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We investigate the deflation dynamics of a fluid-driven fracture in a per-

meable elastic medium in a state of plane strain after fluid injection has

ceased. Depending on the leak-off characteristics of the porous medium and

the volume of injected fluid retained in the fracture at the time of shut-in,

the fracture may start to recede almost immediately or continue to propagate

1



till it arrests when the stress intensity factor drops below the fracture tough-

ness. While occupying the arrest footprint, the fracture continues to deflate

while the stress intensity factor decreases due to fluid loss to the porous

medium. When the stress intensity factor drops to zero, the fracture starts

the process of recession, which continues until it finally collapses. To estab-

lish a rigorous numerical scheme to explore the deflation dynamics of plane

strain hydraulic fractures, we use recently established vertex and multiscale

tip asymptotes for arrested and receding hydraulic fractures [33], including

the r-vertex linear tip aperture asymptote ŵ ∼ x̂ for a receding hydraulic

fracture and the stationary g-vertex asymptote ŵ ∼ x̂3/4. Numerical exper-

iments demonstrate that the multiscale asymptotes are required in order to

achieve solutions that remain smooth through the arrest-recession transition

point. In contrast, numerical solutions, obtained by only using vertex solu-

tions to model the arrest and recession, exhibit jump discontinuities through

this transition point. However, once the transients from these jump discon-

tinuities have decayed the numerical schemes that use vertex and multiscale

asymptotes yield almost identical solutions. A scaling analysis shows the ex-

istence of asymptotic power law behaviour for various quantities, such as the

arrest time, in terms of two new dimensionless parameters. Finally, numer-

ical solutions explore the dependence on the two dimensionless parameters

of the arrest time, the duration of the arrest period, and the duration of the

recession phase and confirm their asymptotic power law behaviours.

Key words: Plane Strain, Post Injection Hydraulic Fracture Deflation, Arrest, Recession,

Multiscale Tip Asymptotics.
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1 Introduction

Hydraulic fractures occur naturally during the spontaneous draining of glacial lakes, the

calving of glaciers, the genesis of magma-driven dykes and sills, and the water-driven

cracking of dams. Hydraulic fractures are also engineered by injecting a viscous fluid into

rock to stimulate the rock for hydro-carbon extraction, for augmented geothermal energy

production, for decontamination and disposal of waste water, and for preconditioning

and cave inducement in mining operations. Once injection is stopped the wellbore is

shut-in by closing a valve, or the fracture is allowed to bleed causing flow-back of fluid

into the wellbore, or fluid is actively pumped from the wellbore. In this paper we

consider the first of these injection cessation scenarios. At a smaller scale, miniature

hydraulic fractures are also propagated and then allowed to recede for measurement

and diagnostic purposes. During the evolution of these miniature fractures, the wellbore

pressure is measured in order to estimate the leak-off coefficient or to identify the closure

pressure to determine the minimum in situ stress σ0.

After shut-in, depending on the various parameters characterizing the system including

those controlling the fluid leak-off and the volume of injected fluid in the fracture at the

time of shut-in, the hydraulic fracture may arrest almost immediately or may continue

to propagate while the fluid pressure adjusts to the change in boundary condition at

the wellbore. The unforced propagation will continue till the hydraulic fracture arrests

when the stress intensity factor falls below the critical fracture toughness required for

propagation. After arrest the fracture continues to deflate without altering its footprint

while the stress intensity factor decreases to zero. Once the stress intensity factor is

zero the fracture starts to recede until the point of collapse. This paper considers the

deflation dynamics of a plane strain hydraulic fracture as it leaks fluid to the porous

medium after shut-in.

Over the last five decades considerable research has been dedicated to building accurate

models of propagating hydraulic fractures with the primary objective being to determine
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the fracture footprint at shut-in. Since the formulation of some of the early models of

hydraulic fractures propagating in a state of plane strain (see e.g. [23]), the seminal

paper by Spence and Sharp [38] on self-similar solutions, and the landmark papers iden-

tifying the tip asymptotics of viscosity-dominated propagation [38, 25, 7], there has been

considerable progress in the understanding of the tip asymptotics [17, 9, 2, 10] and the

development of semi-analytic models of hydraulic fracture propagation [37, 13, 14]. The

viscosity- and toughness-dominated analytic solutions have also been confirmed in pre-

cise laboratory experiments on translucent solids [4]. Multiscale tip asymptotic solutions

have also been developed to capture multiple physical processes that may be active at

the fracture tip [19, 15]. These asymptotic solutions enable the development of numeri-

cal algorithms [30, 31, 16] that have been shown to provide highly accurate solutions on

extremely coarse meshes when compared to other techniques [24].

