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A B S T R A C T

In this paper we describe the post injection deflation dynamics of a radially symmetric hydraulic
fracture in a permeable elastic medium. Depending on the parameters of the problem, the
fracture may arrest almost immediately after injection has ceased, or continue to propagate
despite the fluid loss to the porous medium. After arrest the fracture continues to deflate while
the stress intensity factor decreases to zero, after which it recedes until the fracture finally
collapses. In order to establish rigorous numerical solutions to explore this deflation dynamics,
we make use of recent research (Peirce and Detournay, 2021) that derived vertex asymptotes for
the arrest and recession phases of the deflation process as well as multiscale asymptotic solutions
that connect these vertex asymptotes: during arrest, through the arrest–recession transition, and
during recession. If only vertex asymptotes are used to capture the arrest and recession, the
solution exhibits jump discontinuities through this arrest–recession transition point. We describe
how the multiscale asymptotes can be used to obtain a smooth solution valid through the
arrest–recession transition. Significantly, after the arrest–recession transition, the jump-induced
transients decay and the solutions using vertex asymptotes converge to those that use multiscale
asymptotes. Thus unless it is important to obtain a smooth solution through the arrest–recession
transition, a practical, and more efficient, approach would be to use an algorithm based solely
on vertex asymptotes. We also provide numerical confirmation of the emergence, beyond the
arrest–recession transition time, of the dominant balance used in the asymptotic analysis to
establish the linear recession asymptote �̂� ∼ �̂�. We present a novel scaling analysis to establish
the characteristic power laws for the arrest time, arrest radius, arrest aperture, and the deflation
time, in terms of two new dimensionless parameters, which make it possible to unify the power
laws between the zero and finite toughness cases. These power laws show close agreement
with those obtained by regression of the numerical results over a range of the dimensionless
parameters. Numerical solutions are provided to illustrate the solution landscape in parameter
space and the effect that each of the dimensionless parameters has on: the duration of the
period of propagation after injection has ceased, the duration of the arrest period, and the time
from the initiation of recession to collapse.

. Introduction

Hydraulic fractures occur naturally during ice calving events in glaciers, the sudden draining of glacial lakes, the formation of
agma-driven dykes and sills, and the failure of dams. Hydraulic fractures are also engineered by injecting a viscous fluid into

ock to increase hydro-carbon recovery, for enhanced geothermal energy production, to remediate and dispose of waste water, for
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preconditioning and cave inducement in mining operations, and, at a smaller scale, to generate miniature hydraulic fractures that are
propagated and then allowed to recede in order to measure the leak-off coefficient or to identify the closure pressure to determine
the minimum in situ stress 𝜎0. Once injection is stopped the wellbore is shut-in by closing a valve, or the fracture is allowed to bleed
causing flow-back of fluid into the wellbore, or fluid is actively pumped from the wellbore. In this paper we consider the deflation
dynamics of a radial hydraulic fracture as it leaks fluid to the porous medium after shut-in. After shut-in, depending on the various
parameters characterizing the system, including those controlling the fluid leak-off and the volume of injected fluid in the fracture
at the time of shut-in, the hydraulic fracture may arrest almost immediately or may continue to propagate while the fluid pressure
adjusts to the change in boundary condition at the wellbore. After arrest the fracture may continue to deflate without altering its
footprint while the stress intensity factor decreases to zero. Once the stress intensity factor is zero the fracture starts to recede until
the point of collapse.

Over the last five decades considerable research has been dedicated to building accurate models of propagating hydraulic
fractures with the primary objective being to determine the fracture footprint at shut-in. Because of their one dimensional structure
plane strain and radially symmetric models of hydraulic fracture dynamics have always played a central role in the pursuit of
theoretical developments and analytic solutions. Since the formulation of some of the early models of hydraulic fractures propagating
in a state of plane strain (see e.g. Khristianovic and Zheltov (1955)) there has been considerable progress in the development
of models of hydraulic fracture propagation. The seminal paper by Spence and Sharp (1985) on self-similar solutions and the
landmark paper (Desroches et al., 1994) identifying the tip asymptotics of viscosity dominated hydraulic fracture propagation
stimulated intense research into the study of the tip asymptotics (Garagash and Detournay, 2000; Garagash, 2006; Detournay, 2004;
Adachi and Detournay, 2008; Detournay, 2016) and analytic solutions (Savitski and Detournay, 2002; Dontsov, 2016, 2017) for
ydraulic fracture propagation over the subsequent two decades. Radial hydraulic fracture solutions have been particularly useful
n benchmarking numerical algorithms (Savitski and Detournay, 2002; Dontsov, 2016; Lecampion et al., 2013) and the provision of
tarting solutions for these algorithms on a scale that is sufficiently small to ensure that the conditions can be assumed to be locally
sotropic. A milestone in the success of this analytic work was the precise confirmation of the viscous and toughness dominated
adial analytic solutions in laboratory experiments on translucent solids (Bunger and Detournay, 2008). Because of the importance
f the behaviour of the solution in the tip region, it transpired that the tip asymptotic solutions also provide an extremely useful
ool to develop numerical algorithms that can provide highly accurate solutions on extremely coarse meshes (Peirce and Detournay,
008). Indeed, the efficacy of this approach was clearly demonstrated in a collaborative study that evaluated a number of numerical
lgorithms (Lecampion et al., 2013) and benchmarked their relative accuracy against an analytic solution and compared their relative
fficiency. This approach has been further developed (Madyarova, 2003; Peirce, 2015; Dontsov and Peirce, 2017) to incorporate
ultiscale tip asymptotics (Garagash et al., 2011; Dontsov and Peirce, 2015) associated with the competition between multiple
hysical processes that may be active at the fracture tip.

In contrast to the significant progress made in the modelling of propagating hydraulic fractures, there has, to our knowledge,
een very little development of rigorous models of deflating hydraulic fractures both at arrest and during recession. Indeed, even
he propagation of radial hydraulic fractures after shut-in has only recently been subjected to rigorous study (Mori and Lecampion,
021). Existing models of hydraulic fracture recession have been purely numerical and based on implementing a minimum aperture
onstraint (Desroches and Thiercelin, 1993; Adachi et al., 2007; McClure and Horne, 2013; Mohammadnejad and Andrade, 2016;
anganeh et al., 2017), whose arbitrarily chosen magnitude can affect the solution. Though laboratory experiments have reported
urther propagation after shut-in and recession after arrest, they are not sufficiently accurate to calibrate these aperture constraint
odels as they rely on monitoring active acoustic emissions to infer the fracture front positions (De Pater et al., 1996; van Dam

t al., 2000). Moreover, due to the absence of a rigorous model of post shut-in arrest and recession, current practice in leak-off
dentification (Economides and Nolte, 2000; Nolte, 1979) assumes that the footprint of the hydraulic fracture during deflation
emains the same as it was at the point of shut-in. There is thus a compelling need for a semi-analytic model that accounts for the
eceding tip asymptotics and captures the deflation dynamics of a hydraulic fracture during arrest and recession. This paper aims to
ddress this issue for the case of a radially symmetric fracture that deflates and recedes due to tip fluid losses to the porous medium.

Recent research on deflating hydraulic fractures (Peirce and Detournay, 2022a) has established the arrest and recession vertex
symptotes as well as the multiscale asymptotic solutions that apply through the arrest–recession transition. In this paper, we detail
pecialized fixed point iterative schemes that are required to implement these multiscale tip asymptotes in numerical models. We
emonstrate that the multiscale asymptotic solutions make it possible to traverse the arrest–recession transition without the jump
iscontinuities that are observed when only vertex asymptotes are used, and that the solutions that use multiscale and vertex
symptotes ultimately converge away from the transition point. Numerical experiments confirm the emergence during recession
f the linear tip behaviour that was established by asymptotic analysis. Mori and Lecampion (2021) established power laws that
haracterize post shut-in arrest, which are different for the zero and finite toughness cases. However, we show that by introducing
wo new dimensionless parameters (the dimensionless shut-in time 𝜔 and the arrest regime parameter 𝜙𝑉 ) it is possible to unify
he scaling laws for the arrest time, the arrest radius, and the arrest aperture, which share the same exponents for both the zero
nd finite toughness cases. We also establish the first scaling law for the deflation time, which is also valid for both zero and finite
oughness cases. Numerical results from a scheme that incorporates the multiscale tip asymptotes are used to confirm the scaling
aws and to explore the impact of the dimensionless parameters 𝜔 and 𝜙𝑉 on the modes of arrest and recession. We also provide a
olution in physical units for a parameter set that might be encountered in the field.

In Section 2, we describe the mathematical model for a radially symmetric fracture that can propagate, deflate, and recede in
porous elastic medium. In Section 3, we describe the tip asymptotic behaviour for propagating hydraulic fractures; describe the
2

multiscale asymptotes for deflating hydraulic fractures through arrest, the arrest–recession transition, and during recession; detail
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Fig. 1. Schematic showing the radial fracture geometry along with the coordinate systems used in the model.

specialized iterative schemes required to implement these multiscale asymptotes in a numerical algorithm; and demonstrate that
the multiscale asymptotes are required to achieve smooth solutions through the arrest–recession transition point. In Section 4, we
present a scaling analysis and introduce the pair of novel dimensionless parameters, which make it possible to unify the power laws
that apply for both zero and finite toughness cases. In Section 5, we present numerical results that use the multiscale asymptotics to
explore the impact of the dimensionless parameters on the time between shut-in and arrest, the duration of arrest, and the elapsed
time from the initiation of arrest to collapse of the fracture. In Section 6, we make some concluding remarks.

2. Mathematical model

The mathematical model describing the dynamics of a fluid driven fracture needs to account for the dominant physical processes
involved, such as: the deformation of the rock due to fracture opening; a mechanism for fracture growth; a description of the
fluid-flow within the fracture; and the leak-off of fluid to the surrounding porous medium. In order that the model is tractable we
make the following simplifying assumptions: the fracture propagates in a linear elastic solid characterized by Young’s modulus 𝐸
and Poisson’s ratio 𝜈; growth of the fracture is assumed to be mode I according to linear elastic fracture mechanics (LEFM) and is
modulated by fracture toughness 𝐾𝐼𝑐 ; fluid-flow within the fracture is assumed to be laminar, follows lubrication theory, and the
fluid is assumed to be incompressible and Newtonian with a dynamic viscosity 𝜇; a uniform far-field stress field 𝜎0 acts normal to
the fracture plane; leak-off is governed by Carter’s model (Carter, 1957) characterized by the leak-off coefficient 𝐶𝐿; we assume
that the fluid and fracture fronts coalesce; and the solid medium is assumed to be homogeneous so that 𝐸, 𝜈, 𝐾𝐼𝑐 , and 𝐶𝐿 are all
constant.

