensuring that the next trial solution
satisfies the specified constitutive relation.

If the FFT is used to calculate the trial stresses then
the iterative procedure that can be implemented can only
adjust the trial solution at a particular node based on the
other nodal values at previous iterations (e.g. Jacobi
iteration). It is not possible to make adjustments to the
trial solution at a particular node based on the most
up-to-date values at other nodes as is done in the
Gauss-Seidel iteration. In the next section we discuss
some iterative algorithms that can be developed using
the FFT.

The point Fourier kernels

We now introduce a novel enhancement of the FFT
approach which carries it beyond an efficient algebraic
process for performing convolution products. The key
feature of this enhancement is the calculation of the
analytic Fourier transforms of the singular kernels in (2).
These analytic frequency domain representations of the
singular kernels are referred to as the “point Fourier
kernels”. A novel discretization of the integral equations
is then achieved by sampling the analytic point Fourier
kernels at discrete uniformly distributed frequencies.
This new approach also allows the standard piecewise
polynomial approximation schemes to be implemented
within the same formulation in a way which does not
necessitate the tedious integrations that are required to
implement these approximation schemes in the spatial
domain.

The simplest way of deriving the point Fourier kernels
is to use the harmonic-biharmonic potential representa-
tion of the kernels given in Appendix A. In 3-D the FT
of the harmonic potential ¢(r) = 1/r is (see Appendix B):

5(r)=4—n' where p = /ol +0i+ 0l (18a)

p*’
while the FT of the biharmonic potential ¥(r)=r is:
()= _;i". (18b)

The point Fourier kernels £, G,  and I’ can now be
obtained by taking the appropriate derivatives of ¢ and
¥ in the frequency domain. A complete listing of the
point Fourier kernels I is given by Appendix B. These
kernels are obtained by multiplying the potentials &

and ¥ by the appropriate factors of the form iw,
according to the differentiation property for FTs [see
property (FT P1)]. Each of these derivatives is unique up
to a constant factor. From (9) we see that the constant
factors only affect the strength of the kemnels at the source
point. This arbitrariness introduced by the constant
factors can be resolved by exploiting the fact that the
self-effect should equilibrate with the stresses generated
by the source throughout the remainder of the volume.
Self-equilibrating kernels can be conveniently generated
in the frequency domain by exploiting the averaging
property of FTs [see property (FT P8)). For example,
if we set the DC term [y, (w;= 0) =0 then the stresses
generated by the point strain source will equilibrate
along the line x;.

The 2-D plane strain kernels can be obtained from
the 3-D kernels by integrating them along the infinite
line — oo <z < c0. This process can be performed par-
ticularly simply in the frequency domain by exploiting
(FT P8). Indeed, the 2-D plane strain point Fourier
kernels car be obtained from the 3-D point kernels by
setting w; =0. For the model crack problem (17a) the
appropriate point kernel can be obtained from the 2-D
point Fourier kernels by using the FT inversion formula
(3b) to invert the w, component of I'yy(®,,®,) and
setting y =0:

J’ = exp[— (iwx)]

S dx = —njo|=R@). (19)

Making use of these point kernels in the iterative
solution procedure in Fig. 5 we obtain the point kernel
solution of the crack problem shown in Fig. 4a. The
point kernel solution up,, is noticeably more accurate
than the piecewise constant solution upyc,. In Fig. 4b
we plot the point kernel approximate normalized stress
profile generated by the crack along y =0, x > 1. We
notice that the point kernel stresses oscillate about the
analytic values. These oscillations are due to the Gibbs
effect that results from the fact that a discontinuous
function (17d) is represented by a finite number of
Fourier modes. One way to reduce Gibbs oscillations in
Fourier approximations is to introduce filters to damp
the high-frequency components of the approximate sol-
ution. This procedure leads to new classes of approxi-
mations based on the FFT and will be explored shortly.

Interpolation using the FFT

It is possible to use the FFT to interpolate the
approximate solution for points that do not fall on the
original mesh. For example, the stresses at points not on
the original mesh are obtained by assuming that the stess
is a band-limited function and by interpolating using the
convolution representation (5). This representation can
be implemented particularly simply in the frequency
domain by padding the FFT g, of o, with Q zeros and
taking the inverse FFT. The spatial representation then
has Q additional values which fall between the points
of the original solution mesh. In Fig. 6 we plot the
interpolated stress values along the line-segment y =0,
0 < x <2 We notice that the band-limited trigonometric

normalized stress

Fig.
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TRIGONOMETRIC INTERPOLATION OF BENCHMARK STRESSES FOR POINT KERNELS
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Fig. 6. The approximate stress values along the line segment y =0,

0< x <2 obtained by trigonometric interpolation using the FFT.

We notice that the band-limited trigonometric interpolant of the

approximate point stress intensities is too oscillatory to give useful
stress intensities at intermediate points.

interpolant of the approximate point stress intensities
is too oscillatory to give useful stress intensities at
intermediate points. However, other interpolants can
be constructed in which these oscillations are damped.
For example, rather than multiplying 6, by the box
cut-off b(w,,2n/A) as in the case of the band-limited
interpolation, we could multiply &, by a triangular hat
cut-off h(w,,n/A) which will result in a less oscillatory
interpolant.

Filtered kernels

In this section we show how to smooth the Gibbs
oscillations by means of filters which reduce the high-
frequency components of the approximate solution.
Implicit in the application of a high-frequency filter to
the point Fourier kernels is an assumption about the
basis functions used to represent the solution in the
spatial domain. Conversely, a desired form of basis
function can be implemented in the frequency domain by
application of the appropriate filter. We demonstrate
that the standard piecewise polynomial approximations
as well as a number of new approximation schemes can
be obtained by filtering.

In the section on the Fourier transform we saw that
the Gibbs phenomenon was associated with a slow rate
of decay of the Fourier amplitudes of a function as
increases. We try to avoid these undesirable oscillations
by introducing approximate schemes that have stress
components that decay more rapidly. Therefore in order
to remove the oscillations in the point kernel stress
approximation we multiply the point Fourier kernel
R(w) defined in (19) by a “low pass™ filter @ (@) which
leaves the low-frequency components unchanged but
which damps the high-frequency components. Multi-
plying the point frequency kernel K(w) by a filter is a
convolution in the spatial domain which is a smoothing
process as we saw in the derivation of the FT of the
triangular hat: £(w, A) (13). There are a variety of filters
that can be mplementcd and we shall mtroduce them by
way of example -

The Lanczos filter—piecewise constants. In this case
we let §(w) = b(w, A)/A where b(w, A) is the FT of the
box function given in (10b). We note that the filter ¢ ()
reproduces the low-frequency components, since for
small @ we have

-0

$(@)="1 1| A/2? + Ol o] A2)]

while the larger frequencies are damped by a factor

$(@)="0(1/o).
The filtered kernel becomes:
Ry(@)=R(@)$(0)= —s n(lwzl A) (20a)

In Fig. 7a a number of filtered kernels that will be
introduced in the course of this section are compared
with the point Fourier kernel. All the filters do not
appreciably alter the low-frequency components (i.c.
0 < wfr < 1/2) of the point kernels. The Lanczos filtered
kernel (20a) introduces moderate damping of the high-
frequency components 1/2 <w/r <1. In Fig. 7b the
approximate normalized stresses (along y =0, x >[)
corresponding to the range of filtered kernels in Fig. 7a
are plotted together with the point kernel and the
analytic stresses (17d). We observe that the Lanczos
filtered approximate solution does not have the stress
oscillations characteristic of the point kernel so that
the filter has been effective in removing the stress
oscillations. In Fig. 7c the filtered approximate DD
distributions are plotted together with the point kernel
approximate and the analytic solution (17c). We
observe that the Lanczos filter approximate is slightly
less accurate than the point kernel approximate at the
centre of the crack and is somewhat less accurate near
the crack tip.