In contrast to the significant progress made in the modelling of propagating hydraulic

fractures, there has, to our knowledge, been very little development of rigorous models

of deflating hydraulic fractures both at arrest and during recession. Indeed, even the

propagation of radially symmetric hydraulic fractures after shut-in has only recently been

subjected to rigorous study [28]. This dearth of rigorous modelling exists despite the

important role that modelling the arrest and recession deflation dynamics of hydraulic

fractures plays in the interpretation of the borehole pressure decline to determine the

leak-off coefficient and σ0.

In the absence of a rigorous model for arrest and recession, current practice in leak-

off identification [22, 29] assumes that the footprint of the hydraulic fracture during

deflation remains the same as it was at the point of shut-in. In addition, without an

accurate arrest and recession model it is difficult to locate the closure pressure from the

pressure-time record to determine σ0. Existing models of hydraulic fracture recession

have been purely numerical and based on implementing a minimum aperture constraint

[8, 1, 27, 21, 40]. Without a rigorous solution that accounts for the tip asymptotics of the
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receding fracture, there is no way to assess the impact of the magnitude of the arbitrarily

chosen minimum aperture on the numerical solution. There is thus a compelling need

for a semi-analytic model that captures the deflation dynamics of a hydraulic fracture

during arrest and recession. These models should make use of the appropriate tip solution

obtained from rigorous analysis of the tip behaviour for a hydraulic fracture during arrest

and recession.

This paper aims to address this issue for the case of a symmetric plane strain hydraulic

fracture that deflates and recedes due to tip fluid losses to the porous medium. We

make use of recent research [33] that has established the vertex asymptotic solutions

for hydraulic fractures that deflate during the arrest and recession phases, as well as the

multiscale asymptotic solutions that apply during arrest, through the transition between

arrest and recession, and during recession itself.

In section 2, we describe the mathematical model and boundary and propagation con-

ditions for a plane strain fracture that can propagate, deflate, and recede in a porous

elastic medium. In section 3, we summarize the tip asymptotic behaviour for propagat-

ing hydraulic fractures, the multiscale arrest asymptotics, through the arrest-recession

transition, and for recession. We also describe special fixed point iterative procedures

that are required to implement the multiscale asymptotic solutions and demonstrate

that the multiscale asymptotes are required to achieve smooth solutions through the

arrest-recession transition point. In section 4, we present the scaling analysis and in-

troduce the pair of novel dimensionless parameters, which make it possible to unify the

power laws so that they apply for both zero and finite toughness cases. In section 5, we

present numerical results that use the multiscale asymptotics to explore the impact of

the dimensionless parameters on the time between shut-in and arrest, the duration of

arrest, and the elapsed time from the initiation of arrest to collapse of the fracture. In

section 6, we make some concluding remarks.
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2 Mathematical Model

The mathematical model describing the dynamics of a fluid driven fracture needs to

account for the dominant physical processes involved, namely: the deformation of the

rock due to fracture opening; a mechanism for fracture growth; a description of the fluid-

flow within the fracture; and the leak-off of fluid to the surrounding porous medium. In

order that the model is tractable we make the following simplifying assumptions: the

fracture propagates in a linear elastic solid characterized by the Young’s modulus E

and Poisson’s ratio ν; growth of the fracture is assumed to be mode I according to

linear elastic fracture mechanics (LEFM) and is modulated by fracture toughness KIc;

fluid-flow within the fracture is assumed to be laminar, follows lubrication theory, and

the fluid is assumed to be incompressible and Newtonian with a dynamic viscosity µ;

a uniform far-field stress field σ0 acts normal to the fracture; we restrict ourselves to

leak-off governed by Carter’s model [5] characterized by the leak-off coefficient CL; we

assume that the fluid and fracture fronts coalesce; and the solid medium is assumed to

be homogeneous so that E, ν, KIc, and CL are all constant.
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Figure 1: Schematic showing the KGD fracture geometry along with the coordinate sys-
tems used in the model
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2.1 Governing Equations for a Plane Strain Hydraulic Fracture in a