2.1. Governing equations for a radial hydraulic fracture in a permeable medium

Since the solid medium and external stress field are assumed to be homogeneous, the fracture will develop symmetrically about
the injection point. Because there is no angular dependence, the radial coordinate 𝑟 ∈ (0, 𝑅) centred on the injection point completely
defines the planar footprint of the circular fracture of radius 𝑅(𝑡) (see Fig. 1). The primary unknowns in a hydraulic fracture problem
are the fracture aperture 𝑤(𝑟, 𝑡), the fluid pressure 𝑝𝑓 (𝑟, 𝑡) or net pressure 𝑝(𝑟, 𝑡) = 𝑝𝑓 (𝑟, 𝑡) − 𝜎0, and the fracture radius 𝑅(𝑡). The
solution depends on the injection rate 𝑄(𝑡) and the following four alternate material parameters that are introduced to keep formulae
uncluttered by unnecessary constants: the plane strain modulus 𝐸′, the alternate viscosity 𝜇′, the alternate fracture toughness 𝐾 ′,
and the alternate Carter leak-off coefficient 𝐶 ′, defined by

𝐸′ = 𝐸
1 − 𝜈2

, 𝜇′ = 12𝜇, 𝐾 ′ =
( 32
𝜋

)1∕2
𝐾𝐼𝑐 , 𝐶

′ = 2𝐶𝐿 (1)

2.1.1. Elasticity
For a radial fracture with a radius 𝑅 in an infinite, homogeneous, linear elastic solid, the relationship expressing the elastic

equilibrium between the fracture aperture 𝑤 and the imposed net pressure 𝑝, can be represented by an integral equation of the
following form (Hills et al., 1996; Dontsov, 2016):

𝑝(𝑟, 𝑡) = − 𝐸′

2𝜋𝑅(𝑡) ∫

𝑅

0
𝑀( 𝑟

𝑅
, 𝑟

′

𝑅
)
𝜕𝑤(𝑟′, 𝑡)

𝜕𝑟′
𝑑𝑟′ (2)

where the kernel 𝑀 is given by:

𝑀(𝜌, 𝑠) =

⎧

⎪

⎨

⎪

⎩

1
𝜌𝐾( 𝑠

2

𝜌2
) + 𝜌

𝑠2−𝜌2 𝐸( 𝑠
2

𝜌2
), 𝜌 > 𝑠

𝑠
𝑠2−𝜌2 𝐸( 𝑠

2

𝜌2
), 𝜌 < 𝑠

(3)

where 𝐾(.) and 𝐸(.) are complete elliptic integrals of the first and second kind.
3
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Singularity structure of the elasticity kernel 𝑀 and dominant tip behaviour: If we consider source points 𝑠 = 𝜌 ± 𝜀 a small distance 𝜀
ither side of the receiving point 𝜌 and expand the kernel function 𝑀 given in (3), we observe that the dominant behaviour of 𝑀
educes to that of a Cauchy kernel

𝑀(𝜌, 𝜌 ± 𝜀) = ± 1
2𝜀

+ 𝑂(log(𝜀)) ∼ 1
2(𝑠 − 𝜌)

(4)

where the logarithmic and higher order terms will, upon integration over a finite interval, yield results that are finite.
In order to perform a local analysis to determine the behaviour of the solution in the vicinity of the fracture tip, it is convenient

to introduce a new coordinate �̂� = 𝑅(𝑡)−𝑟 located on the moving tip and pointing inwards toward the injection point at the centre of
the fracture (see Fig. 1). If we replace the kernel in (2) by the leading order Cauchy kernel, then the dominant part of the integral is
left invariant under this transformation to the tip coordinate �̂�. To determine the dominant behaviour of the pressure field associated
with an aperture that is a power law when expressed as a function of the distance to the tip, we will make use of the following
integral (Peirce and Detournay, 2022b):

∫

𝑎

0

�̂�𝜅

�̂� − �̂�
𝑑�̂� =

{

−𝜋 cot(𝜋𝜅)�̂�𝜅 + 𝐶, − 1 < 𝜅 ∉ Z+

−�̂�𝜅 log �̂� + 𝐶, 𝜅 ∈ Z+
(5)

where Z+ = {0, 1,…} and 𝐶 signifies that the next term is a constant.

2.1.2. Lubrication
By combining Poiseuille’s law with the continuity equation adapted to account for fluid leak-off, we obtain the lubrication

equation (Savitski and Detournay, 2002) relating 𝑤(𝑟, 𝑡) and 𝑝(𝑟, 𝑡):

𝜕𝑤
𝜕𝑡

= 1
𝜇′𝑟

𝜕
𝜕𝑟

(

𝑟𝑤3 𝜕𝑝
𝜕𝑟

)

− 𝑔(𝑟, 𝑡) +𝑄(𝑡)
𝛿(𝑟)
2𝜋𝑟

(6)

in which 𝑔 is the Carter Leak-off term 𝑔(𝑟, 𝑡) = 𝐶′
√

𝑡−𝑡𝑜(𝑟)
, where 𝑡𝑜(𝑟) denotes the time of first exposure of point 𝑟 to the fracturing

luid. The point source is represented by the 𝛿-function in (6) and we will be considering a propagation phase during which the
luid is injected at a constant rate 𝑄0, followed by a shut-in phase initiated at time 𝑡𝑠, after which there is no further fluid injected
nto the fracture. The source function 𝑄(𝑡) can therefore be written as

𝑄(𝑡) =

{

𝑄𝑜 0 < 𝑡 < 𝑡𝑠
0 𝑡 ≥ 𝑡𝑠

We note that the leak-off term 𝑔, which is singular at the tip during the propagation phase, becomes non-singular immediately
fter arrest, and evolves to a function that is more spatially homogeneous as deflation progresses.
ip lubrication equation Introducing the tip unknowns �̂�(�̂�, 𝑡) and �̂�(�̂�, 𝑡), expressed in terms of the tip coordinate �̂�, the lubrication
quation (6), defined on the interval 0 < �̂� < 𝑅(𝑡), assumes the form:

𝜕�̂�
𝜕𝑡

+ 𝑉 𝜕�̂�
𝜕�̂�

= 1
𝜇′(𝑅 − �̂�)

𝜕
𝜕�̂�

(

(𝑅 − �̂�) �̂�3 𝜕�̂�
𝜕�̂�

)

− �̂� (7)

where 𝑉 = �̇� is the velocity of the tip.

2.1.3. Initial, boundary, and propagation conditions at the moving front 𝑅(𝑡)
Initial conditions: The initial conditions are formally given by

𝑅 = 0, 𝑤 = 0, 𝑝 = 0, at 𝑡 = 0. (8)

Boundary conditions: For coalescent fluid and fracture fronts the boundary conditions at the crack tip 𝑟 = 𝑅 are that the fracture
aperture and fluid flux are zero at the tip (Detournay and Peirce, 2014)

𝑤 = 0, 𝑤3 𝜕𝑝
𝜕𝑟

= 0, at 𝑟 = 𝑅. (9)

Given these initial and boundary conditions, by integrating the lubrication equation (6) in both time and space we obtain the
equation for the global volume balance:

∫

𝑅(𝑡)

0
𝑤(𝑟, 𝑡) 𝑟d𝑟 + 2𝐶 ′

∫

𝑅(𝑡)

0

√

𝑡 − 𝑡𝑜(𝑟) 𝑟d𝑟 =
𝑉𝑓 (𝑡)
2𝜋

(10)

where

𝑉𝑓 =

{

𝑄𝑜𝑡 0 < 𝑡 < 𝑡𝑠
𝑉𝑠 = 𝑄𝑜𝑡𝑠 𝑡 ≥ 𝑡𝑠

This equation simply establishes that the total volume of fluid injected at time 𝑡 is equal to the volume of fluid contained in the
rack plus the total volume of fluid lost to the permeable rock.
4
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Propagation condition: Since the fracture is assumed to propagate in limit equilibrium, LEFM (Rice, 1968) implies that the scaled
mode-I stress intensity factor 𝐾 satisfies the following inequality constraint:

𝐾 ∶= 𝐸′ lim
𝑟→𝑅

𝑤
√

𝑅 − 𝑟
= 𝐸′ lim

�̂�→0

�̂�
√

�̂�
≤ 𝐾 ′ (11)

Equality in (11) occurs when the fracture is propagating, i.e. 𝑉 > 0, while strict inequality in (11) is associated with arrest
haracterized by 𝑉 = 0, and recession characterized by 𝑉 < 0 and 𝐾 ′ = 0.

. Tip asymptotics for a HF in a permeable medium

.1. Local analysis and vertex asymptotes

Since we are interested in the behaviour of the solution near the tip, we assume power law asymptotic solutions of the form:

�̂� �̂�→0∼ 𝐴(𝑡)�̂�𝛼 , 1
2
≤ 𝛼 ≤ 1, (12)

Making use of (2)–(5) we obtain the following expression for the leading behaviour of the tip pressure

�̂� �̂�→0∼

⎧

⎪

⎨

⎪

⎩

𝐴𝐸′ 𝛼
4 cot(𝜋𝛼)�̂�

𝛼−1, 1
2 < 𝛼 < 1

𝐴𝐸′

4𝜋 ln �̂�, 𝛼 = 1
(13)

nd 𝑝 = 𝐶 for 𝛼 = 1∕2. Assuming that �̂� ≪ 𝑅 in (7), substituting the leading behaviours for the apertures (12) and pressures (13)
nto (7), and replacing each of the terms in the lubrication equation by their dominant asymptotic behaviour, we obtain

�̇��̂�𝛼 + 𝛼𝑉 𝐴�̂�𝛼−1 − 𝛼(𝛼 − 1)(𝛼 − 1
2
) cot(𝜋𝛼)𝐴

4𝐸′

𝜇′ �̂�4𝛼−3 + �̂� = 0 ∶ 1
2
< 𝛼 < 1 (14)

�̇��̂� + 𝑉 𝐴 − 𝐴4𝐸′

2𝜇′𝜋
�̂� + �̂� = 0 ∶ 𝛼 = 1 (15)

For exponents in the range 1
2 < 𝛼 ≤ 1, vertex solutions are obtained by identifying the dominant balances between the different

erms in (14) and (15).
After arrest 𝑉 ≤ 0 and the leak-off term �̂� is no longer singular and, as time progresses, approaches a value that is spatially

niform. Thus, in order to perform the local analysis to determine asymptotic solutions after arrest, �̂� will, to first order, be assumed
to be spatially homogeneous in the tip region and denoted by �̂�0(𝑡).

3.1.1. Propagating hydraulic fracture (𝐾 = 𝐾 ′, 𝑉 > 0)
The vertex solutions for a propagating hydraulic fracture are well established (Detournay, 2016). The 𝑘′-asymptote �̂�𝑘′ associated

with the fracture toughness is given by LEFM, which comes directly from the propagation condition (11); the �̃�-asymptote �̂��̃�

associated with leak-off is obtained by balancing the third and fourth terms in (14) with �̂� approximated by �̂� ∼ 𝐶 ′
(

𝑉
�̂�

)1∕2
close to

the tip; the 𝑚-asymptote �̂�𝑚 associated with viscous dissipation is obtained by balancing the second and third terms in (14). These
asymptotes are respectively given by

�̂�𝑘′ = 𝑙1∕2𝑘′ �̂�1∕2, �̂��̃� = 𝛽�̃�𝑙
3∕8
�̃� �̂�5∕8, and �̂�𝑚 = 𝛽𝑚𝑙

1∕3
𝑚 �̂�2∕3 (16)

where the following length scales have been defined: 𝑙𝑘′ =
(

𝐾′

𝐸′

)2
, 𝑙�̃� =

(

4𝜇′𝑉 𝐶′2

𝐸′

)1∕3
, and 𝑙𝑚 = 𝜇′𝑉

𝐸′ , and the constants are given by

𝛽�̃� = 4∕(15(
√

2 − 1))1∕4 ≈ 2.5336 and 𝛽𝑚 = 21∕335∕6 ≈ 3.1473.