In order to interpret (20a) (and the performance of
the Lanczos approximate shown in Fig. 7b,c) we observe
that by applying the Fourier series of the form (4a) to
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Fig. 6. The approximate stress values along the line segment y =0,

0< x <2 obtained by trigonometric interpolation using the FFT.

We notice that the band-limited trigonometric interpolant of the

approximate point stress intensities is too oscillatory to give useful
stress intensities at intermediate points.

interpolant of the approximate point stress intensities
is too oscillatory to give useful stress intensities at
intermediate points. However, other interpolants can
be constructed in which these oscillations are damped.
For example, rather than multiplying 6, by the box
cut-off b(w,,2n/A) as in the case of the band-limited
interpolation, we could multiply &, by a triangular hat
cut-off h(w,,n/A) which will result in a less oscillatory
interpolant.

Filtered kernels

In this section we show how to smooth the Gibbs
oscillations by means of filters which reduce the high-
frequency components of the approximate solution.
Implicit in the application of a high-frequency filter to
the point Fourier kernels is an assumption about the
basis functions used to represent the solution in the
spatial domain. Conversely, a desired form of basis
function can be implemented in the frequency domain by
application of the appropriate filter. We demonstrate
that the standard piecewise polynomial approximations
as well as a number of new approximation schemes can
be obtained by filtering.

In the section on the Fourier transform we saw that
the Gibbs phenomenon was associated with a slow rate
of decay of the Fourier amplitudes of a function as
increases. We try to avoid these undesirable oscillations
by introducing approximate schemes that have stress
components that decay more rapidly. Therefore in order
to remove the oscillations in the point kernel stress
approximation we multiply the point Fourier kernel
R(w) defined in (19) by a “low pass™ filter @ (@) which
leaves the low-frequency components unchanged but
which damps the high-frequency components. Multi-
plying the point frequency kernel K(w) by a filter is a
convolution in the spatial domain which is a smoothing
process as we saw in the derivation of the FT of the
triangular hat: £(w, A) (13). There are a variety of filters
that can be mplementcd and we shall mtroduce them by
way of example -

The Lanczos filter—piecewise constants. In this case
we let §(w) = b(w, A)/A where b(w, A) is the FT of the
box function given in (10b). We note that the filter ¢ ()
reproduces the low-frequency components, since for
small @ we have

-0

$(@)="1 1| A/2? + Ol o] A2)]

while the larger frequencies are damped by a factor

$(@)="0(1/o).
The filtered kernel becomes:
Ry(@)=R(@)$(0)= —s n(lwzl A) (20a)

In Fig. 7a a number of filtered kernels that will be
introduced in the course of this section are compared
with the point Fourier kernel. All the filters do not
appreciably alter the low-frequency components (i.c.
0 < wfr < 1/2) of the point kernels. The Lanczos filtered
kernel (20a) introduces moderate damping of the high-
frequency components 1/2 <w/r <1. In Fig. 7b the
approximate normalized stresses (along y =0, x >[)
corresponding to the range of filtered kernels in Fig. 7a
are plotted together with the point kernel and the
analytic stresses (17d). We observe that the Lanczos
filtered approximate solution does not have the stress
oscillations characteristic of the point kernel so that
the filter has been effective in removing the stress
oscillations. In Fig. 7c the filtered approximate DD
distributions are plotted together with the point kernel
approximate and the analytic solution (17c). We
observe that the Lanczos filter approximate is slightly
less accurate than the point kernel approximate at the
centre of the crack and is somewhat less accurate near
the crack tip.

In order to interpret (20a) (and the performance of
the Lanczos approximate shown in Fig. 7b,c) we observe
that by applying the Fourier series of the form (4a) to
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Fig. 7b. The analytic normalized stress distribution (17d) ahead of

the crack-like excavation and the corresponding point Fourier,

Lanczos, piecewise linear and Gaussian filter approximates. All the
filter approximates remove the Gibbs oscillations.
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Fig. 7c. The analytic DD distribution (17¢) in the case px)=y
and the corresponding point Fourier, Lanczos, piecewise linear and
Gaussian filter approxi luti

the infinite extension of the piecewise constant kernel
defined in (17b) we obtain:

7 i exp(—iomA)

2__1
A e m-—3

- ?; [:% sm(’—“’i‘i’ﬂ . (202%)

Thus comparing (20a) with (20a’) we see that by
applying the Lanczos filter to the point kernel K(w) we
will obtain precisely the frequency representation of the
piecewise constant kernel given in (17b). Therefore, a
piecewise constant representation of the solution
can be obtained (without having to perform spatial
integrations) by applying a Lanczos filter to the point
kernel. This is not surprising since we used a filter §(w)
that was the Fourier transform of the box function—the
basis function for piecewise constants. This simple
example not only illustrates the possibility of preparing
the piecewise constant kernels in the frequency domain
- but it also raises the possibility of preparing other classes

A(w)=

of approximation schemes by implementing the FTs of
their basis functions as filters.

The linear spline filter. In this case we let
$(w) = h(@, A)/A where A(w, A)is the FT of the triangu-
lar hat function given in (13b). We note that this filter
& (w) multiplies the low-frequency components by the
factor

' $@) "1~ 1w | A7+ Ol | A2Y)
while the larger frequencies are damped by a factor
F @) =" 0(jw?).

The filtered kernel is given by:

—4x sin’(I l )

Ri@)=R@3@) =——p—"- (0
From Fig. 7a it can be seen that the piecewise linear filter
substantially reduces the high-frequency components
of the point kernels. From Fig. 7b we observe that the
linear spline filter removes the oscillations displayed by
the point kernel stresses. The piecewise linear approxi-
mate is more accurate than the others for the benchmark
stress closest to the fact but is less accurate than the
other approximates for the remaining benchmarks
further ahead of the face. From Fig. 7c we see that the
linear spline filter approximate DD distribution is
slightly less accurate than the point kernel approximate.
Therefore, for the model crack problem, the continuous
linear spline approximate does not offer any improve-
ment over the piecewise constant solution—a result
which has already been established [13]. We note that
the piecewise linear approximation scheme is extremely
simple to implement in the frequency domain and
requires only O(N) additional operations. In order to
implement this scheme in the spatial domain, we would
have to derive a' whole new set of discrete kernels
involving the evaluation of singular integrals—these
calculations are even more severe for fully 2- and 3-D
geometries.

The poor performance of the piecewise linear
approximation is due to the rather extreme behaviour
of the analytic solution of the model crack problem in
the neighbourhood of the endpoints 1/, i.c.

U(x)i:’p\/ﬂ Ji=x/.