Permeable Medium

Since the solid medium is assumed to be homogeneous the fracture will grow symmet-

rically about the injection point. We choose to locate the origin of the x coordinate

system at this point (see Figure 1). The primary unknowns in a hydraulic fracture

problem are the fracture aperture w(x, t), the fluid pressure pf(x, t) or the net pressure

p(x, t) = pf(x, t) − σ0, the fluid flux q(x, t), and the fracture half-length ℓ(t). The solu-

tion depends the injection rate Q(t) (typically the volumetric injection rate divided by

the height of the plane strain hydraulic fracture having dimensions [Q] = L2T−1) and

four alternate material parameters, namely the plane strain modulus E ′, the alternate

viscosity µ ′, the alternate fracture toughness K ′, and alternate Carter leak-off coefficient

C ′, which are defined as follows in order to keep subsequent formulae uncluttered:

E′ =
E

1− ν2
, µ′ = 12µ, K′ =

(
32

π

)1/2

KIc, C′ = 2CL. (1)

Elasticity: For a fracture with a half-length ℓ in an infinite, homogeneous, linear elastic

solid in a state of plane strain, the fracture aperture w is the equilibrium elastic response

to the imposed net pressure p, which are related by the following the integral equation:

p(x, t) = −
E′

4π

ℓ(t)�

−ℓ(t)

∂w

∂ξ

dξ

ξ− x
= −

E′

2π

ℓ(t)�

0

∂w

∂ξ

ξdξ

ξ2 − x2
. (2)

Here the second integral in (2) can be obtained from the first by exploiting symmetry.

Continuity: Balance of fluid volume is expressed by the conservation law:

∂w

∂t
+

∂q

∂x
+ g = Q(t).δ(x) (3)

Here g represents the Carter leak-off velocity defined below. The point source is repre-
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sented by the δ-function in (3) and we will be considering a propagation phase during

which the fluid is injected at a constant rate Q0 followed by a shut-in phase initiated at

time ts, after which time there is no further fluid injected into the fracture. Thus the

source function Q(t) can be expressed as

Q(t) =


Qo 0 < t < ts

0 t ⩾ ts.

Poiseuille’s law: Assuming that the fracturing fluid is Newtonian and that the flow is

laminar, the fluid flux inside the fracture can be expressed in terms of Poiseuille’s law

q = −
w3

µ ′
∂p

∂x
. (4)

Carter Leak-off law: We assume that the fluid loss to the permeable rock is captured by

Carter’s leak-off model [5]

g =
C ′√

t− to(x)
. (5)

in which to(x) denotes the time of first exposure of point x to the fracturing fluid. This

model excludes pressure-dependent leak-off, which is beyond the scope of this study. We

observe that the Carter model (5) has a square root singularity at the tip if the fracture is

propagating and exposing previously unfractured rock to the fracturing fluid. However,

once the fracture has arrested or is receding, the leak-off term in (5) becomes finite.

Indeed, the analysis presented in this paper is more general in that it only assumes that

the leak-off function g(x, t) is regular during arrest and recession.

Initial Conditions: The initial conditions are formally given by

ℓ = 0, w = 0, p = 0, at t = 0. (6)

Boundary Conditions: For coalescent fluid and fracture fronts the boundary conditions

8



at the crack tips x = ±ℓ are given by zero fracture opening and zero flux conditions [11]

w = 0, q = 0, at x = ±ℓ. (7)

For a symmetric fracture the δ-function source can be replaced by an equivalent flux

boundary condition at x = 0

q(0+, t) =
Q(t)

2
, (8)

so that only half the fracture need be modelled.

Given these initial and boundary conditions, the fluid mass balance (3) and Carter

leak-off law (5) can, after integrating both in time and space and exploiting symmetry,

be expressed alternatively as the following global continuity equation:

2

� ℓ(t)

0
w(x, t) dx+ 4C′

� ℓ(t)

0

√
t− to(x) dx = Vf(t), (9)

where

Vf =


Qot 0 < t < ts

Vo = Qots t ⩾ ts.

This equation simply establishes that the total volume of fluid injected at time t is equal

to the volume of fluid contained in the crack plus the total volume of fluid lost to the

permeable rock.