3.1.2. Arrest of a hydraulic fracture (0 ≤ 𝐾 < 𝐾 ′, 𝑉 = 0)
The arrest asymptotes, recently described in Peirce and Detournay (2022a), are: the 𝑘-asymptote �̂�𝑘 determined from LEFM

in terms of the stress intensity factor 𝐾, which decreases from 𝐾 ′ to 0 as the fracture deflates as a result of fluid leaking from
the fracture into the porous medium; and the ephemeral 𝑔-asymptote �̂�𝑔 , associated with the arrest–recession transition, which is
obtained by noting that 𝑉 = 0 and matching the third and fourth terms in (14) with �̂� ∼ �̂�0. These asymptotes are respectively given
by:

�̂�𝑘 = 𝑙1∕2𝑘 �̂�1∕2 and �̂�𝑔 = 𝛽𝑔𝑙
1∕4
𝑔 �̂�3∕4, (17)

where 𝑙𝑘 =
(

𝐾
𝐸′

)2
= 𝜀2𝑘𝑙𝑘′ is the stress intensity length scale, 𝜀𝑘 is a dimensionless stress intensity parameter defined in terms of the

tress intensity factor 𝐾 as follows:

𝜀𝑘 ∶= 𝐾
𝐾 ′ =

𝐾𝐼
𝐾𝐼𝑐

< 1, (18)

𝑙 = 𝜇′ �̂�0 is the post-arrest leak-off length scale, and the constant 𝛽 =
(

64
)1∕4

.

5
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3.1.3. Recession asymptote - 𝑟-asymptote (𝐾 = 0, 𝑉 < 0)
For 𝑉 < 0, the 𝑔-asymptote with 𝛼 = 3∕4 is inadmissible since the convective term 𝑉 𝜕�̂�

𝜕�̂� , which is now present, violates the
dominant balance that applied when the fracture was at rest. Thus the only admissible balance occurs if 𝛼 = 1, for which the
leading order match between the second and fourth terms in (15) yields the 𝑟-asymptote:

�̂�𝑟 =
�̂�0
|𝑉 |

�̂� =
𝑙𝑔
𝑙𝑟
�̂� = �̂�

𝜀𝑟
(19)

where we have introduced the length scale 𝑙𝑟 = 𝜇′|𝑉 |

𝐸′ and the parameter 𝜀𝑟 = |𝑉 |

�̂�0
= 𝑙𝑟

𝑙𝑔
. There is also a match at the next order

etween the first and third terms in (15).

.2. The connection problem to establish edge solutions

In the previous subsection we presented the multiple vertex asymptotes that apply for propagating HF, arrested HF, and receding
F — each corresponding to a different physical process that is assumed to be dominant at the tip. When multiple physical processes
ompete in the tip region then the asymptotic solution involves multiple vertex asymptotes. Since the solutions connecting the
ultiple vertex asymptotes that are present for propagating hydraulic fractures are already well established (Garagash et al., 2011;
ontsov and Peirce, 2015), in this section we will restrict ourselves to summarizing the recently developed ‘edge’ solutions (Peirce
nd Detournay, 2022a) that connect the two vertex solutions that are present during each of the arrest and recession phases of
ydraulic fracture deflation.

.2.1. Nonsingular Fredholm integral equation
By considering the limit as �̂� → 0, (2) and (6) can be shown to reduce to those of a stationary semi-infinite fracture in a state

of plane strain moving with a constant velocity 𝑉 or deflating while arrested (Peirce and Detournay, 2008). For this problem the
equation relating the pressure to the fracture aperture becomes:

�̂� = −𝐸′

4𝜋

∞

∫
0

𝜕�̂�
𝜕�̂�

d�̂�
�̂� − �̂�

, (20)

Garagash and Detournay (2000) showed that, provided �̂� �̂�→∞∼ 𝑂(�̂�−𝛾 ) for 𝛾 > 0, the integral equation (20) can be inverted to yield an
expression for �̂� in terms of an integral operator acting on �̂�, which, upon integrating by parts (Dontsov and Peirce, 2015), yields
the following integral expression for �̂�(�̂�)

�̂�(�̂�) = 𝐾
𝐸′ �̂�

1∕2 − 4
𝜋𝐸′ �̂�

1∕2
∫

∞

0
�̂�1∕2𝐺

(

( �̂�
�̂�

)1∕2) 𝑑�̂�(�̂�)
𝑑�̂�

𝑑�̂� (21)

where 𝐾 is the scaled stress intensity factor and the kernel is given by 𝐺(𝑡) = 1−𝑡2
𝑡 ln ||

|

1+𝑡
1−𝑡

|

|

|

+ 2. The integral operator in (21) is
non-singular since 0 < 𝐺(𝑡) ≤ 4.

Considering the lubrication equation (7) in the limit �̂� → 0, discarding the term 𝜕�̂�
𝜕𝑡 since 𝜕�̂�

𝜕𝑡 ≪ 𝑉 𝜕�̂�
𝜕�̂� for 1

2 ≤ 𝛼 ≤ 1, integrating,
and rearranging, we obtain the following equation for the pressure gradient:

𝑑�̂�
𝑑�̂�

=
𝜇′

�̂�2

(

𝑉 +
�̂�0 �̂�
�̂�

)

(22)

Following (Dontsov and Peirce, 2015; Peirce and Detournay, 2022a) we use (22) to eliminate the pressure gradient from (21). We
lso define the scaled coordinate 𝑟 =

(

�̂�
𝑙𝑒

)1∕𝛿1
, where 𝑙𝑒 is a suitably chosen edge length scale, and the scaled aperture �̃� = �̂�

�̂�𝑎
,

here �̂�𝑎 is the vertex asymptote that occupies the tip region, to obtain the following nonlinear, non-singular, Fredholm integral
quation of the second kind:

�̃�(𝑟) = 𝜆 +
4𝛿1
𝜋

𝑟𝛿2−1 ∫

∞

0
𝐺
(

( �̃�
𝑟

)𝛿2
)

�̃�𝛿3 (1 − �̃�(�̃�))𝛿4

�̃�(�̃�)3
𝑑�̃�, �̃�(0) = 1 (23)

ere the parameters 𝜆 and 𝛿𝑘 change depending on whether the arrest or recession edge is being considered. Because (23) is
onsingular it can be reduced to a system of nonlinear equations for �̃� by discretization using standard quadratures.

3.2.2. Arrest edge — the 𝑘 − 𝑔 edge solution
Since �̂�1∕2 ≫ �̂�3∕4 as �̂� → 0, the 𝑘-asymptote will dominate the solution in the tip region and the 𝑔-asymptote will only manifest

tself as we move farther from the tip. The extent of the region closest to the tip that is occupied by the 𝑘-asymptote decreases
ith 𝐾 while the fracture is deflating while arrested. The 𝑔-asymptote expands into the tip region that has been vacated by the
-asymptote until 𝐾 = 0, at which instant the 𝑔-asymptote occupies the tip region completely. We therefore seek the 𝑘 − 𝑔 edge

solution �̃�𝑘𝑔 that connects the inner solution �̂�
�̂�→0
→ �̂�𝑘 to the outer solution �̂�

�̂�→∞
→ �̂�𝑔 .

In this case we choose 𝑙𝑒 = 𝑙𝑘𝑔 = 𝑙2𝑘∕𝑙𝑔 and, because the 𝑘-asymptote occupies the tip region while 𝐾 > 0, we choose �̂�𝑎 = �̂�𝑘.
For this edge solution �̃� = �̃�𝑘𝑔 , and the appropriate parameters in the integral equation (23) are:

𝑉 = 0 ∶ 𝜆 = 1, 𝛿 = 2, 𝛿 = 1, 𝛿 = 1, 𝛿 = 0 (24)
6
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Fig. 2. (a) Plot of the reciprocal of the scaled aperture 1∕�̃�𝑘𝑔 as a function of 𝑟2 for the 𝑘 − 𝑔 edge asymptote. The solid black curve represents the numerical
solution to (23) with the 𝑘 − 𝑔 parameter set given in (24), while the dashed blue curve represents the approximate solution provided by (25). (b) Plot of the
scaled aperture �̃�𝑟𝑔 as a function of 𝑟 for the 𝑟 − 𝑔 edge asymptote. The solid black curve represents the numerical solution to (23) with the 𝑟 − 𝑔 parameter
set given in (26). For both (a) and (b), the red curves between the inverted red triangles represent the search path for a single time step followed by the fixed
point scheme (29) for 𝜀𝑘 (a) and the fixed point scheme (30) for 𝜀𝑟 (b). The coloured dots represent the solutions for 𝜀𝑘 and 𝜀𝑟 for multiple time steps.

It is also possible (Dontsov and Peirce, 2015; Peirce and Detournay, 2022a) to obtain an approximate 𝑘 − 𝑔 edge solution, which
in this case has a relative error of less than 3%, by differentiating (23) and assuming a power law behaviour for �̃�𝑘𝑔 to obtain a
separable ordinary differential equation, whose solution, along with the condition �̃�𝑘𝑔(0) = 1, yields

�̃�𝑘𝑔 ≈
(

1 + 𝛽4𝑔 𝑟
2
)1∕4

or �̂�𝑘𝑔 ≈ 𝑙1∕2𝑘 �̂�1∕2
(

1 + 𝛽4𝑔
�̂�
𝑙𝑘𝑔

)1∕4
(25)

In Fig. 2(a) we plot the reciprocal of the scaled aperture 1∕�̃�𝑘𝑔 as a function of 𝑟2 = �̂�∕𝑙𝑘𝑔 . We have chosen to plot the reciprocal
of 1∕�̃�𝑘𝑔 as this emphasizes the variation in �̃�𝑘𝑔 , with respect to the scaled variables, between the two asymptotic behaviours

�̃�𝑘𝑔
𝑟→0
→ �̃�𝑘 = 1 representing the �̂�𝑘 asymptote and �̃�𝑘𝑔

𝑟→∞
→ �̃�𝑔 = 𝛽𝑔𝑟1∕2 representing the �̂�𝑔 asymptote. The solid black curve in

this figure represents the numerical solution to (23) with the 𝑘 − 𝑔 parameter set given in (24). The dashed blue curve represents
the approximate solution provided by (25).

3.2.3. Recession edge — the 𝑟 − 𝑔 edge solution
Because �̂�3∕4 ≫ �̂� as �̂� → 0, we would expect the 𝑔-asymptote to dominate the 𝑟-asymptote closest to the tip. However, since the

𝑔-asymptote cannot exist at the tip for 𝑉 < 0, it is the 𝑟-asymptote that occupies the region closest to the tip while the 𝑔-asymptote
will only manifest itself farther from the tip. Thus, as recession begins, i.e. 𝑉 < 0, the 𝑔-asymptote, which occupied the tip region
completely at the instant 𝐾 = 0, is immediately displaced from the tip by the 𝑟-asymptote. We therefore seek the 𝑟− 𝑔 edge solution
�̂�𝑟𝑔 that connects the inner solution �̂�

�̂�→0
→ �̂�𝑟 to the outer solution �̂�

�̂�→∞
→ �̂�𝑔 . In this case we choose 𝑙𝑒 = 𝑙𝑟𝑔 = 𝑙4𝑟∕𝑙

3
𝑔 and, because the

𝑟-asymptote occupies the tip region from the instant the fracture starts to recede, we choose �̂�𝑎 = �̂�𝑟. In this case the appropriate
parameters in the integral equation (23) for �̃� = �̃�𝑟𝑔 are:

𝑉 < 0 ∶ 𝜆 = 0, 𝛿1 = 1, 𝛿2 =
1
2
, 𝛿3 = −3

2
, 𝛿4 = 1 (26)

In Fig. 2(b), we plot �̃�𝑟𝑔 as a function of 𝑟 = �̂�∕𝑙𝑟𝑔 . We observe that �̃�𝑟𝑔 approaches the limiting values �̃�𝑟𝑔
𝑟→0
→ 1 associated with

�̂�𝑟 the 𝑟-vertex solution, and �̃�𝑟𝑔
𝑟→∞
→ �̃�𝑔 = 𝛽𝑔𝑟−1∕4 associated with �̂�𝑔 the 𝑔-vertex solution, so that 0 ≤ �̃�𝑟𝑔 = �̂�

�̂�𝑟
≤ 1. The solid

black curve in Fig. 2(b) represents the numerical solution to (23) with the 𝑟 − 𝑔 parameter set given in (26).