In the frequency domain this extreme behaviour
manifests itself in the O(1/0*) decay of the FT of
the analytic solution [see (17c)]. The piecewise linear
basis functions implicitly assume that the solution is
smoother in that the frequency components are assumed
to decay at a rate O(1/w?). For this reason the piecewise
linear representation has difficulty capturing the slower
[O(1/w*?)] decaying coefficients of the analytic solution.
We see, therefore, that there is little benefit for this

particular problem in trying to implement higher order
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the crack-like excavation and the corresponding point Fourier,

Lanczos, piecewise linear and Gaussian filter approximates. All the
filter approximates remove the Gibbs oscillations.
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Thus comparing (20a) with (20a’) we see that by
applying the Lanczos filter to the point kernel K(w) we
will obtain precisely the frequency representation of the
piecewise constant kernel given in (17b). Therefore, a
piecewise constant representation of the solution
can be obtained (without having to perform spatial
integrations) by applying a Lanczos filter to the point
kernel. This is not surprising since we used a filter §(w)
that was the Fourier transform of the box function—the
basis function for piecewise constants. This simple
example not only illustrates the possibility of preparing
the piecewise constant kernels in the frequency domain
- but it also raises the possibility of preparing other classes

A(w)=

of approximation schemes by implementing the FTs of
their basis functions as filters.

The linear spline filter. In this case we let
$(w) = h(@, A)/A where A(w, A)is the FT of the triangu-
lar hat function given in (13b). We note that this filter
& (w) multiplies the low-frequency components by the
factor

' $@) "1~ 1w | A7+ Ol | A2Y)
while the larger frequencies are damped by a factor
F @) =" 0(jw?).

The filtered kernel is given by:
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From Fig. 7a it can be seen that the piecewise linear filter
substantially reduces the high-frequency components
of the point kernels. From Fig. 7b we observe that the
linear spline filter removes the oscillations displayed by
the point kernel stresses. The piecewise linear approxi-
mate is more accurate than the others for the benchmark
stress closest to the fact but is less accurate than the
other approximates for the remaining benchmarks
further ahead of the face. From Fig. 7c we see that the
linear spline filter approximate DD distribution is
slightly less accurate than the point kernel approximate.
Therefore, for the model crack problem, the continuous
linear spline approximate does not offer any improve-
ment over the piecewise constant solution—a result
which has already been established [13]. We note that
the piecewise linear approximation scheme is extremely
simple to implement in the frequency domain and
requires only O(N) additional operations. In order to
implement this scheme in the spatial domain, we would
have to derive a' whole new set of discrete kernels
involving the evaluation of singular integrals—these
calculations are even more severe for fully 2- and 3-D
geometries.

The poor performance of the piecewise linear
approximation is due to the rather extreme behaviour
of the analytic solution of the model crack problem in
the neighbourhood of the endpoints 1/, i.c.

U(x)i:’p\/ﬂ Ji=x/.

In the frequency domain this extreme behaviour
manifests itself in the O(1/0*) decay of the FT of
the analytic solution [see (17c)]. The piecewise linear
basis functions implicitly assume that the solution is
smoother in that the frequency components are assumed
to decay at a rate O(1/w?). For this reason the piecewise
linear representation has difficulty capturing the slower
[O(1/w*?)] decaying coefficients of the analytic solution.
We see, therefore, that there is little benefit for this

particular problem in trying to implement higher order
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spline approximations as they will assume that the
solution is even smoother. There may well be some merit
in using higher order variations in situations where the
solution is not expected to change as abruptly as it does
in the case of a crack-like excavation.

Gaussian filters. We now introduce a new class
of approximation schemes which were first introduced
in vortex dynamics {14]. This class of approximation
schemes allows some flexibility in the extent to which
the low frequencies are reproduced and the high fre-
quencies are damped. To reproduce the low frequencies
faithfully we would like $(w)=1 on a large interval
containing w = 0. Therefore, to ensure that (@) be
as flat as possible we impose the following two con-
straints:

0 é@=1,

(ii) d¢(@)/dw],0=0; k=1,...,2p.
We note that these constraints are equivalent in the
spatial domain to the following moment conditjons:

(i) 20 ¢(x)dx =1,

(i) [P x*¢(x)dx =0; k=1,...,2p.

In order to have the freedom to satisfy these
constraints we construct ¢(w) as a linear combination
of dilated Gaussians (i.e. Gaussians that are made

to vary on a number of different length scales). As
the basic building block consider the Gaussian [see

(14}
)

and assume the following expansion for the filter ¢@%

exp(—x?) |

Y(x)=g(x, 1)=T ;

P
$%(x) = Y. c.-w(f>, @1a)
=1 a;
where ¢, are coefficients used to ensure that ¢®(x)
satisfies the moment conditions and g; are the user-
defined parameters that adjust the length scales of the
dilated Gaussians. Since ¥ is an even function, the odd
moment conditions in (ii") are satisfied automatically.
The even moment conditions yield the following system
of equations:

P
O = Z ca?*'; k=1,...,p;
im1
where

i#),

0,
-
1, i=j,

from which the coefficients ¢, can be determined.
In order to adjust the rate of decay of the filter we

_ define the one-parameter family of rescaled filters:

s =30%(3) “@ib)

We now have an adaptable class of approximations.
If the low frequencies are to be reproduced faithfully
then p is increased and if the high frequencies are to
be damped more rapidly then § is increased [since
F(oP) = $¥(60).

The Gaussian filter shown in Fig. 7a has defining
parameters p=4; 5 =28A and a,=(@)'~". This filter
faithfully reproduces the low-frequency components
while it reduces the high-frequency components slightly
less than the Lanczos filter. The Gaussian approximate
stresses shown in Fig. 7b do not have the oscillations
displayed by the point kernel approximate and are as
accurate as the Lanczos approximation stresses. The
Gaussian approximate shown in Fig. 7c achieves roughly
the same superior accuracy for the DD distribution as
does the point kernel approximate.

Consequences of the periodicity constraint of the FFT

In this section we discuss the constraint imposed by
the periodic assumption of the FFT approach and some
techniques that can be used to reduce its effect. In addi-
tion, we discuss the advantages of the FFT approach
when we wish to model periodically repeated problems.

Avoiding the periodic assumption. We saw in the
section on the Fourier transform that the discrete
Fourier transform assumes that the sequences are
periodic. Although this situation does arise in practical
mining problems (e.g. a periodic array of pillars), it
is generally mot true that the solutions we seek are
periodic. Therefore we discuss ways to solve non-
periodic problems by embedding them within equivalent
but larger periodic problems. Broadly speaking we ex-
tend the region on which the problem is defined to a
larger one in which the additional parts of the larger
domain act as cushions against the errors introduced by
the periodicity assumption of the FFT.