Propagation Condition: Since the fracture is assumed to propagate in limit equilibrium,

linear elastic fracture mechanics (LEFM) [36] implies that the alternate mode-I stress

intensity factor K satisfies the following inequality constraint:

K := E′ lim
x→±ℓ

w√
ℓ∓ x

⩽ K′. (10)

Equality in (10) occurs when the fracture is propagating, i.e. V > 0, while strict inequal-
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ity in (10) is associated with arrest characterized by V = 0, 0 ⩽ K < K ′, and recession

which is characterized by V < 0 and K = 0.

3 Tip Asymptotics for a HF in a Permeable Medium

3.1 Tip equations

Let x̂ = ℓ(t)−x denote a moving coordinate located on the tip of the crack with the x̂-axis

pointing inside the fracture (see Figure 1). Let ŵ(x̂, t), p̂(x̂, t), and q̂(x̂, t) denote the

corresponding fracture aperture, net pressure, and flux referred to this new coordinate

system. By convention, the flux q̂ is taken positive when directed opposite to the x̂-

axis. Let V(t) denote the fracture tip velocity, which is taken positive for a propagating

fracture. Thus q̂ and V have the same sign convention. In the moving coordinate system

the governing equations become:

� Elasticity equation

p̂ = −
E ′

4π

2ℓ(t)�

0

∂ŵ

∂ŝ

dŝ

ŝ− x̂
. (11)

� Lubrication equation

∂ŵ

∂t
+ V

∂ŵ

∂x̂
=

∂

∂x̂

(
ŵ3

µ′
∂p̂

∂x̂

)
− ĝ, 0 < x̂ < ℓ(t). (12)

We observe that the lubrication equation (12) is obtained by combining (3)-(5) with re-

spect to variables in the x̂ coordinate system. The boundary and propagation conditions

are the shifted versions of those described above.
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3.2 Local analysis and vertex solutions

Since we are interested in the behavior of the solution near the tip, we assume power

law asymptotic solutions of the form:

ŵ
x̂→0
∼ A(t)x̂α,

1

2
⩽ α ⩽ 1, (13)

The dominant behaviour [34] of the integral operator in (2) yields the following leading

asymptotic behaviour for the net pressure

p̂ ∼

 AE′α
4 cotπαx̂α−1, 1

2 < α < 1

AE′

4π ln x̂, α = 1
(14)

and p̂ = C for α = 1/2. Now combining (13)-(14), the flux gradient can be expressed in

the form

dq̂

dx̂
∼

 α(α− 1)(α− 1
2) cot(πα)

A4E′

µ′ x̂4α−3, 1
2 < α < 1

A4E′

2πµ′ x̂, α = 1
(15)

Substituting the asymptotic relations (13)-(14) into (12) yields the following:

Ȧx̂α + αVAx̂α−1 − α(α− 1)(α−
1

2
) cot(πα)

A4E′

µ′ x̂4α−3 + ĝ = 0 :
1

2
< α < 1,(16)

Ȧx̂+ VA−
A4E′

2πµ′ x̂+ ĝ = 0 : α = 1. (17)

After arrest V ⩽ 0 and the leak-off term ĝ is no longer singular since t > t0(x) for

all points x within the fracture footprint, and so, as time progresses, it approaches a

value that is spatially uniform. Thus, in order to perform the local analysis to deter-

mine asymptotic solutions after arrest, ĝ will, to first order, be assumed to be spatially

homogeneous in the tip region and denoted as ĝ0(t).
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3.2.1 Propagation asymptotes (K = K ′,V > 0)

The vertex solutions for a propagating hydraulic fracture are well established [10]. The

k ′-asymptote associated with the fracture toughness is given directly by LEFM; the m̃-

asymptote associated with leak-off is obtained by balancing the third and fourth terms in

(16) with ĝ approximated by ĝ ∼ C′ (V
x̂

)1/2
close to the tip; the m-asymptote associated

with viscous dissipation is obtained by balancing the second and third terms in (16).

These asymptotes are respectively given by

ŵk ′ = l
1/2
k ′ x̂1/2, ŵm̃ = βm̃l

3/8
m̃ x̂5/8, ŵm = βml

1/3
m x̂2/3, (18)

where the following length scales have been defined: lk ′ =
(
K′

E′

)2
, lm̃ =

(
4µ′VC′2

E′

)1/3
,

and lm = µ′V
E′ and the constants are given by βm̃ = 4/(15(

√
2 − 1))1/4 and βm =

21/335/6.