3.3. Implementing the edge solutions

Multiscale tip asymptotic solutions have proven to be extremely useful in the development of numerical algorithms to model
propagating fractures (Peirce and Detournay, 2008; Adachi and Detournay, 2008; Lecampion et al., 2013; Peirce, 2015, 2016;
Dontsov and Peirce, 2017). These algorithms can achieve solutions with a high degree of precision, able to account for the multiscale
behaviour at the finest length scale, while using a relatively coarse mesh. The fundamental idea (Peirce and Detournay, 2008;
Peirce, 2015; Dontsov and Peirce, 2017) is to use a trial value of the fracture aperture �̂�, sampled at computational points within
and adjacent to the fracture front, along with the applicable multiscale tip asymptote to estimate the fracture font location (or
7
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equivalently the local front velocity) at the current step. The front position for propagating fractures is then adjusted iteratively and
the aperture updated until both are consistent with the applicable multiscale asymptote.

In this subsection we describe how the 𝑘 − 𝑔 edge solution can be used to determine accurate estimates of the stress intensity
actor while the fracture is deflating during arrest as well as the time the fracture transitions from arrest to recession. We also
escribe how the 𝑟 − 𝑔 edge solution can be used to determine accurate estimates of the negative velocity of the receding fracture
ront, which is particularly important shortly after the arrest–recession transition point. We will present the results of numerical
imulations in which the solutions using the multiscale 𝑘 − 𝑔 and 𝑟 − 𝑔 asymptotes are compared to solutions that use the LEFM

vertex asymptote to determine the stress intensity factor during arrest and only the linear 𝑟-asymptote to determine the negative
velocity during recession.

In the results presented below we consider the implementation of the multiscale edge solutions and vertex solutions in an Implicit
Moving Mesh Algorithm (IMMA) (Dontsov, 2016), which has been adapted to include the 𝑘-asymptote, the 𝑟-asymptote, as well as
the multiscale 𝑘 − 𝑔 and 𝑟 − 𝑔 edge solutions.

3.3.1. Determining 𝜀𝑘 and 𝜀𝑟 using the multiscale asymptotes
Note that the 𝑘 − 𝑔 edge solution �̃�𝑘𝑔 to (23) with the 𝑘 − 𝑔 parameter set given in (24), shown in Fig. 2(a), and the 𝑟 − 𝑔 edge

solution �̃�𝑟𝑔 to (23) with the 𝑟− 𝑔 parameter set given in (26), shown in Fig. 2(b), are both universal in that they do not depend on
any parameters. Indeed, the values of 𝜀𝑘 and 𝜀𝑟 are embedded in the scalings used to reduce these integral equations to a universal
form so that they too are free of any parameters.

Determining 𝜀𝑘 and the stress intensity factor during arrest using �̃�𝑘𝑔 :
Assuming that �̃�𝑘𝑔(𝑟) is a known function of 𝑟, we can use the scaling defined for the 𝑘 − 𝑔 edge solution to obtain

�̂� = �̂�𝑘(�̂�)�̃�𝑘𝑔

(

( �̂�
𝑙𝑘𝑔

)1∕2
)

= 𝜀𝑘�̂�𝑘′ (�̂�)�̃�𝑘𝑔

(

1
𝜀2𝑘

( �̂�
𝑙𝑘′𝑔

)1∕2
)

(27)

where 𝑙𝑘 = 𝜀2𝑘𝑙𝑘′ , 𝑙𝑘𝑔 = 𝜀4𝑘𝑙𝑘′𝑔 , and 𝑙𝑘′𝑔 =
𝑙2
𝑘′
𝑙𝑔

. Given trial values of �̂�, sampled at a certain distance �̂� from the tip, (27) defines 𝜀𝑘

implicitly. From the behaviour �̃�𝑘𝑔
𝑟→0
→ �̃�𝑘 = 1, we observe that if the pair (�̂�, �̂�) falls within the region under the 𝑘-umbrella, (27)

educes to the simple LEFM asymptote �̂� = 𝜀𝑘�̂�𝑘′ (�̂�) given in the first expression in (17), which is frequently used to determine
the stress intensity factor. From the asymptotic behaviour �̃�𝑘𝑔

𝑟→∞
→ �̃�𝑔 = 𝛽𝑔𝑟1∕2, we observe that if �̂� is within the region under the

mbrella of the 𝑔-asymptote, then upon simplification, 𝜀𝑘 vanishes from (27), which reduces to the 𝑔-asymptote �̂�𝑔 given in the
econd expression in (17). The implication of this latter reduction is that, once the solution is in the regime in which the 𝑔-vertex
olds, it is not possible to obtain any information about 𝜀𝑘 and the stress intensity factor. It is interesting to note that if the second
quation in (25) is used to determine 𝜀𝑘, a real value of 𝜀𝑘 can only be determined provided �̂� > 𝛽𝑔𝑙

1∕4
𝑔 �̂�3∕4 = �̂�𝑔 .

Determining 𝜀𝑟 and the velocity during recession using �̃�𝑟𝑔 :
Assuming that �̃�𝑟𝑔(𝑟) is a known function of 𝑟, we can use the scaling defined for the 𝑟 − 𝑔 edge solution to obtain

�̂� = �̂�𝑟(�̂�)�̃�𝑟𝑔

(

�̂�
𝑙𝑟𝑔

)

= �̂�
𝜀𝑟

�̃�𝑟𝑔

(

�̂�
𝜀4𝑟 𝑙𝑔

)

(28)

where 𝑙𝑟 = 𝜀𝑟𝑙𝑔 and 𝑙𝑟𝑔 = 𝜀4𝑟 𝑙𝑔 . Given trial values of �̂�, sampled a certain distance �̂� from the tip, (28) defines 𝜀𝑟 implicitly.

From the asymptotic behaviour �̃�𝑟𝑔
𝑟→0
→ 1, we observe that if the pair (�̂�, �̂�) falls within the region under the 𝑟-umbrella, (28)

reduces to the simple expression for 𝜀𝑟 in terms of the linear 𝑟-asymptote �̂� = �̂�𝑟(�̂�) given in (19). From the asymptotic behaviour
�̃�𝑟𝑔

𝑟→∞
→ �̃�𝑔 = 𝛽𝑔𝑟−1∕4, we observe that if �̂� is within the region under the umbrella of the 𝑔-asymptote, then upon simplification

𝜀𝑟 vanishes from (28), which reduces to the 𝑔-asymptote �̂�𝑔 given in the second expression in (17). The implication of this latter
reduction is that once the solution is in the regime in which the 𝑔-vertex holds, it is not possible to obtain any information about
𝜀𝑟 and the negative velocity of the receding fracture.

3.3.2. Fixed point schemes to determine 𝜀𝑘 and 𝜀𝑟
Due to the loss of information by (27) and (28) when approaching the umbrella of the 𝑔-vertex �̂�𝑔 , standard iteration schemes

such as Newton’s method applied to these two nonlinear equations do not provide stable algorithms to determine 𝜀𝑘 and 𝜀𝑟,
respectively. We observe that the general shape of the function 1∕�̃�𝑘𝑔 shown in (a) for the 𝑘 − 𝑔 edge solution is very similar
to that of the function �̃�𝑟𝑔 plotted in (b) for the 𝑟 − 𝑔 edge solution. Both of these functions are bounded below by 0 and above by
1, which is a property we exploit below in developing stable fixed point iterative schemes.

A fixed point scheme to determine 𝜀𝑘:
To establish a robust fixed point scheme to solve (27) for 𝜀𝑘, we re-write this equation in the following recursive form:

𝜀𝑘,𝑖+1 =
�̂�

𝑙1∕2𝑘′ �̂�1∕2
1

�̃�𝑘𝑔

(

1
𝜀2𝑘,𝑖

( �̂�
𝑙𝑘′𝑔

)1∕2
) (29)

Note that this recursion is expressed in terms of the function 1∕�̃�𝑘𝑔 plotted in Fig. 2(a). In this figure the red curve represents the
trajectory of iterates 𝜀 for a particular time step, which is selected, for illustrative purposes, to be later in the deflation process
8
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Fig. 3. (a) Evolution of terms in the continuity equation from arrest to collapse 𝑡 ∈ (𝑡𝑎 , 𝑡𝑐 ) scaled to the maximum value on this interval: flux gradient 𝜕
𝜕�̂�

(

�̂�3

𝜇′
𝜕�̂�
𝜕�̂�

)

(−⋅), 𝜕�̂�
𝜕𝑡

(⋯), |𝑉 |

𝜕�̂�
𝜕�̂�

(−−), and �̂�0 (solid). The black curves are extracted from an IMMA simulation that uses the multiscale 𝑘 − 𝑔 and 𝑟 − 𝑔 asymptotes, while
he dashed red curve represents the convection term |𝑉 |

𝜕�̂�
𝜕�̂�

when the simple LEFM 𝑘-asymptote is used to determine the stress intensity factor during arrest and
only the linear 𝑟-asymptote is used to determine the negative velocity during recession. (b) The fracture radius scaled to the radius at shut-in 𝑅∕𝑅(𝑡𝑠) is plotted
against the scaled time 𝑡∕𝑡𝑠 for two different IMMA simulations, one using the multiscale 𝑘 − 𝑔 and 𝑟 − 𝑔 asymptotes (solid black) and the other (dashed red)
using the simple LEFM 𝑘-asymptote estimate for the stress intensity factor during arrest and the linear 𝑟-asymptote to determine the negative velocity during

recession. The blue dots represent estimates of the power law behaviour of �̂� in the tip region from the formula 𝛿 =
�̂� 𝜕�̂�

𝜕�̂�

�̂�
.

ecause it is associated with a small value of 𝜀𝑘. The sequence of iterates starts with the initial guess 𝜀𝑘,0 =
�̂�

𝑙1∕2
𝑘′

�̂�1∕2
, which is obtained

from the 𝑘-asymptote given in the first expression in (17), and indicated in Fig. 2(a) by the inverted red triangle for which 1∕�̃�𝑘𝑔 ∼ 1.
hese iterations terminate when the relative difference between successive iterates is less than 10−3 at the point indicated by the

nverted red triangle on the lower part of the red curve. The coloured circles moving down the 1∕�̃�𝑘𝑔 curve in (a) represent the
equence of decreasing 𝜀𝑘 values (with values depicted on the colour bar) corresponding to decaying 𝐾 values over multiple time
teps as the fracture deflates while arrested.

fixed point scheme to determine 𝜀𝑟:
To establish a robust fixed point scheme to determine 𝜀𝑟, we re-write (28) in the following recursive form in terms of the function

̃ 𝑟𝑔 plotted in Fig. 2(b):

𝜀𝑟,𝑖+1 =
�̂�
�̂�
�̃�𝑟𝑔

(

�̂�
𝜀4𝑟,𝑖𝑙𝑔

)

(30)

As with the 𝜀𝑘 case, the red curve in Fig. 2(b) represents the trajectory of iterates 𝜀𝑟,𝑖 for a single time step, while the coloured circles
moving up the �̃�𝑟𝑔 curve represent the sequence of increasing 𝜀𝑟 values (with values depicted on the colour bar) corresponding to
increasing |𝑉 | values over multiple time steps as the receding fracture accelerates from the point of arrest.