In order to illustrate this process consider (17b) in
which N =4 and y/nrA=1. In this case the influence
matrix A is:

—4 43 415 4735
43 -4 43 415
415 43 -4 43 | @2
435 415 43 -4

We note that the matrix 4 has a Toeplitz structure in
that the elements along each diagonal are constant. Since
A is also symmetric, it can be defined by merely listing
the elements of the first row. These properties can be
expressed as follows: 4,,, = a,,_,;, where g, is an element
of the sequence {a,})~'={—4,4/3,4/15,4/35}. As a
result of this Toeplitz structure, (17b) can be written in
the form of a discrete convolution:

N .
(@a*u),= Zl [Li— =f- (23)

If we extend the sequence {a,} to one which is
N-periodic then we will be able to evaluate the convol-

“ution (23) in O(N log N) operations using the-FFT as -




opposed to the O(N?) operations required to evaluate
- the convolution directly. Direct periodic extension of

{a,} to a sequence {a,:a,,,n=a,} does not yield a
sequence with the correct symmetry properties a, =a’,.
Therefore, to take advantage of the efficiency of the FFT
we must extend the sequence to a new sequence which
is both N-periodic and symmetric e.g.:

=
{—4, 4/3, 4/15, 4/35, 4/63, 4/35, 4/15, 4/3}

We now consider the following product of the
Toeplitz matrix 4’ associated with this sequence and the
vector u’ constructed from u by padding with zeros:

"location points. Alternatively, if we defined the extended
solution vector u’ to be:

uw =[u u, u; u, 000 0],

then we would still calculate correct tractions at pos-
itions 1, ..., 5 but the errors in the stresses calculated in
positions 6, ..., 8 would be substantially larger due to
the closer proximity of the periodically repeated cracks.
Therefore, if the benchmark stresses generated by the
FFT are to be used as estimates of the true stresses then
it is preferable to locate the excavations in the centre
of the padded region. This situation is analogous to
the errors which occur when the remote boundaries

F—4 43 4/15 435 4/63
43 —4 43 415 4/35
415 43 —4 43 415
435 4/15 43 -4 43
4/63 4/35 4/15 43 —4
435 463 4/35 4/15 4[3
415 435 4/63 435 4/15
| 4/3  4/15 435 4/63 4/35

Aw =

4/35 415 4537 [0 [ x]
463 435 4/15| |0
435 4163 4/35| |u
415 4p3s 463 | |
43 415 435| |u
—4 43 15| |u
43 —4 43 0
415 43 —4] |0

24
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In addition to being a Toeplitz matrix, 4° has an
additional special structure in that successive rows (or
columns) are cyclic permutations of one another. Such
a Toeplitz matrix is known as a circulant matrix. We
note that multiplication by the circulant matrix 4" in (24)
yields the same result as multiplication in the frequency
domain by the FT of the sequence {a;}3"~'. To see this
consider the product of A’ with the elements of the
Fourier basis:

2N-1
Y. a;_nexpl2nimk/QN)]
mw=0
= exp[2mink /(2N)]

w1
x Y a,_pexp[—2ni(n —m)k/(2N)]

m=0
= (2N)a; exp[2rink [2N)].

Thus the eigenvalues of the circulant matrix A’ are
just the FFT components dj of the sequence {a,}3"~'.
Now using the convolution property (FFT P2) of the
FFT we obtain the desired resuit:

A'w’ =FFT-Y{d,u;}.

The matrix represenation (24) of the action of the
FFT convolution enables us to easily verify the effect
of extending {a,}. By using the FFT of the extended
sequence we see from (24) that we obtain correct stresses
at the points (/) and errors of (4/35—4/99)u, in the
stresses at the points (x) due to periodic wraparound.
If we only wish to solve for the unknowns uy,...,u,

- " iteratively then this extension process is quite adequate

since the correct tractions will be calculated at the col-

are located too close in finite difference or finite element
analyses.

A scheme proposed by Stewart [11] to calculate more
accurate benchmark stresses using the FFT convolution
approach involves padding the sequence {a;} with N
zeros:

{a, 3% ={—4, 4/3, 4/15, 4/35, 4/63, 0,
0, 0, 0, 4/35, 4/15, 4/3}.

By constructing the associated circulant matrix for this
sequence it can be seen that the wraparound errors in
the benchmark stresses are substantially reduced.

Exploiting the periodicity for repeating geometries.
In this section we see that the FFT can be used to model
an infinitely repeating sequence of excavations such as
those that arise in repeated pillar geometries.

Infinitely repeating mining geometries—analytic sol-
ution and classic replicating kernels. Consider a repeated
pillar situation modelled by an infinite sequence of
crack-like excavations with spacing 2L, each having a
span of 2/ and subjected to a boundary traction
p(x)=p = constant. In this case the analytic solution
[analogous to (17¢)] is as follows [15]:

Ux)= 271;8 oosh“[oos(-;%) / cos(%)]. (25)

In the case of an infinitely repeating crack-like
excavation, the discretized equation (47) is of the form:

i Gyl =Jo

LT

- - (26)

o »XT R £
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Let the geometry.repeat itself after N meshpoints so
that , v =u,. Now, making use of the identity
22 0 0.=Z% o Zi.1Q,_,n (Which applies for any
infinite sum) and the N-periodicity of u,, we can rewrite
(26a) in the following form:

N © N .
f;|= z um{”-z_ an+pN—m}= gl [ Sy Ao )

where «, is the aliased or replicating kernel defined by
0y =Z5 _uspn- Thus we can reduce the infinite
problem (26a) to a finite one in which the replicating
kernel a, represents the stresses generated by an infinite
array of DDs of unit magnitude. This sum can be
evaluated analytically [16, 17] to yield:

L 1
“= L GipNyol

_ nsinn/N
T Nsinn(n —1)/Nsinz(n + /N’

(26b)

’

We note that as the length N of the period becomes
larger, the influence of the periodically repeated DDs
becomes less so that:

N-x ] 1/n\? 0 1 \ ¥~
an—nz—_%‘f'g-ﬁ + F-——»a,,.

Generating replicating kernels by means of the FFT.
In this section we demonstrate how discretizations
based on generating kernels in the frequency domain
using the FFT naturally lead to aliased or replicating
kernels. For the purposes of this demonstration
we consider the point kernel (19), however, the same
results apply to any of the filtered kernels discussed
above.

Let us review in detail the procedure followed to arrive
at the point kernel approach:

Step 1. Analytic calculation of the Fourier transform:
1 fm o
K(x) =‘—x—|z—> K(w)=—rn|w|.

Step 2. Approximate K(x) by a function k(x,) having
a periodically repeating FT. We build k(x,)
by assuming £(w)= —n|w| for —n/A<w®
<x/A and k(w + 2n/A) = k(). Making use
of the inversion formula (4b) we obtain:

=/A
k(x) = j ]| explion,) 22
_xA 2n

_ n? sin’(nn/2)
=277 (n)2y (@72)

and by the formula (4a) we have:

g=-®

L E@=4-F kxexp(—iok,). " @Tb)

Step 3. Use the FFT to determine the approximate
kernel x,. We arrive at the kernel x, by
sampling k(w) at the N discrete frequencies
w,=2nn|NA:n=0,...,N—1:

K, = Nil‘f(m,,)exp(hinp/N )
n=0

-5 {A 5 k(x,)exp(—Zninq/N)}

n=0 g=—®

x exp(2ninp[N) .

o N-1
- § kool T expzninto —gm}

q=-o

= 3 kGpea) @8)

q= -

where the identity (7b) has been used.

From (28) we see that the kernel x, generated by the FFT
is just the aliased version of the discrete kernel k(x,)
given in (27a). Thus the FFT can be used to generate
a set of aliased or replicating kernels automatically by
sampling, at a finite number of frequencies, the continu-
ous FT of the kernels that are to be replicated. We note
that in the derivation of (28) none of the detailed prop-
erties of the kernel k(x,) used in this illustration were
used so that (28) applies to all such kernels generated by
sampling the continuous FT (e.g. the filtered kernels
discussed above).