3.2.2 Arrest asymptotes (0 ⩽ K < K ′, V = 0)

The arrest asymptotes, recently described in [33], are: the k-asymptote ŵk determined

from LEFM in terms of the stress intensity factor K, which decreases from K ′ to 0 as

fluid leaks from the fracture into the porous medium; and the ephemeral g-asymptote

ŵg, associated with the arrest-recession transition, which is obtained by noting that

V = 0 and matching the third and fourth terms in (16) with ĝ ∼ ĝ0. These asymptotes

are respectively given by:

ŵk = l
1/2
k x̂1/2 and ŵg = βgl

1/4
g x̂3/4, (19)

where lk =
(
K
E′

)2
= ε2klk′ is the stress intensity length scale and εk is a dimensionless

stress intensity parameter defined in terms of the stress intensity factor K as follows:

εk :=
K

K′ =
KI

KIc
< 1, (20)
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lg = µ′ĝ0

E′ is the post-arrest leak-off length scale, and the constant βg =
(
64
3

)1/4
.

3.2.3 Recession asymptote - r-asymptote (K = 0, V < 0)

For V < 0, the g-asymptote with α = 3/4 is inadmissible since the convective term V ∂ŵ
∂x̂ ,

which is now nonzero, violates the dominant balance that applied when the fracture was

at rest. Thus the only admissible balance occurs if α = 1, for which the leading order

match between the second and fourth terms in (17) yields the r-asymptote:

ŵr =
ĝ0

|V |
x̂ =

lg

lr
x̂ =

x̂

εr
, (21)

where we have introduced the length scale lr =
µ′|V |
E′ and the parameter εr =

|V |
ĝ0

= lr
lg
.

There is also a match at the next order between the first and third terms in (17),

respectively associated with the ∂ŵ
∂t and ∂q̂

∂x̂ terms in the lubrication equation.

In [33] it has bee shown that by integrating (15) for the case α = 1 and imposing the

boundary condition q̂(0) = 0 it follows that q̂ > 0, which, in the tip coordinate system

x̂, implies that fluid is moving towards the tip even though the crack is receding. This

is consistent with the negative pressure gradients (with respect to the global coordinate

x) that can be observed in figures 6 and 7, which imply that for receding fractures there

is a flux of fluid toward the tip.

3.3 The connection problem to establish edge solutions

Vertex and multiscale tip asymptotic solutions [10, 19, 15] have proven to be extremely

useful in the development of numerical algorithms to model propagating fractures [30, 2,

24, 31, 32, 16]. These algorithms can achieve solutions with a high degree of precision,

able to account for the vertex and multiscale behaviour at the finest length scale, while

using a relatively coarse mesh. The fundamental idea for propagating hydraulic fractures

[30, 31, 16] is to use a trial value of the fracture aperture ŵ, sampled at computational
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points within and adjacent to the fracture front, along with the applicable tip asymptote

to estimate the fracture font location (or equivalently the local front velocity) at the

current step. The front position for propagating fractures is then adjusted iteratively

and the aperture updated until both are consistent with the applicable asymptote. The

efficacy of this approach was clearly demonstrated in a collaborative study that evaluated

a number of numerical algorithms [24] and benchmarked their relative accuracy against

an analytic solution and compared their relative efficiency.

In the previous subsection we summarized the multiple vertex asymptotes that apply

for hydraulic fractures propagating, at arrest, and receding - each corresponding to a

different physical process that is assumed to be dominant at the tip. When multiple

physical processes compete in the tip region then the asymptotic solution involves multi-

ple vertex asymptotes. The multiscale solutions for propagating hydraulic fractures are

well established [19, 15]. The multiscale tip solutions for the arrest and recession phases

of a deflating hydraulic fracture were recently determined [33] by considering (11) and

(12) in the limit x̂ → 0. These limiting equations [30] are those for a semi-infinite fracture

in a state of plane strain that deflates while arrested V = 0, or recedes with a constant

velocity V < 0. In this subsection we summarize these ‘edge’ solutions and discuss their

implementation. In the numerical results provided in this section the Implicit Moving

Mesh Algorithm (IMMA) described in [14] has been adapted to use the k and r-vertex

asymptotes to model the arrest and recession phases and the results are compared to

those obtained when the IMMA scheme is adapted to use the multiscale k− g and r− g

edge solutions.