3.3.3. The arrest–recession transition and the emergence of a dominant balance

Magnitude of terms in the lubrication equation:
In Fig. 3(a) we compare the relative magnitudes of each of the terms in the continuity equation (7) as a function of 𝑡∕𝑡𝑠 from

the time of arrest 𝑡𝑎 to the time of collapse 𝑡𝑐 . To establish the relative magnitudes, each of the terms 𝜏𝑖 in the continuity equation
is divided by the maximum value 𝜏max = max𝑡∈(𝑡𝑎 ,𝑡𝑐 )max𝑖 |𝜏𝑖(𝑡)| over the interval. The arrest time 𝑡𝑎 is indicated in this plot by the
vertical magenta line, while the arrest–recession transition point 𝑡𝑟 is indicated by the thick black vertical lines that have been
separated in order that the results of the plot are not obscured.

Comparison between IMMA solutions using edge asymptotes vs. vertex asymptotes:
The black curves in Fig. 3(a) represent the IMMA results obtained when the multiscale 𝑘 − 𝑔 edge solution has been used to

determine 𝜀𝑘 (and hence the stress intensity factor for the arrested deflating fracture) and the arrest–recession transition point 𝑡𝑟;
and the 𝑟 − 𝑔 edge solution has been used to determine 𝜀𝑟 and the magnitude of the receding fracture velocity. We will refer to
this combined solution as the multiscale edge solution. The dashed red curve represents the IMMA result for the convective term
|𝑉 |

𝜕�̂�
𝜕�̂� obtained when the simple LEFM asymptote given in the first expression in (17) is used to determine 𝜀𝑘 and the arrest–

recession transition point 𝑡𝑟, while the linear 𝑟-asymptote is used to determine 𝜀𝑟. We will refer to this combined solution as the
vertex solution. We have chosen to restrict the comparison between these two different IMMA solutions to the convective term since
9
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this term exhibits the largest difference between the two solutions and to keep the plot uncluttered. The solution (black −−) that
uses multiscale edge asymptotes through the transition point 𝑡𝑟 is much smoother than the corresponding vertex solution (red −−).
Indeed, the vertex solution has a delayed transition point that exhibits an extreme jump discontinuity and a subsequent sharp drop
to compensate until the transient effect of neglecting this multiscale behaviour decays around 𝑡∕𝑡𝑠 ∼ 12. The reason that using the
𝑟-vertex solution (19) over-estimates 𝜀𝑟, and therefore the recession speed, is that it immediately attributes all the fracture aperture
in the tip region to the linear asymptote. However, we know that, at the transition point 𝑡𝑟, the tip is fully occupied by the stationary
𝑔-asymptote. Therefore, it takes some time for the linear 𝑟-asymptote to displace this 𝑔-asymptote and occupy the tip at the length
scale of one computational cell. Thus using the 𝑟-asymptote immediately, upon the initiation of recession, without waiting for the
linear asymptote to occupy the tip element, is the cause of the observed jump in convective term. By contrast, the multiscale edge
solution is able to allocate the appropriate contribution from the 𝑔-vertex to the tip apertures while the arrested fracture is deflating
and, upon the initiation of recession, it is able to distribute the tip aperture correctly between the stationary 𝑔-vertex and the moving
𝑟-vertex and thereby identify the correct recession velocity.

Exponent evolution:
As a measure of the exponent of the average power law active in the tip region for the multiscale edge solution, we calculate the

quotient 𝛿 =
�̂� 𝜕�̂�𝜕�̂�
�̂� in the tip element, which, for a power law, would yield the value of the exponent. The derivative in this quotient is

approximated by the second order backward difference approximation involving the three elements closest to the tip. The evolution
of 𝛿 over the interval 𝑡 ∈ (𝑡𝑎, 𝑡𝑐 ) is represented by the blue dots referenced to the right vertical axis in Fig. 3(b). As in (a) the arrest
time 𝑡𝑎 horizon is indicated in this plot by the vertical magenta line, while the arrest–recession transition 𝑡𝑟 horizon is indicated by
he vertical black line. We observe that 𝛿 evolves from the LEFM exponent of 1∕2 at the beginning of the arrest period, then passes

through the 𝑔-vertex exponent 3∕4 close to the arrest–recession transition point 𝑡𝑟, and finally asymptotes to the 𝑟-vertex exponent
1 for 𝑡∕𝑡𝑠 ≳ 12.

The emergence of a dominant balance:
It should be noted that the power laws in the range 1

2 ≤ 𝛼 < 1 encountered in propagating and arrested HF are singular and the
vertex solutions associated with the smallest 𝛼 are more dominant than the other vertex solutions that are present and therefore
occupy the region closest to the tip. However, the 𝑟-asymptote is not singular, thus, immediately after the initiation of recession,
the 𝑟-asymptote only applies very close to the tip and it takes a while for the leading order dominant balance to manifest itself
any significant distance from the tip. Thus it takes a while for the linear 𝑟-asymptote to displace the 𝑔-asymptote that completely
occupied the tip region at the instant of transition from arrest to recession. We observe from Fig. 3(a) that during the arrest period
and at the start of the period of recession, the tip is governed by multiscale tip asymptotics so there is no dominant balance, which
would typically be associated with a vertex solution. However, beyond 𝑡∕𝑡𝑠 ∼ 12, the leading order match starts to emerge between
the second term |𝑉 |

𝜕�̂�
𝜕�̂� and the fourth term �̂� in the lubrication equation (7). These were precisely the terms used in the dominant

alance argument used to establish the 𝑟-vertex solution (19). We also note that the two terms 𝜕�̂�
𝜕𝑡 and 𝜕

𝜕�̂�

(

�̂�3

𝜇′
𝜕�̂�
𝜕�̂�

)

, which were found
to match at the next order, can also be seen to asymptote to values of a comparable magnitude to one another, but which are much
smaller than those of the dominant match.

Impact of using vertex asymptotes rather than edge asymptotes:
From Fig. 3(a) and the discussion above we see that using the vertex asymptotes to track the deflation of the hydraulic fracture

results in the jump discontinuity in the convective term as one passes through the arrest–recession transition 𝑡𝑟. Although the
existence of the 𝑔-vertex is ephemeral, we see that it is necessary to account for this special solution in both the multiscale 𝑘 − 𝑔
and 𝑟 − 𝑔 edge solutions in order to obtain a solution that will pass smoothly through the arrest–recession transition 𝑡𝑟. However,
from Fig. 3(a) we observe that, if we use only the vertex asymptotes, the transients that result from the jump discontinuity decay
fairly rapidly and the solution reverts to the same smooth solution produced by the multiscale edge asymptotes. Rather than only
using individual terms in the lubrication equation to assess the impact of implementing simple vertex asymptotes as opposed to
multiscale edge asymptotes on the quality of the solution, we also consider a more global quantity such as the fracture radius. In
Fig. 3(b) we compare the scaled fracture radius 𝑅(𝑡)∕𝑅(𝑡𝑠) as a function of 𝑡∕𝑡𝑠 for the multiscale algorithm (solid black) to that for
the simple vertex algorithm (dashed red). The recession initiation time 𝑡𝑟 for the multiscale solution is denoted by the black circle
and that for the simple vertex asymptotes is denoted by the red circle. The vertex solution only has a slightly delayed recession
initiation time and exhibits only a slight deviation from the multiscale edge solution, which starts immediately after the onset of
recession and persists until the transients decay. Indeed, these two solutions differ by less than 1

2% throughout the duration of the
simulation and are virtually indistinguishable in Fig. 3(b).

The analysis presented here has been important in order to provide a rigorous multiscale solution for the deflation of a radial
hydraulic fracture during arrest and recession and particularly around the arrest–recession transition point 𝑡𝑟. However, this analysis
also establishes that, unless the purpose of the modelling is to provide a smooth solution with great detail around the arrest–recession
transition point 𝑡𝑟, a pragmatic, and much more efficient approach, would be to use a simpler algorithm based solely on vertex
10
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4. Scaling analysis

4.1. Scaling

4.1.1. Scaling for a radial fracture subject to a constant injection rate 𝑄0
Following Detournay (2004, 2016), we introduce into the governing equations (2), (6), and (11) a length scale 𝑅∗, time scale

∗, characteristic aperture 𝑤∗, and pressure 𝑝∗ such that 𝑟 = 𝑅∗𝜌, 𝑡 = 𝑡∗𝜏, 𝑤 = 𝑤∗𝛺, and 𝑝 = 𝑝∗𝛱 . This makes it possible to identify
he following five dimensionless groups:

G𝑣 =
𝑅2
∗𝑤∗

𝑄0𝑡∗
, G𝑚 =

𝜇′𝑄0

𝑤3
∗𝑝∗

, G𝑐 =
𝐶 ′𝑅2

∗

𝑡1∕2∗ 𝑄0

, G𝑒 =
𝐸′𝑤∗
𝑅∗𝑝∗

, and G𝑘 =
𝐾 ′𝑅1∕2

∗
𝐸′𝑤∗

(31)

The storage–viscosity 𝑚-scaling can be identified by requiring G𝑣 = G𝑚 = G𝑒 = 1, from which it follows that the length 𝑅𝑚, aperture
𝑤𝑚, and pressure 𝑝𝑚 scales are respectively given by

𝑅𝑚 =

(

𝐸′𝑄3
0𝑡

4

𝜇′

)1∕9

, 𝑤𝑚 =

(

𝜇′2𝑄3
0𝑡

𝐸′2

)1∕9

, and 𝑝𝑚 =
(

𝜇′𝐸′2

𝑡

)1∕3

(32)

hile the dimensionless toughness and leak-off coefficient become

G𝑘 ∶= K𝑚 =

(

𝐾 ′18𝑡2

𝐸′13𝜇′5𝑄3
0

)1∕18

, and G𝑐 ∶= C𝑚(𝑡) =

(

𝐶 ′18𝐸′4𝑡7

𝜇′4𝑄6
0

)1∕18

(33)

The leak-off–viscosity (�̃�-scaling) can be obtained by requiring G𝑐 = 1 instead of G𝑣 and the toughness (𝑘 -scaling) can be obtained
by requiring G𝑘 = 1 instead of G𝑚. We observe from (33) that the dimensionless toughness and leak-off coefficient for a radial
racture driven by a constant injection rate 𝑄0 both increase with time. We also observe that the transition time 𝑡𝑚𝑘 from viscosity

to toughness dominated propagation and the transition time 𝑡𝑚�̃� from viscosity–storage dominated propagation to leak-off dominated
ropagation are given by

𝑡𝑚𝑘 =

(

𝐸′13𝜇′5𝑄3
0

𝐾 ′18

)1∕2

, 𝑡𝑚�̃� =

(

𝜇′4𝑄6
0

𝐶 ′18𝐸′4

)1∕7

(34)

while the propagation regime parameter 𝜙 is defined to be:

𝜙 =
𝐸′11𝜇′3𝑄0𝐶 ′4

𝐾 ′14
=
(

𝑡𝑚𝑘
𝑡𝑚�̃�

)
14
9

(35)

.1.2. Scaling for a radial fracture after shut-in
In practice the evolution of a hydraulic fracture involves propagation due to the injection of a fluid at a flux 𝑄0 (considered

ere to be constant) followed by shut-in at a certain time 𝑡𝑠, after which the fracture may continue to propagate depending on the
egime of propagation after shut-in. A propagating fracture in a permeable medium after shut-in will ultimately come to rest either
ue to excessive leak-off or because the stress intensity factor has dropped below the critical fracture toughness. In the latter case,
here is an arrest period during which 𝐾 decreases as the fracture continues to lose volume so that �̇� < 0, until 𝐾 = 0 at which
oint transition to the recession asymptote is initiated and the fracture starts to recede.