In Fig. 8a we plot the kernels a, =a}_,=a,, , and
k, for the case N = 8. Even for this small value of N we
note that «, ~a,. In Fig. 8b we plot the approximate
DD distribution using: the aliased point kernel [i.e. using
K, given in (28)] and aliased piecewise constant kernels
[i.e. using a, given in (26b)]. In addition we plot the
analytic solution (25) in the infinitely repeating case
as well as the analytic solution (17c) for an isolated
crack-like excavation.

. ALIASED KERNELS
2
.
1+
T o 3 i 3 H M
E
I o4
H
£ 2 Legend
= X - ASased kemels a,
¢ - FFT aliased point kemels xp
-3 + - piecewise constant kemels af,
4
-5
] 1 2 3 4 s 6 7
distance from seading point

. Fig 8a. The spatial representation for the case N =8 of the piecewise

constant aliased kernels «, [see (26b)], the point Fourier aliased kernels
x, fsee (28)], and_for comparison the isolated symmetric piecewise
comstant kernels- a;. Even for this small value of N we note that -

w,xa,. -
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Fig. 8b. The analytic solution (25) in the infinitely repeating case as

well as the analytic solution (17c) for an isolated crack-like excavation

as well as the approximate DD distributions using: the aliased point

kernel (i.e. using x, given in (28)) and aliased piecewise constant kernels
(i.e. using «, given in (26b)).

Generating non-replicating kernels in the frequency
domain. Since the frequency domain preparation of
the kernels automatically constructs replicating ker-
nels, it is natural to try to generate the kernels k(x,)
in the frequency domain (as opposed to the replicating
kernels x,). This situation would arise if we wished
to model a single crack-like excavation and therefore
needed to suppress the replication property of the
FFT.

In essence we are trying to find the FFT for the
kernels we would obtain by enlarging the sequence k(x,)
[see (27a)] to the sequence k’(x,) = k(x_y) =k’ (Xespn)
=k(x,) and proceeding as in “Avoiding the periodic
assumption”. Since the kernels k(x,) are derived from
special solutions of the equilibrium equations (see
the second section), the stresses generated throughout
the elastic body of the elemental DD should balance.
As a particular consequence of this, the kernel k(x,)
should self-equilibrate on the interval —o0 <n < 00,
ie. IX _ok(x)=0. As discussed previously, self-
equilibration is ensured by the condition that k(w =0)
= 0. Since the replicating kernel k, represents the infinite
superposition of the periodically repeated influences
k(x4 v ) according to (28), it follows that the replicating
kernels should self-equilibrate within one period i.e.:

N-1 N=1 ©

f= 3 K= Y { 5 k(x,+,~)}=o. @)
n=0 p=0 (g=-x

In contrast, the extended kernels k’(x,) do not self-

equilibrate within a single period. In fact:

B='S key=— T kE)#0.  (30)
iai>N2

n=0

This distinction between the replicating kernels x, and the
non-replicating kernels k’(x,) can be used to generate
the non-replicating kernels in the frequency domain. In
_particular, by constraining the lowest Fourier amplitude

Ej to be equal to the tail —X,; yzk(x,) and letting
' = —mjw,;n=1,..., N —1 we can prepare the non-
replicating kernels k’(x,) in the frequency domain and

can, therefore, model isolate crack-like excavations.

EFFICIENT SOLUTION OF DISCRETIZED
EQUATIONS

The u%lgebraic equations to be solved

In this section we consider the efficient solution of the
algebraic equations of the form:

Au=f+o(u), _ @31

which arise from a discretization of (17a) such as (17b).
Here u contains the DD components, 4 is the influence
matrix, f are the imposed tractions and o(u) are the
(in general non-linear) material reactions within the DD
elements. Practical situations in which non-linear
material reactions occur include modelling the effect of
backfill after mining and modelling a soft seam ahead
of a tabular excavation. .

In this section we discuss two iterative algorithms that
can be used to solve the algebraic equations (31)
efficiently. The first scheme exploits the fact that with the
aid of the FFT we have a close approximation to the
eigenvalues of the matrix 4. This information enables us
to construct, in the frequency domain, an approximate
inverse for 4 in O(N log N) operations which greatly
enhances the speed of the calculation. In fact the number
of iterations required to arrive at a solution remains
almost constant so that the asymptotic operation count
for the method is O (N log N). This algorithm does, how-
ever, require the storage of three additional vectors, each
as large as the solution vector », which are not required
by more traditional iterative methods such as the Jacobi
method. This additional storage requirement may in some
cases limit the number of degrees of freedom that can be
used in the model.

The second method is an enhancement of the Jacobi
iteration in which near-neighbour influences to the one
being adjusted are altered to reflect the back influence
of those neighbours at the mext iteration step. This
approach results in improved efficiency with virtually no
additional memory requirements.

bad

The spectrally preconditioned igate gradient

Recently there has been considerable interest in the
use of preconditioned conjugate gradient algorithms
to solve systems of algebraic equations using incomplete
factorizations of A [18,19] and using circulant pre-
conditioners for matrices with the Toeplitz structure [20].
The spectral preconditioner we advocate is constructed
from the inverse of the extended matrix 4’ which is used
to calculate the convolution products in the iteration pro-
cess by means of the FFT. Since we use the same kernel
matrix 4° this preconditioner has the advantage that no
additional memory is required. The preconditioner is
constructed in the frequency domain so that the precon-
ditioning calculation only takes O(N log N) additional
operations. -
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The preconditioned conjugate gradient (PCG) method 7

Assume that we are only considering a linear problem

so that g(u) =0. In this case the PCG algorithm can be
stated as follows:

(i) Initialization:
Given yu, (the initial guess)
Solve Czy= (f — Auy) =ry
ay=2z;

(ii) for k =1 to N:

Ue=1th_y+ 0 dp_)

i1
where «,_, = m s (32a)
re=re_ —o_Adp_ |, (32b)
Solve Cz,=ry, (32¢)
=2z, + B 1d s
where f._, = -%. (32d)

Here the matrix C is the preconditioner and can-be
regarded as an approximate inverse of 4. For Jacobi-like
iteration, preconditioning can be expressed in the form:

=+ C7'(f — Ay ). (33)
For the preconditioned method (33) the convergence
depends on the extreme eigenvalues of (I — C~'4). Since
C-'~ A~', many of the eigenvalues of (I — C~'4) are
close to zero, but some may be larger in magnitude
than 1, in which case the scheme (33) will diverge.
The convergence of the PCG method on the other hand
depends on the distribution of all the eigenvalues of
C'A and not exclusively on the extremal eigenvalues.
Moreover, it can be shown that the PCG scheme (32)
converges particularly rapidly when all (or a large
number) of the eigenvalues of C~'A4 are clustered. In
addition, the PCG method does not diverge if the
extremal eigenvalues are larger than 1.

Note that the iterative scheme (32) only involves one
multiplication of the form Ad so that relatively little
additional computation is required provided that C can
be inverted rapidly.