3.3.1 The k− g edge solution:

Since x̂1/2 ≫ x̂3/4 as x̂ → 0, the k-asymptote will dominate the solution in the tip region

and the g-asymptote will only manifest itself as we move farther from the tip. The extent

of the region closest to the tip that is occupied by the k-asymptote decreases with K,
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Figure 2: (a) Plot of the reciprocal of the scaled aperture 1/w̃kg as a function of x̃2 for the
k−g edge asymptote. The solid black curve represents the numerical solution
to the coupled semi-infinite problem while the dashed blue curve represents the
approximate solution provided by (22). (b) Plot of the scaled aperture w̃rg as
a function of x̃ for the r− g edge asymptote. The solid black curve represents
the numerical solution to the coupled semi-infinite system. For both (a) and
(b), the red curves between the inverted red triangles represent the search path
for a single time step followed by the fixed point scheme (24) for εk (a) and the
fixed point scheme (26) for εr (b). The coloured dots represent the solutions
for εk and εr for multiple time steps.

while the fracture is deflating at arrest. The g-asymptote expands into the tip region

that has been vacated by the k-asymptote until K = 0, at which instant the g-asymptote

occupies the tip region completely. We therefore seek the k− g edge solution ŵkg that

connects the inner solution ŵ
x̂→0→ ŵk to the outer solution ŵ

x̂→∞→ ŵg.

Defining the length scale lkg =
l2k
lg

and introducing the scaled variables x̃ =
(

x̂
lkg

)1/2
and w̃kg =

ŵkg

ŵk
, the solution to the coupled problem for a deflating and arrested semi-

infinite hydraulic fracture was given in [33]. The solution w̃kg(x̃), which is universal in

that it does not depend on any parameters, is denoted by the black curve in figure 2

(a). Assuming a power law behaviour for w̃kg it is possible [33] to obtain the following

explicit approximate solution, which has a relative error of less than 3% and is indicated
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by the dashed blue curve in figure 2 (a).

w̃kg ≈
(
1+ β4

gx̃
2
)1/4

or ŵkg ≈ l
1/2
k x̂1/2

(
1+ β4

g

x̂

lkg

)1/4

. (22)

Assuming that w̃kg(x̃) is a known function of x̃, the scalings defined above can be used

to obtain the following relationship between ŵ and x̂ for the k− g-asymptote:

ŵ = ŵk(x̂)w̃kg

(
(
x̂

lkg
)1/2

)
= εkŵk′(x̂)w̃kg

(
1

ε2k
(

x̂

lk′g
)1/2

)
, (23)

where lk = ε2klk′ , lkg = ε4klk′g, and lk′g =
l2
k′
lg
. Thus given trial values of ŵ, sampled a

certain distance x̂ from the tip, (23) defines εk, and therefore K, implicitly.

A robust fixed point iterative scheme for εk [35] can be obtained by re-writing (23) in

the following recursive form:

εk,i+1 =
ŵ

l
1/2
k′ x̂1/2

1

w̃kg

(
1

ε2
k,i
( x̂
lk′g

)1/2
) . (24)

Note that this recursion is expressed in terms of the function 0 ⩽ 1/w̃kg ⩽ 1 plotted

in figure 2 (a). The red curve in this figure represents the trajectory of iterates εk,i

for a particular time step, which is selected to be later in the deflation process as it is

associated with a small value of εk. This sequence of iterates starts with the initial guess

εk,0 =
ŵ

l
1/2

k ′ x̂1/2
, which is obtained from the LEFM asymptote given in the first expression

in (19), and indicated in figure 2 (a) by the inverted red triangle for which 1/w̃kg ∼ 1.

These iterations terminate when the relative difference between successive iterates is less

than 10−3 at the point indicated by the inverted red triangle on the lower part of the red

curve. The coloured circles moving down the 1/w̃kg curve in (a) represent the sequence

of decreasing εk values (with values depicted on the colour bar), which correspond to

decaying K values over multiple time steps as the fracture deflates while arrested.
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3.3.2 The r− g edge solution:

Because x̂3/4 ≫ x̂ as x̂ → 0, we would expect the g-asymptote to dominate the r-

asymptote closest to the tip. However, since the g-asymptote cannot exist at the tip

for V < 0, it is the r-asymptote that occupies the region closest to the tip while the

g-asymptote will only manifest itself farther from the tip. Thus, as recession begins,

i.e. V < 0, the g-asymptote, which occupied the tip region completely at the instant

K = 0, is immediately displaced from the tip by the r-asymptote. We therefore seek the

r− g edge solution ŵrg that connects the inner solution ŵ
x̂→0→ ŵr to the outer solution

ŵ
x̂→∞→ ŵg.