The appropriate scaling for the dynamics of a hydraulic fracture with a fixed injected volume 𝑉0 can be obtained (Mori and
ecampion, 2021) directly from those of a fracture driven by a constant flux 𝑄0 given in (32)–(33) by making the simple substitution
0 = 𝑉0∕𝑡. In this case the length 𝑅𝑉

𝑚 (𝑡) and aperture 𝑤𝑉
𝑚 (𝑡) scaling factors are given by

𝑅𝑉
𝑚 (𝑡) =

(

𝐸′𝑉 3
0 𝑡

𝜇′

)1∕9

and 𝑤𝑉
𝑚 (𝑡) =

(

𝜇′2𝑉 3
0

𝐸′2𝑡2

)1∕9

(36)

while the dimensionless toughness K𝑉
𝑚 (𝑡) and leak-off C𝑉

𝑚 (𝑡) parameters become

K𝑉
𝑚 (𝑡) =

(

𝐾 ′18𝑡5

𝜇′5𝐸′13𝑉 3
0

)1∕18

and C𝑉
𝑚 (𝑡) =

(

𝐶 ′18𝐸′4𝑡13

𝜇′4𝑉 6
0

)1∕18

(37)

Here we have followed (Mori and Lecampion, 2021) and used the superscript 𝑉 to denote the scaling for a fracture with a fixed
injected volume 𝑉0 at time 𝑡. We observe from (37) that for a radial fracture with a fixed injected volume 𝑉0, the viscous to toughness
transition time 𝑡𝑉𝑚𝑘 and viscosity-storage to leak-off transition time 𝑡𝑉𝑚�̃� are respectively given by

𝑡𝑉𝑚𝑘 =

(

𝜇′5𝐸′13𝑉 3
0

𝐾 ′18

)1∕5

and 𝑡𝑉𝑚�̃� =

(

𝜇′4𝑉 6
0

𝐶 ′18𝐸′4

)1∕13

(38)

Once shut-in has occurred these two transition times identify two different ways the fracture behaves after the time of arrest
′

11

𝑎, which, if 𝐾 > 0, is characterized by the stress intensity factor dropping below the critical fracture toughness and, as a result,
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the velocity of the fracture going to zero. If 𝑡𝑎 ∼ 𝑡𝑉𝑚𝑘 ≪ 𝑡𝑉𝑚�̃�, then, at the time of arrest, the fracture is propagating in the toughness
regime and still has a significant amount of fluid that needs to leak-off before recession can start. Conversely, if 𝑡𝑎 ∼ 𝑡𝑉𝑚�̃� ≪ 𝑡𝑉𝑚𝑘, then,
at the time of arrest, the fracture is already propagating in the leak-off regime and has lost sufficient fluid to preclude significant
further propagation of the fracture. In this case recession starts almost immediately. In order to characterize these two arrest modes,
we define the following arrest regime parameter 𝜙𝑉 for a radial hydraulic fracture with a fixed injected volume

𝜙𝑉 =
𝑡𝑉𝑚𝑘
𝑡𝑉𝑚�̃�

=
(

𝐸′21𝜇′5𝐶 ′10𝑉0
𝐾 ′26

)

9
65

(39)

If 𝜙𝑉 ≫ 1 then the transition to leak-off dominated propagation will occur significantly before there would be transition to toughness
dominated propagation, so recession can be expected to start almost immediately and there will be a short arrest period. Conversely,
if 𝜙𝑉 ≪ 1 then the transition to toughness dominated propagation will occur while the fracture is in the storage regime significantly
before there would be a transition to leak-off dominated propagation. Thus at the time of arrest there is still a significant volume of
fluid contained in the fracture that needs to leak off before recession can begin. Thus, in this case, there will be a significant period
during which the fracture deflates while it is in a state of arrest. We observe that the parameter 𝜙𝑉 defined in (39) has no meaning
n the zero toughness case since 𝑡𝑉𝑚𝑘 = ∞.

.2. Characteristic power laws for arrest and recession

In the analysis that follows we will consider a given shut-in time 𝑡𝑠, which we will define with respect to the constant injection
ate storage–leak-off transition time 𝑡𝑚�̃� in terms of the parameter 𝜔 defined by

𝜔 =
𝑡𝑠
𝑡𝑚�̃�

(40)

At shut-in, the injected volume is 𝑉𝑠 = 𝑄0𝑡𝑠, the dimensionless leak-off coefficient at shut-in is C𝑚(𝑡𝑠) ∶= C𝑠 = 𝜔7∕18, while the
dimensionless toughness at shut-in is: K𝑚(𝑡𝑠) ∶= K𝑠 = 𝜙−1∕14𝜔1∕9. The fixed injected volume transition times, at which K𝑉

𝑚 (𝑡) = 1
nd C𝑉

𝑚 (𝑡) = 1, can be expressed in terms of K𝑠 and C𝑠 as follows:

𝑡𝑉𝑚𝑘 ∶= 𝑡𝑠K
− 18

5
𝑠 and 𝑡𝑉𝑚�̃� ∶= 𝑡𝑠C

− 18
13

𝑠 (41)

We note that these are the expressions for 𝑡𝑉𝑚𝑘 and 𝑡𝑉𝑚�̃� that were established by Mori and Lecampion (2021) in terms of K𝑠 and C𝑠
respectively. Since the current paper is focussed on the dynamics of radial hydraulic fractures that deflate due to fluid losses to the
permeable solid, we choose an alternative parameterization in terms of the dimensionless shut-in time 𝜔, which makes it possible to
unify the power laws for the zero and finite toughness cases — as leak-off is common to both. Moreover, the fixed injected volume
arrest regime parameter 𝜙𝑉 is more appropriate for characterizing the arrest of a deflating fracture, than the propagation regime
parameter 𝜙 that was defined to identify the viscous–toughness–leak-off modes of a propagating hydraulic fracture.

Now making use of (34) and (38) the following relationship can be established between the fixed injected volume transition
time 𝑡𝑉𝑚�̃� and the constant injection rate storage–leak-off transition time 𝑡𝑚�̃� in terms of the dimensionless shut-in parameter 𝜔 ∶

𝑡𝑉𝑚�̃� = 𝑡𝑚�̃�𝜔
6
13 = 𝑡𝑠𝜔

− 7
13 (42)

here the second relationship in (42) comes directly from the definition of 𝜔.

odes of arrest and recession: Using (42) and (39) we are now able to characterize the way in which the arrest time 𝑡𝑎 and recession
ime 𝑡𝑟 are impacted by the relative magnitudes of 𝜙𝑉 and 𝜔.

• If 𝜙𝑉 ≪ 1 ∶

– If 𝜔 ≪ 1, it follows from (42) and (39) that

𝑡𝑠 & 𝑡𝑉𝑚𝑘 ≪ 𝑡𝑉𝑚�̃� ≪ 𝑡𝑚�̃�

then, after shut-in arrest will be determined by 𝑡𝑎 ∼ 𝑡𝑉𝑚𝑘 and recession will be determined by 𝑡𝑟 ∼ 𝑡𝑉𝑚�̃�.
– If 𝜔 ≫ 1, it follows from (42) and (39) that

𝑡𝑚�̃� & 𝑡𝑉𝑚𝑘 ≪ 𝑡𝑉𝑚�̃� ≪ 𝑡𝑠

then, after shut-in arrest and recession will be determined by 𝑡𝑎 ∼ 𝑡𝑟 ∼ 𝑡𝑠.

• If 𝜙𝑉 ≫ 1 ∶

– If 𝜔 ≪ 1, it follows from (42) and (39) that

𝑡𝑠 ≪ 𝑡𝑉𝑚�̃� ≪ 𝑡𝑚�̃� & 𝑡𝑉𝑚𝑘
then, after shut-in arrest and recession will be determined by 𝑡𝑉𝑚�̃�, i.e. 𝑡𝑎 ∼ 𝑡𝑟 ∼ 𝑡𝑉𝑚�̃�.

– If 𝜔 ≫ 1, it follows from (42) and (39) that

𝑡𝑚�̃� ≪ 𝑡𝑉𝑚�̃� ≪ 𝑡𝑠 & 𝑡𝑉𝑚𝑘
then, after shut-in arrest and recession will be determined by 𝑡 ∼ 𝑡 ∼ 𝑡 .
12
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Fig. 4. The solid black lines indicate the numerical solutions for the: (a) arrest time to shut-in time ratios, (b) arrest radius to shut-in radius ratios, and (c)
eflation time to storage–leak-off transition time ratios 𝑇 ∕𝑡𝑚�̃� all plotted as a function of 𝜔 for the zero toughness case 𝐾 ′ = 0. The dashed red lines represent
og linear regressions for each of these plots using the first few data points.

.2.1. Zero toughness case (𝐾 ′ = 0)
From (39) it follows that if 𝐾 ′ → 0 then 𝜙𝑉 → ∞, which, from the modes of arrest and recession identified above, clearly

dentifies the scaling for the time of arrest 𝑡𝑎, which, in this case, coincides with that of recession.

rrest scaling: If the dimensionless shut-in time 𝜔 ≪ 1 then the arrest time 𝑡𝑎 is determined by the time that the fixed injected
olume fracture transitions from storage to leak-off dominated propagation, i.e.

𝑡𝑎 ∼ 𝑡𝑉𝑚�̃� = 𝑡𝑠C
− 18

13
𝑠 = 𝑡𝑠𝜔

− 7
13 (43)

The corresponding radius and aperture scales can be expressed in terms of 𝜔, 𝑅𝑠 ∶= 𝑅𝑚(𝑡𝑠), and 𝑤𝑠 ∶= 𝑤𝑚(𝑡𝑠) as follows:

𝑅𝑎 ∶= 𝑅𝑉
𝑚 (𝑡𝑎) =

(

𝐸′𝑉 5
𝑆

𝜇′𝐶 ′2

)
1
13

= 𝑅𝑠𝜔
− 7

117 and 𝑤𝑉
𝑚 (𝑡𝑎) =

(

𝜇′2𝐶 ′4𝑉 3
𝑆

𝐸′2

)
1
13

= 𝑤𝑠𝜔
14
117 (44)

If 𝜔 ≫ 1, then shut-in occurs considerably later than the constant injection rate storage–leak-off transition time 𝑡𝑚�̃�, so arrest
an be expected to occur shortly after shut-in. These two limiting scalings can be summarized as follows:

𝑡𝑎∕𝑡𝑠 ∼
{

𝜔−7∕13 if 𝜔 ≪ 1
1 if 𝜔 ≫ 1

(45)

𝑅𝑎∕𝑅𝑠 ∼
{

𝜔−7∕117 if 𝜔 ≪ 1
1 if 𝜔 ≫ 1

(46)

𝑤(𝑡𝑎)∕𝑤𝑠 ∼
{

𝜔14∕117 if 𝜔 ≪ 1
1 if 𝜔 ≫ 1

(47)

In Fig. 4 the results of numerous numerical simulations using the IMMA algorithm described in Dontsov (2016), which has been
adapted to include the arrest and recession asymptotes, are plotted for the zero toughness case. In 4(a) the ratios of the numerical
arrest times 𝑡𝑎 to the shut-in times 𝑡𝑠 are plotted as a function of the dimensionless shut-in time 𝜔. The red line represents a log linear
regression of the ratio 𝑡𝑎∕𝑡𝑠 ∼ 𝐴𝜔𝛼 from the first few data points. The regression yields 𝛼 = −0.535, which is consistent with the
power law given in (45). In 4(b), the ratios of the arrest radii 𝑅𝑎 to the shut-in radii 𝑅𝑠 are plotted as a function of the dimensionless
shut-in time 𝜔. The red line represents a log linear regression of the ratio 𝑅𝑎∕𝑅𝑠 ∼ 𝐴𝜔𝛼 from the first few data points. The regression
yields 𝛼 = −0.058, which is consistent with the power law given in (46).