Constructing the spectral preconditioner C~'. The
question which naturally arises in the context of the FFT
approach to solving (31) is whether it is possible to invert
A directly in the frequency domain i.c.:

4,=11/4,. G4
Unfortunately this is not possible since 4 has to be
extended (see “Avoiding the periodic assumption”) to a
larger matrix A4’ in order that the periodicity assumption

) imposed by the FFT does not alter the original equations

(31). However, iteration with the extended matrix 4" is
possible since by padding u with zeros to give u’ it is
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- possible to use the FFT to calculate the required matrix
products Au efficiently. Since f; is not known, direct
inversion by means of (34) is not possible. However, we
use A’ to construct an approximate inverse in the
frequency domain.

The sequence of preconditioning steps [see (32¢)] in
O(N log N) operations is:

(1) Extend r,=[r; r, ry r,J" to
ri=[00r r,rr 00"
(2) Calculate the FT of r;:r;j Fre
(3) Evaluate z;:
f=F/A,,
2y =FT7Z] 23 25 23 25 2§ 23 5},
7=z} 2} 25 z]§. (335)
Notes:

e A preconditioner can be constructed for any sub-
region by merely filling/overlaying with zeros that
part of r, which we do not wish to iterate. (e.g. if we
only wished to iterate the components u, and u, in
(5) then we would choose r;=[0 0 r, r, 0 0 0 O]
and proceed with steps (1-3) above.]

o We see that there is some “leaking” in that the
values z{, z3,z3 and zg are not all zero. However,
there is enough information in the remaining 2’
components to provide a good preconditioner.

Enhanced Jacobi iteration

We now consider an enhancement of Jacobi iteration
in which the update at any one point is made to
anticipate the changes that will take place at neighbour-
ing points in subsequent iteration steps. Consider the
standard Jacobi iteration scheme for the linear version
of (31) [i.e. o(u) = 0] expressed in component form:

N

Oty = Uy 41 — Uge = AE'(ﬁ_ > Aii“j.k)
j=1

— iy, (36a)

where u,;, denotes the ith component of u at the kth
iteration. The solution value u , , at the next iteration
step is then of the form:

N
Upyr = Uy + A" [ﬁ - Zl A+ 5"/})]
=

N
=u,+ 6uu+A,«,T'|:ru— Z‘ A,',véu,»ﬁ],
/-

or

N A;
Uppyr = Uy + AF'(";.& -2 ;i—’ r,,). (36b)
j=t i

J#i

We have, therefore, expressed-the solution after twe
Jacobi iterations'in terms of the residuals of the first step.




Table 1

Jacobi algorithm
N 16 32 64 128 256 512 1024 2048 4096
No. of iterations 52 108 o] 457 940 1929 3957 8112 —
Time (sec) (spatial) 31 239 1902 1.5E4 — — — — —
Time (sec) (FFT) 4.7 13 46 177 736 3034 1.3E4 5.3E4 -
Enhanced Jacobi algorithm (2 neighbours)
N 16 32 64 128 256 512 1024 2048 4096
No. of jterations 31 66 137 283 583 1198 2458 5037 —_
Time (sec) (FFT) 36 10.3 33 125 513 2118 8725 3.6E4 —
Standard conjugate gradient algorithm
N 16 32 64 128 256 512 1024 2048 4096
No. of iterations 5 9 15 22 32 47 68 98 141
Time (sec) (FFT) 2.0 26 6.5 16.8 494 145 418 1227 3650
Spectrally preconditioned conjugate gradient algorithm
N 16 32 64 128 256 512 1024 2048 4096
No. of iterations 4 4 5 5 5 6 6 6 6
Time (sec) (FFT) 1.1 15 25 43 8.4 19.1 38.5 710 158

Equation (36b) itself does not provide any saving in com-
putational effort. However, since the matrix elements A
decay rapidly away from the diagonal it is possible to
arrive at a close approximation to u;,, by restricting
the sum in (36b) to only near-neighbour influences. The
approximate scheme then becomes:

"i,nzz“u"‘AEl(’u" Y % j.k)’ (36¢c)
jex i

where A" is the set of indices of the near-neighbours.

We note that the enhanced Jacobi scheme (36¢) is
of the same form as that in (36a) but the residual r;; at
point i has been adjusted by a weighted average of the
residuals of its neighbours. Since the summation in (36c)
only involves the near-neighbours there is virtually no
additional cost involved. Apart from obtaining roughly
“two iterations for the price of one” for this linear prob-
lem, the enhanced Jacobi scheme (36¢) is particularly
useful in 2 non-linear environment. For the fully non-
linear problem (31), the standard Jacobi method has the
property that neighbouring elements can interact strongly
with one another causing overdamped behaviour in
some situations and underdamped behaviour in others.
By using the neighbour-weighted residuals the iteration
scheme anticipates this strong neighbour interaction and
inhibits the undesirable situation in which there is simul-
taneous failure of rock in a number of adjacent elements.

Numerical results

We compare the performance of the algorithms
described in the previous two subsections with that of the
standard Jacobi algorithm. Since the extension of these
novel algorithms to non-linear problems is still under
investigation, we restrict this comparison to a linear
crack model [i.e. o(x) =0 in (31)]. One of the primary
motivations for the use of the FFT was to improve the
speed of calculation of the expensive of convolution
products that are required when modelling extensive
regions of plastic strain by the BE technique. We therefore
also-consider a non-linear crack model [i.e. o(u) # 0 in
(31)] and demonstrate the improvement in performance
achieved by using the FFT over a spatially implemented

algorithm. All the run times quoted in this section were
obtained using 2 Macintosh IIcx computer.

A linear crack problem. In Table 1 run times and
iteration performances of Jacobi, enhanced Jacobi,
standard CG and PCG are compared for a problem with
a single crack. The parameters for the crack are: / = 256,
p =60 MPa, E =70,000MPa and v =0.2 while the
stopping criterion used for all the runs was that the
L,-norm of the residual stress was less than 10~>MPa
(ie. |71, <107%). The parameter N refers to the
number of degrees of freedom for the crack problem.
In Fig. 9 we plot log,(T) vs log,(N) where T is the run
time quoted in Table 1. In order to determine a measure
of the asymptotic (i.e. large N) performance of each of

PERFORMANCE OF CRACK ITERATIVE SCHEMES

Jacobi with spatial convolution tgradient =3)

Jacobi with FFT convolution (gradient=2.05)

Enhanced Jacobi with FFT convokuton (gradiens-205)
‘Standard CG with FFT convolsion (gradlent=1.55)
Spectral PCG (gradients1.02)

H

log ,(M

8 10 12 14

N
>
@

log M)
2

Fig. 9. A log-log plot of the execution time T vs the number N of
degrees of freedom for the crack problem of Table 1. The asymptotic
performance of the Jacobi, enhanced Jacobi, dard conj
gradieat and the preconditioned conjugate gradient algorithms can be
seen from the gradients of the graphs. }
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TWO CRACKS MINED IN A PLASTIC SEAM

02

with the solution to the elastic two-crack model (i.e. with-

Legent | out the plastic seam). As is to be expected the presence of

o1 e o the plastic seam increases DD components of the cracks.