Deflation time scaling: We define the deflation time as 𝑇 = 𝑡𝑐 − 𝑡𝑎 and the reverse time variable to be 𝑡′ = 𝑡𝑐 − 𝑡, where 𝑡𝑎 is the arrest
time and 𝑡𝑐 is the collapse time of the fracture. Motivated by the recession asymptote, in which the dominant balance is between the
term representing the rate of change of aperture and the leak-off term, we consider the following model to estimate the deflation
time 𝑇 :

𝜕𝑤
𝜕𝑡′

∼ 𝐶 ′
√

𝑇 − 𝑡′
(48)

This model can also be interpreted as a dual reverse time problem in which the fracture is inflating from 𝑤 ≈ 0 at time 𝑡′ ≈ 0 and
the aperture increases until time 𝑡′ = 𝑇 , at which time the leak-off term is singular. Integrating, it follows that 𝑤 ∼ 𝐶 ′

√

𝑇 , equating
his aperture to 𝑤𝑉

𝑚 (𝑡𝑎), and using the fact that 𝑤𝑠 = 𝐶 ′𝑡1∕2𝑚�̃�𝜔
1∕9, it follows that

𝑇 ∼ 𝑡𝑚�̃�𝜔
6
13 (49)

In Fig. 4(c) the ratios of the deflation times to the storage–leak-off transition times 𝑇 ∕𝑡𝑚�̃� are plotted as a function of the
dimensionless shut-in time 𝜔. The dashed red line represents a log linear regression of 𝑇 ∕𝑡𝑚�̃� ∼ 𝐴𝜔𝛼 in which 𝛼 = 0.467, which
is very close to the power law (49) predicted by the scaling analysis.
13
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Fig. 5. The solid black lines indicate the numerical solutions for: (a) the arrest time to shut-in time ratios, (b) the arrest radius to shut-in radius ratios,
and (c) the deflation time to storage–leak-off transition time ratios 𝑇 ∕𝑡𝑚�̃� all plotted as functions of 𝜔 for the range of values of the regime parameter
𝜙𝑉 ∈ {0.05, 0.1, 0.2, 0.5, 1, 1.25, 1.5, 2, 3}. The dashed red lines represent log linear regressions for each of these plots using the first few data points for the case
𝜙𝑉 = 1. The symbol ∙ at the value 𝜔 = 10−7 is used to indicate curves corresponding to the smallest regime parameter 𝜙𝑉 = 0.05. As 𝜙𝑉 increases the curves
move progressively away from those with the ∙ symbol. The dashed red lines represent log linear regressions for each of these plots using the first few data
points for the case 𝜙𝑉 = 1.

4.2.2. Finite toughness case (𝐾 ′ > 0)

Arrest scalings: If the dimensionless shut-in time 𝜔 ≪ 1, then the arrest time 𝑡𝑎 is determined by when the fracture, which starts
with a constant injected volume 𝑉𝑠 at shut-in, transitions from viscosity to toughness dominated propagation, which, according to
(39), occurs when

𝑡𝑎 ∼ 𝑡𝑉𝑚𝑘 = 𝜙𝑉 𝑡𝑉𝑚�̃� = 𝑡𝑠𝜙
𝑉 𝜔− 7

13 (50)

By comparing (50) and (45) we see the benefit of parameterizing the finite toughness case in terms of the fixed injected volume
rrest regime parameter 𝜙𝑉 in that it results in the same power law dependence on 𝜔. By contrast Mori and Lecampion (2021)
hose a parameterization of the finite toughness case that used the propagation regime parameter 𝜙 defined in (35) as the ratio of
he viscous-toughness to storage–leak-off transition times for a fracture driven to propagate by the injection of fluid volume at a
ixed rate 𝑄0. Since this latter analysis was in terms of a parameter designed to characterize propagation under fixed rate injection,
t is not suitable for the analysis of the arrest of fractures that propagate with a volume fixed at shut-in. Therefore the analysis (Mori
nd Lecampion, 2021) does not lead to power laws for the finite toughness case that also correlate with those for the zero toughness
ase.

As with the zero toughness case, the corresponding length and aperture scales can be obtained by substituting 𝑡𝑎 into (36). If
≫ 1 then shut-in occurs considerably later than the constant injection rate storage–leak-off transition time 𝑡𝑚�̃�, so arrest can be

xpected to occur shortly after shut-in. These two limiting scalings can be summarized as follows:

𝑡𝑎∕𝑡𝑠 ∼

{

𝜙𝑉 𝜔− 7
13 if 𝜔 ≪ 1

1 if 𝜔 ≫ 1
(51)

𝑅𝑎∕𝑅𝑠 ∼

{

(

𝜙𝑉 )
1
9 𝜔− 7

117 if 𝜔 ≪ 1
1 if 𝜔 ≫ 1

(52)

𝑤𝑎∕𝑤𝑠 ∼

{

(

𝜙𝑉 )−
2
9 𝜔

14
117 if 𝜔 ≪ 1

1 if 𝜔 ≫ 1
(53)

By comparing (45)–(47) to (51)–(53) we observe that the parameterization of this scaling analysis by 𝜔 and 𝜙𝑉 leads to the
same power law dependence of 𝑡𝑎∕𝑡𝑠, 𝑅𝑎∕𝑅𝑠 and 𝑤𝑎∕𝑤𝑠 on 𝜔 for the zero and finite toughness cases. The IMMA results for the finite
toughness case are presented in Fig. 5. In Fig. 5(a) the ratios of the numerical arrest time 𝑡𝑎 to the shut-in time 𝑡𝑠 are plotted as a
function of the dimensionless shut-in time 𝜔 for a range of values of the arrest regime parameter 𝜙𝑉 . The dashed red line represents
a log linear regression of the ratio 𝑡𝑎∕𝑡𝑠 ∼ 𝐴𝜔𝛼 using the first few data points for the case 𝜙𝑉 = 1, which yields 𝛼 = −0.534 - consistent
with the power law given in (51). In Fig. 5(b) the ratios of the arrest radius 𝑅𝑎 to shut-in radius 𝑅𝑠 are plotted as a function of the

𝑉

14

dimensionless shut-in time 𝜔 for the same range of values of the regime parameter 𝜙 . The dashed red line represents a log linear
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regression of the ratio 𝑅𝑎∕𝑅𝑠 ∼ 𝐴𝜔𝛼 using the first few data points for the case 𝜙𝑉 = 1. The regression yields 𝛼 = −0.057, which is
consistent with the power law given in (52). We observe that the 𝑡𝑎∕𝑡𝑠 curves are further spread out than those of 𝑅𝑎∕𝑅𝑠 because
𝜙𝑉 has a significantly larger range than

(

𝜙𝑉 )
1
9 .

Deflation time scaling: In order to determine the deflation time 𝑇 , as before we match 𝑤 ∼ 𝐶 ′
√

𝑇 to the aperture given in (53) and
use 𝑤𝑠 = 𝐶 ′𝑡1∕2𝑚�̃�𝜔

1∕9 to obtain

𝑇 ∼ 𝑡𝑚�̃�
(

𝜙𝑉 )−
4
9 𝜔

6
13 (54)

Comparing (49) to (54) we observe that the parameterization 𝜔 and 𝜙𝑉 leads to the same power law dependence of 𝑇 on 𝜔 for both
the zero and finite toughness cases.

In Fig. 5(c) the ratio of the deflation time to the storage–leak-off transition time 𝑇 ∕𝑡𝑚�̃� is plotted as a function of the dimensionless
shut-in time 𝜔 for the same range of 𝜙𝑉 values. The dashed red line represents a log linear regression of 𝑇 ∕𝑡𝑚�̃� ∼ 𝐴𝜔𝛼 using the
first few data points for the case 𝜙𝑉 = 1. The regression yields 𝛼 = 0.462, which is very close to the power law (54) predicted by
the scaling analysis.

5. Deflating fracture solution

5.1. Solution landscape represented by the evolving fracture radius 𝑅

In Table 1 the ratio of the radius scaled to the shut-in radius 𝑅(𝑡)∕𝑅𝑠 is plotted as a function of the scaled time 𝑡∕𝑡𝑠 for
𝜙𝑉 = 0.1, 0.5, 1 and 𝜔 = 10−6, 10−3, 1, 10. The value of 𝜙𝑉 is constant for each column of the table while the value of 𝜔 is
constant for each row. The red parts of the curve represent the dynamics up to the shut-in time 𝑡𝑠, which is designated by a red
asterisk ∗. The subsequent black part of the curve between the red shut-in point ∗ and the magenta arrest point ∙, represents the
radius between the time fluid injection ceased and the point of arrest. The magenta part of the curve between the arrest point ∙ and
the recession initiation point ▾ represents the period during which the fracture continues to lose fluid while arrested, so that 𝑉 = 0
and 𝜕𝑤

𝜕𝑡 < 0. The subsequent black part of the curve starting with ▾ represents the decreasing fracture radius 𝑅 while the fracture
recedes. Scanning down the first column 𝜙𝑉 = 0.1, we observe that the collapse time occurs a factor of 870 times later than the
shut-in time for the case 𝜔 = 10−6, which is reduced to 22.8 for 𝜔 = 10−3, which decreases to 1.8 for 𝜔 = 1, and is reduced further to
1.3 for the case 𝜔 = 10. These factors remain almost constant for the other two columns. Scanning across the rows, the proportion
of the time spent deflating while arrested (magenta portions of the curves) decreases as 𝜙𝑉 is increased, while the proportion of
time spent on recession alone remains almost constant. This behaviour is to be expected given the definition of 𝜙𝑉 in (39). The data
used to generate the plots in Table 1 and Fig. 6 are available for download (Peirce, 2022).

5.2. Aperture and pressure profiles

In Fig. 6 we provide more detailed plots of the numerical solutions for the first column in Table 1 associated with the value of
the arrest regime parameter 𝜙𝑉 = 0.1 and the values of the dimensionless shut-in time 𝜔 = 10−6, 10−3, 1, 10 located in (a)–(d),
respectively. In the first row for each parameter pair (𝜙𝑉 , 𝜔), we provide plots of the scaled radius 𝑅(𝑡)∕𝑅𝑠, the efficiency 𝜂(𝑡), and
the wellbore pressure 𝑝(0, 𝑡) scaled to the wellbore pressure at shut-in, 𝑝𝑠 ∶= 𝑝(0, 𝑡𝑠), against the scaled time 𝑡∕𝑡𝑠. The efficiency is
defined to be the ratio of the volume of fluid in the fracture to the pumped volume 𝑉𝑓 (𝑡) defined below (10)

𝜂(𝑡) ∶=
2𝜋 ∫ 𝑅

0 𝑤(𝑟, 𝑡)𝑟𝑑𝑟
𝑉𝑓 (𝑡)

,

n the second row of each of (a), (b), (c), and (d), we provide plots of the fracture aperture 𝑤 scaled to the maximum aperture at
hut-in, 𝑤𝑠 ∶= 𝑤(0, 𝑡𝑠), against the scaled radius 𝑟∕𝑅𝑠 for a number of sample times. The red curves represent the fracture aperture
t shut-in 𝑡 = 𝑡𝑠. Except for a small region near the tip, many of the red curves extend beyond the maximum ordinate range, which,
or clarity, have been restricted to a maximum value set by the arrest aperture profile. The magenta curves represent the aperture
rofiles for the hydraulic fracture while it deflates during the arrest phase. The solid magenta curve, indicated by the magenta circle
at the wellbore, is the aperture profile sampled at the point of arrest 𝑡 = 𝑡𝑎. The black curves correspond to the aperture profiles
hile the hydraulic fracture is receding. The curve indicated by the black circle ∙ at the wellbore is the aperture profile sampled
t the recession initiation time 𝑡 = 𝑡𝑟. For the four cases considered in Fig. 6 the scaled sample times 𝑡∕𝑡𝑠 that correspond to each
f the symbols located at the wellbore are listed in Table 2. These symbols have also been indicated on the time evolution plots
rovided in the first rows of plots (a)–(d).

As the fracture approaches the collapse time 𝑡𝑐 it can be seen that the solutions are approximately self-similar. Indeed, it is possible
o derive the following sunset similarity solution (Peirce and Detournay, 2022b) for a receding radial fracture in a permeable elastic
edium:

𝑤(𝑠, 𝑡) = 𝑔0(𝑡𝑐 − 𝑡)
[

1 −
( 𝑟
𝑅

)2
]

, 𝑅 = 𝛬(𝑡𝑐 − 𝑡)1∕2 (55)

where 𝑔0 is the constant leak-off asymptote 𝑔 = 𝐶′
√

𝑡−𝑡𝑜(𝑟)

𝑡→𝑡𝑐∼ 𝑔0 and 𝛬 is determined by the amount of fluid in the fracture at a given
adius 𝑅 on the way to collapse. For the last three sample times, indicated by the (⧫,▴,▶) symbols at the wellbore, the sunset
15
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Table 1
Scaled radius R(t)/Rs vs. t/ts plotted for different 𝜙𝑉 and 𝜔 values.

Table 2
The scaled sample times t/ts corresponding to each of the markers in Fig. 6.
Subf igure 𝜔 ∙ ⧫ ▴ ∙ ▾ ⧫ ▴ ▶

(a) 10−6 119 165 256 302 472 655 770 844
(b) 10−3 3.8 5.0 7.3 8.5 12.7 17.3 20.22 22.16
(c) 1 1.05 1.11 1.22 1.27 1.41 1.58 1.69 1.77
(d) 10 1.01 1.04 1.09 1.12 1.16 1.23 1.27 1.29

solution (55) is represented by the dashed blue curves for comparison with the numerical solution. As 𝑡 → 𝑡𝑐 these two solutions
how close agreement.

In the third row of each of (a), (b), (c), and (d), we provide plots of the fracture pressure 𝑝 scaled to the wellbore pressure at
hut-in, 𝑝𝑠, against the scaled radius 𝑟∕𝑅(𝑡𝑠) for a number of sample times. The red curves represent the pressure profile at shut-in
= 𝑡𝑠. Except for a small region near the tip, many of the red curves extend beyond the maximum ordinate range, which, for clarity,
16

ave been restricted to a maximum value set by the arrest pressure profile. The magenta curves represent the pressure profiles for
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Fig. 6. For each of (a), (b), (c), and (d) the following plots are provided: Top row: scaled fracture radius 𝑅(𝑡)∕𝑅(𝑡𝑠), fracture efficiency 𝜂, and wellbore pressure
(0, 𝑡) scaled to the wellbore pressure 𝑝𝑠 at shut-in all plotted as a function of 𝑡∕𝑡𝑠; Middle row: snapshots of the fracture aperture 𝑤 after arrest scaled to the

maimum aperture 𝑤𝑠 at shut-in plotted as a function of 𝑟∕𝑅(𝑡𝑠); Bottom row: snapshots of the fracture pressure 𝑝 after arrest scaled to the wellbore pressure 𝑝𝑠
at shut-in plotted as a function of 𝑟∕𝑅(𝑡𝑠).

the hydraulic fracture while it deflates during the arrest phase. The solid magenta curve, indicated by the magenta circle ∙ at the
wellbore, is the pressure profile sampled at the point of arrest 𝑡 = 𝑡𝑎. The black curves correspond to the pressure profiles while
he hydraulic fracture is receding. The curve indicated by the black circle ∙ at the wellbore is the pressure profile sampled at the
ecession initiation time 𝑡 = 𝑡𝑟. As with the aperture profiles, the scaled sample times 𝑡∕𝑡𝑠 that correspond to each of the symbols
ocated at the wellbore are listed in Table 2. The pressure field associated with the sunset solution can be obtained by substituting
55) into (2) and evaluating the resulting integral numerically. For the last three sample times indicated by the (⧫,▴,▶) symbols
t the wellbore, the sunset pressure profile is represented by the dashed blue curves for comparison with the numerical solution.
s 𝑡 → 𝑡𝑐 these two solutions show close agreement.

.3. Solution using field parameters

We have demonstrated that the dimensionless shut-in time 𝜔 and regime parameter 𝜙𝑉 fully characterize the arrest and recession
ynamics of deflating radial hydraulic fractures. In order to get an idea of the range of values that the dimensionless pair (𝜔, 𝜙𝑉 )
ight assume when typical field parameters are used, consider the following ranges of material parameters: 𝐸′ ∼ 1 − 30 GPa,
′ ∼ 10−2–10 Pa s, 𝐶 ′ ∼ 10−5–10−8 m s−1∕2, 𝐾 ′ ∼ 0.3–3 MPa m1∕2, 𝑡𝑠 ∼ 3600 s and 𝑄0 ∼ 10−3–10−1 m3 s−1. For these ranges of material
nd injection parameters, the range in the values assumed by the dimensionless parameters is 10−10 ≲ 𝜔 ≲ 3 and 10−10 ≲ 𝜙𝑉 ≲ 104.
17
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Fig. 7. Top row: fracture radius 𝑅(𝑡) [m], fracture efficiency 𝜂, and wellbore pressure 𝑝(0, 𝑡) [kPa] all plotted as a function of 𝑡 measured in hours [h]; Middle
row: snapshots of the fracture aperture 𝑤 [mm] after arrest plotted as a function of 𝑟 [m]; Bottom row: snapshots of the pressure 𝑝 [kPa] after arrest plotted as
a function of 𝑟 [m].

We now provide a solution in physical units for a deflating radial hydraulic fracture that arrests and recedes for input parameters
that are within the range one might expect in the field. Let 𝐸′ = 5 GPa, 𝜇′ = 0.5 Pa s, 𝐶 ′ = 0.535 × 10−6 m s−1∕2, 𝐾 ′ = 0.5493114
MPa m1∕2, 𝑡𝑠 = 3600 s and 𝑄0 = 10−1 m3 s−1. This parameter set has been chosen so that the dimensionless shut-in time 𝜔 ∼ 10−6

and regime parameter 𝜙𝑉 ∼ 0.1, which correspond to the case considered in Fig. 6(a) in which the results were given in scaled
form. The resemblance between the results in Figs. 7 and 6(a) is clear. For the time evolution plots shown in the first row of Fig. 7
the resemblance is emphasized by the fact that 𝑡 is plotted in hours while the shut-in time 𝑡𝑠 = 3600 s or 1 h. Indeed, the plots are
almost identical, except that the scales on the axes are now provided in physical units rather than scaled form. The same symbol
and line conventions have been used for Fig. 7 as those defined for Fig. 6.

6. Conclusions

In this paper we have considered the post shut-in dynamics of a radial hydraulic fracture in a porous elastic medium. We
have shown how recently developed multiscale tip asymptotic solutions for hydraulic fractures during arrest and recession, can
be implemented in a numerical scheme that is able to capture the arrest–recession transition while using a relatively coarse mesh.
This algorithm uses the arrest multiscale tip asymptote �̂�𝑘𝑔 to determine the decreasing stress intensity factor 𝐾 as the fracture
deflates and the ephemeral 𝑔-asymptote displaces the 𝑘-asymptote at the fracture tip. At the transition point, characterized by
𝐾 = 0, the 𝑔-asymptote occupies the tip region completely. The algorithm then uses the recession multiscale tip asymptote �̂�𝑟𝑔 to
determine the receding tip speed |𝑉 | as the 𝑔-asymptote is gradually displaced by the linear 𝑟-asymptote. By using the arrest and
recession multiscale asymptotes the algorithm is able to capture the arrest–recession transition smoothly. The solution that uses
the two multiscale asymptotes �̂�𝑘𝑔 and �̂�𝑟𝑔 to effect the arrest–recession transition is compared to a solution that uses only the
𝑘 and 𝑟-vertex solutions. The solution that uses only vertex asymptotes exhibits jump discontinuities through the arrest–recession
transition point, while the multiscale solution is smooth. This is because, immediately after recession starts, the linear 𝑟-asymptote
is only valid on a much smaller length scale compared to that of a tip element. Thus ascribing all the aperture in the tip to the 𝑟-
18

asymptote and ignoring the contribution of the 𝑔-asymptote, results in a recession velocity that is much too large. However, using the
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multiscale asymptotes, one is able to apportion these components correctly and in an adaptive fashion to achieve a smooth solution.
We demonstrate that even while using a coarse mesh the multiscale asymptotes are able to capture the power law exponents in
the range 1∕2 ≤ 𝛿 ≤ 1, which are predicted by asymptotic analysis. Despite the jump discontinuity through the arrest–recession
transition exhibited by the algorithm using vertex as opposed to multiscale asymptotes, the two solutions ultimately converge once
the transients have decayed. This analysis thus establishes the important result that, unless the purpose of the modelling is to provide
a smooth solution with great detail around the arrest–recession transition point 𝑡𝑟, a pragmatic, and much more efficient approach,
is to use a simpler algorithm based solely on vertex asymptotes.

We perform a scaling analysis in terms of the dimensionless shut-in time 𝜔 and the dimensionless arrest regime parameter 𝜙𝑉

hat is able to capture the power law dependence of the arrest time, the arrest radius, and the arrest aperture on 𝜔. In contrast to
he analysis of Mori and Lecampion (2021), this novel parameterization maintains the same power law relationships for both the
ero and finite fracture toughness cases. We also establish the first scaling law for the deflation time, which also has a unified power
aw for both the zero and finite fracture toughness cases. All these power law relationships are confirmed using a numerical scheme
hat includes the arrest–recession multiscale tip solution, which was established using rigorous asymptotic analysis.

Using this scheme, we explore the impact that changes in the dimensionless parameters 𝜔 and 𝜙𝑉 have on the time between
shut-in and arrest, the duration of arrest, and the elapsed time from the initiation of arrest to collapse of the fracture. For fixed
𝜙𝑉 , the ratio 𝑡𝑐∕𝑡𝑠 between the collapse time and the shut-in time decreases as the dimensionless shut-in time 𝜔 increases. For fixed

, the proportion of time spent deflating while the fracture has arrested decreases as 𝜙𝑉 increases, while the proportion of time
pent solely on recession remains almost constant. We also provide estimates of the range of dimensionless parameters 𝜔 and 𝜙𝑉

ne could expect if a realistic range of the material and injection parameters encountered in the field are used. For values of the
nput parameters that are within the range one might encounter in the field, we also provide the post shut-in solution in physical
nits for a radial hydraulic fracture that propagates after shut-in, deflates during arrest, and recedes till collapse.

ata

he data used to generate the plots in Table 1 and Fig. 6 are available for download (Peirce, 2022).
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