016 kY ’ 1 In Table 2 the required number of Jacobi iterations are

014 given and the run time performances of the spatial and

on FFT convolution algorithms are compared. As was the
£ o1 case with the linear crack model, the spatial convolution
§ ) ] algorithm requires O(N*) operations while the FFT con-
g 0o volution procedures reduces the number of operations to

0061 O(N?log N).

0.04

oz § CONCLUSIONS

. E— 100 150 200 250 300

distance (m)

Fig. 10. The DD distribution for two crack-like excavations mined in

a plastic scam which is embedded in an elastic medium. For the

purposes of comparison, the elastic DD distribution is also plotted for

two similar cracks that are mined in a homogeneous elastic body
subjected to the same level of virgin stress.

the algorithms, the gradients quoted in this figure refer
to the gradient of the line fitted to the last three points
of each graph. We observe that the number of operations
for the Jacobi algorithm using spatial convolutions
grows as O(N?) while this is reduced to O(N?log N)
if the FFT is used to perform the convolutions. The
enhanced Jacobi method with only weighting from the
two nearest neighbours is also an O(N?log N) algorithm
but with a somewhat improved operation constant.
We notice from Table 1 that the enhanced Jacobi
method roughly halves the number of iterations required
by the standard Jacobi method, but this improvement
is not realized in the run times because of the additional
computational burden of calculating the weighted
residuals. The standard conjugate gradient algorithm
using FFT convolutions reduces the operation count
to roughly O(N*?log N). From Fig. 9 we see that the
asymptotic performance of the spectral PCG algorithm
is O(N log N)—the number of operationsit takes to per-
form a single iteration using the FFT. This is confirmed
by the almost constant number of PCG iterations seen
in Table 1.

A non-linear crack model. We consider two crack-like
excavations each have a span of 2/ = 64 m and separated
by a distance of 32 m to be mined in a perfectly plastic
seam which is embedded in an otherwise elastic medium.
Other run parameters are as follows: the virgin stress level
is p = 60 MPa; the elastic constants are E = 70,000 MPa
and v =0.2; the yield strength of the plastic seam is
Y =100 MPa. The stopping criterion used for all the
runs was that firfl,=1/—Au+ o)}, <107%). The
standard Jacobi algorithm was used to solve the
equations as outlined in Fig. 5. In Fig. 10 the DD
distribution for the two-crack plastic model is compared

We have introduced a novel spectral method based on
the FFT for solving boundary integral equations in-
corporating the effect of non-linear material behaviour.
This new method can be used for direct and indirect BE
formulations in both 2- and 3-D. Indeed the spectral BE
technique can be implemented relatively easily in existing
BE codes designed to model regular geometries such as
planar excavations in 3-D. The computational advantages
offered by the spectral BE approach could make the
BE method a viable competitor to finite difference and
finite element methods for modelling extensive regions
of volumetric damage.

We have discussed the mathematical properties of this
method which we have illustrated by means of a simple
model problem. We have demonstrated that the spectral
boundary element technique provides a whole new frame-
work for volumetric modelling with easy access to a
number of interesting features not available to spatially
implemented algorithms. These new features include:

i. Efficient evaluation of convolution products in
O(N log N) operations compared to the O(N?)
operations required by algorithm based on direct
spatial convolution. This feature not only acceler-
ates solution times but can also be used to evaluate
benchmark stresses and displacments in O(N log N)
operations.

2. A fundamental set of point Fourier kernels from
which a variety of approximation schemes (includ-
ing the standard piecewise polynomial approxim-
ations) can be constructed in the frequency domain
by introducing high-frequency filters. The frequency
domain implementation of these approximation
schemes avoids the tedious integrations associated
with spatial discretizations of the integral equations
and provides considerable flexibility for general
purpose user-defined approximation schemes.

. The FFT can be exploited to model periodically
repeating mining geometries—such as those which
occur in rib-pillar mining situations. We have also
considered techniques that can be used to over-

(7]

- Time (sec) FFT convolution -

Table 2. Performance of Jacobi scheme %or two-crack plastic seam model

N 16 32 64 - 128
No. of iterations 65 126 246 471
Timé (sec) spatiat-convolution 4?2 287 2127 15,993

8.2 214 68 234 -
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come the periodicity constraint imposed by the
FFT so that general non-repeating geometries can
be modelled.

4. Two novel iterative methods to solve the discret-
ized BE equations efficiently. The first method uses
the information provided by the FFT to construct
an approximate inverse extremely efficient for use
in a preconditioned conjugate gradient algorithm.
This method [combined with the O(N log N) speed
of the FFT for evaluating convolution products]
can reduce the operation count for solution of
the discretized problem from O(N°) to O(N log N )
operations. One of the disadvantages of the spec-
trally preconditioned conjugate gradient method
is that it requires three times more memory than
that required by the standard Jacobi scheme. For
large problems (particularly in 3-D) the additional
memory that would be required could severely limit
the number of degrees of freedom in the model. We
therefore also considered a simple enhancement
of the Jacobi iteration technique which does not
require any additional memory and requires only
a little extra computational effort. The enhanced
Jacobi iteration can roughly double the converg-
ence rate for linear problems and inhibits undesir-
able simultaneous failure of neighbouring elements
when modelling brittle rock fracture.

Our objective in this paper has been to present the
spectral boundary element algorithm and explore some
of its properties. Rather than being exhaustive, this
paper opens up a number of avenues of further research
including: a rigorous error analysis of the various
approximations introduced by filtering; the accuracy
of the higher order filters when modeiling non-linear
material behaviour over large volumes of rock; the per-
formance and robustness of the spectrally preconditioned
conjugate gradient algorithm for a variety of non-linear
material models; the extension of the spectral boundary
element method to include irregular geometries; and an
assessment of the relative accuracy and efficiency when
compared with existing algorithms such as the finite
difference and finite element methods.
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APPENDIX A

Potential Representations of the BE kernels

From equations (1a) and (1b) it can be seen that four fundamental
influence kerxels operate on the stress and displacement discontinuity
densities to yield exp for the displ: and stresses at any
point in the medium. Equation (1a) is derived by considering a point
force with components ¢, (p) to operate at point p in a region B
bounded by the surface 4B as shown in Fig. 1.

The inward normal to the surface at point g has components n,(g).
The displacement vector arising at point g due to the point force
applied at pefnt p is given by Kelvin's solution for an isotropic elastic
medium which can be represented in the form:

u;(9) = 2@, P e (P)

where summation over repeated subscripts is assumed. The stress
components at point ¢ arc given by Hooke's Law:

(Aan

@)= E [ 2 s , ,
«,(q )] 1_2'7,14,,_+u,_,+u” .-
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Here commas are used to denote derivatives with respect to the
coordinate components ¢;. The stress components at g due to the point
force at p can be written symbolically as:

0(a) = G(gy: Pe)er(p)- A2)

In (A1) and (A2) the vector and tensor indices are associated explicitly
with the points g and p, following the notation convention adopted by
Jaswon and Symm [21]. Now postulate two equilibrated displacement
and stress fields ,, o, and &, &, associated, respectively, with the inner
and outer regions B and B depicted in Fig. 1. By applying Betti’s
reciprocal theorem to the di pl and tracti p uy,
oy, coupled in turn to each postulated field, it is possible to formulate
two independent integral relations. Taking the difference between these
two relations yields equation (1a) for the displacement at point p in
terms of the jumps in the traction vector and displacement vector
across surface 9B at all points ¢ of this surface. The tractions and
displacement jumps are defined to be:

Traction discontinuity:

T(q) =[6,49) — o, (@)n(a)- (A3)
Displacement discontinuity:
D,(g) =d(q) — ulq)- (Ad)

The infloence functions y(g,, py) and I'(gy, Pu) in (1b) are derived by -

substituting (la) into Hooke’s Law. It can be scen that once the
fundamental solution (Al) is known, all the influence functions
G(gy» i) 71 Pw) 2nd T'(g;,pu) can be deduced by appropriate
derivative operations at points ¢ and p. Hence, defining the distance
r between points ¢ and p by:

rr=(g;—p)4a:—P) (AS)

and noting that dr/dg, = (g,— p.)r, it is possible to write explicit
relations for the influence functions in the following forms:

IED NN PR
x(q.-,p.)—hE(l_v)'[(B 4v)oy + 3q,-éqk]' (AS)

1 ér
Glg; Pi) = m[ﬂ - 2V)<5y§q—.

ar ér ar ér or
BRI JA TS s @n
“oq X vq.») ﬁqmq,aqk]

1 or
- —2) -6, —
¥(qis Prat) 8l —v)rz[(l v)( Sy 7,

or or ér or or
48— +0y— | +3——= | (A8)
* g, '54.) &g, 09, ﬂq;]

E

- m[-(( —4v)3; 8y

+(1 = 2v) (84 8+ 85 8,) +3(1 = 2v)

ér or or ar
x| byt Oy |+ 3V
( ¥ 2q,0q; ¥ dq, a‘lk)

x(zS ar 6r+ or 6r+ or or
*aqjaql ‘laq/a% ’a‘ha‘ll

ar or

by |- 1575 |- A9,
%, am) 34,34,79.59, 9

In zamerical applications in which the boundary surface 98 is
divided into “elements™ and the influence functions are evaluated with
specific shape functions applied to the traction and displacement
discorsinuity densities, it is ient to express equations (A6)-(A9)
in alternative forms. These can be expressed succinctly in terms of the
derivezives of a biharmonic function ¥ and 2 harmonic function ¢ and
are pasticularly appropriate for the derivations of the.transformed
kernels discussed in the present paper. Also by a suitable choice of ¥
and ¢ the kernels ean be expressed in the same form in 3-D as well .
as 2-D plane strain. "7

ar or ér 6r]

In particular, the fundamental solution to the biharmonic equation
V¥ =0 is given by:

¥=r (A10)

By ly differentiating this fu with respect to the
coordinate components g, it can be shown that:

o _(@—p)

M et @11
ar or
P ,= —_]r,
-y (6,, o /r (A1)
or or ér or or or
P G LAY A —+3————)/r1, Al3
- ( voa ke ey aagan)| AP

or or or or or or or or
L | e Tt X T sty ' nic
" [(”3‘11:3‘1: % 30,00, *3q,0q, " 0q,0a:

dr or or or
LAY i WP I N 39 Y
*oaoa "641:64,) 10— ondu=Ouy

or dr or or

— 15 [r. (Al4)
0q, 0,04, aq/] /

Similarly, the fundamental solution of Laplace’s equation is the
harmonic potential: -

1 1
=-=i¥ Al
e=-=1%, (ALS)

Taking derivatives of @ with respect to the coordinate components
at point g, it can be shown that:

a1 ar
=)= 419

or or
& =3 ———5,])/r (A1)
4 ( 34,04, ”)/

Substituting equations (A11-A14), (A16) and (A17) into expressions
(A6-A9) for the influence kernels, it is possible to replace all
derivatives of r with respect to the components g; by terms containing
the harmonic and biharmonic functions & and ¥ and their derivatives
with respect to g;. Specifically,

1+v

g@ip)= ?xE—(l———T)[«I — )Py — "'.ul: (A18)

1
Gy Pe) = m[-‘",ﬂ + 2080

FAL—v) (6P, + 540 )] (AL9)

1
79 Pu) = m[?_‘,— 6,9,

— 21 —v)(Gu®,+ 5,0 (A20)
E
gy p) = gror oy =2 Gu®+ 5y®,u)

— (= 7) Gy B+ Be® g+ 85D+ 5,0 ). (A21)

Two-dimensional plane strain potential functions

It is possible to use equation (ALS) to write these expressions in
terms of fourth-order derivatives of ¥ only. However, it can also be -
shown that the form of equations (A18-A21) can be retained in the
special case of planc strain elasticity if the following 2-D p ial
functions are used:

- C P =lei-rlogr), - - (A22)

T p=clogrt - a5y




In this case r is the d in two-d ions b points p and
g and all component indices range over 1 and 2. Particular derivatives
of ¥ and @ are:

20r

¥,=—(g—plogry D= —;B_q,
(‘II—PI)(‘]/"P,').
r? ’

@,=—5,logr:—2

26, 4dror
P o=y 4
& r + r?dg;dq; (A2
In particular, it should be noted that ¥ ;=2¢ —2 in contrast to
equation (A15). The 2-D plane strain line force solution corresponding
to Kelvin's solution is:

1+v 1 ar or
8@np) = TE(I__)I:(B 4v)0, ]°l( )+a—a—qj (A25)

and the equivalence to equations (A18-A21) may be confirmed by
substituting appropriate derivatives of the form (A24) into equation
(A25) and repeatedly applying Hooke’s law to the components of
points g and p.

APPENDIX B

Fourier Transforms of the BE Kernels

Since the FTs of the 2-D kernels can be obtained from the FTs of
the 3-D kernels by setting w, = 0 we only present the FTs for the 3-D
kernels.

Fourier transfo of the h ic and bih i ial:
Making use of (3c) we obtain:

$(w)= l.ix:x J. exp[—i{w 1) —er)r—tdr
0+ J o

© (2 fr 4;
= lim -[ f J‘ exp(—ipr cos ¢ —er)r sin ¢ dr d9d¢=—7:
o Jo Jo 14

(—04

and similarly with the biharmonic potential:

¥ (w)= lm J exp[—i(w ) —er)r dl;‘
=0+ B

o f2x fx
= lim J J’ f exp(—ipr cos ¢ — er)r’sin ¢ dr d8 d¢
o Jo 0

04

where r=(q,—p,, 8~ P2, 93— p3), 7 =}r| and p = Jo]+ 0l + 0}
A more rigorous derivation of these results can also be achieved using
the theory of tempered distributions (see for ie Ref. [22]).

Fourier transforms of the fundamental kernels

We now make use of property (FT Pl) of the FT to take the
appropriate derivatives of these potential functions to obtain:

o= Fi 2= s 0 0i)
Gu= ﬁ [~ w0, + 60,07 + (1 = v) (G0, 4 84 0)p°],
Yar = (—:;)_‘[ o, w,w,+ voyw,p? + (1 - v)(Su 0+ é,w,)p’]
Fuy= = E o [ w + 2v(5, 0,0, + 8,0, )

+ (1 = ¥) (0 00, + 8y, + 8 0,00, + Sy00,0,)
~ 208, 8up* — (1 = v) (84 6+ 0s 5,,)91],

where the constant term —2v5; 6y, ~ (1 — v)(04 6, + 8z 6;) has been
added to ensure that the stresses self-equilibrate.
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