Defining the length scale lrg = l4r
l3g

and introducing the scaled variables x̃ = x̂
lrg

and

w̃rg =
ŵrg

ŵr
, the solution to the coupled problem for a semi-infinite hydraulic fracture

receding with a constant velocity V < 0 is given in [33]. The solution w̃rg(x̂), which

is also universal in that it does not depend on any parameters, is denoted by the black

curve in figure 2 (b). Assuming that w̃rg is a known function of x̃, we can use the above

scalings to obtain the following relationship between ŵ and x̂ for the r− g-asymptote:

ŵ = ŵr(x̂)

(
w̃rg

(
x̂

lrg

))
=

x̂

εr

(
w̃rg

(
x̂

ε4rlg

))
, (25)

where lr = εrlg and lrg = ε4rlg. Thus given trial values of ŵ, sampled a certain distance

x̂ from the tip, (25) defines εr, and therefore |V |, implicitly. A robust fixed point iterative

scheme for εr can be obtained by re-writing (25) in the following recursive form [35]:

εr,i+1 =
x̂

ŵ

(
w̃rg

(
x̂

ε4r,ilg

))
. (26)

Note that this recursion is expressed in terms of the function 0 ⩽ w̃rg ⩽ 1 plotted in

figure 2 (b). The red curve in this figure represents the trajectory of iterates εr,i for

a time step, which is selected to be early in the recession because it is associated with

a small value of εr. This sequence of iterates starts with the initial guess εr,0 = x̂
ŵ ,
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which is obtained from r-asymptote (21), and indicated by the inverted red triangle

at which w̃rg ∼ 0.95. These iterations terminate when the relative difference between

successive iterates is less than 10−3 at the point indicated by the inverted red triangle

on the lower part of the red curve. The coloured circles moving up the w̃rg curve in

(b) represent the sequence of increasing εr values (with values depicted on the colour

bar), which correspond to increasing |V | values over multiple time steps as the receding

fracture accelerates from the point of arrest.
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Figure 3: (a) Evolution of terms in the continuity equation from arrest to collapse t ∈
(ta, tc) scaled to the maximum value on this interval: flux gradient ∂q̂

∂x̂ (−·),
∂ŵ
∂t (· · ·) , |V |∂ŵ∂x̂ (−−), and ĝ0 (solid). The black curves are extracted from an
IMMA simulation that uses the multiscale k−g and r−g-asymptotes, while the
dashed red curve represents the convection term |V |∂ŵ∂x̂ when the simple LEFM
k-asymptote is used to determine the stress intensity factor during arrest and
only the linear r-asymptote is used to determine the negative velocity during
recession. (b) The fracture length ℓ(t) is plotted against t for two different
IMMA simulations, one using the mulitscale k−g and r−g-asymptotes (solid
black) and the other (dashed red) using the simple LEFM k-asymptote to
determine the stress intensity factor during arrest and the linear r-asymptote
to determine the negative velocity during recession. The blue dots represent
estimates of the power law behaviour of ŵ in the tip region from the formula

δ =
x̂∂ŵ

∂x̂

ŵ .
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3.3.3 The arrest/recession transition and the emergence of a dominant balance

Magnitude of terms in the lubrication equation:

In figure 3 (a) we compare the relative magnitudes of each of the terms in the continuity

equation (12) as a function of t/ts from the time of arrest ta to the time of collapse tc.

To establish the relative magnitudes, each of the terms τi in the continuity equation is

divided by the maximum value τmax = max
t∈(ta,tc)

max
i

|τi(t)| over the interval. The arrest

time ta is indicated in this plot by the vertical magenta line, while the arrest/recession

transition point tr is indicated by the thick black vertical lines that have been separated

in order that the results of the plot are not obscured.

Comparison between IMMA solutions using edge asymptotes vs vertex asymptotes:

The black curves in figure 3 (a) represent the IMMA results obtained when the multiscale

k− g edge solution has been used to determine εk (and hence the stress intensity factor

for the arrested deflating fracture) and the arrest/recession transition point tr, and the

r − g edge solution has been used to determine εr and the magnitude of the receding

fracture velocity. We will refer to this combined solution as the multiscale edge solution.

The dashed red curve represents the IMMA result for the convective term |V |∂ŵ∂x̂ ob-

tained when the simple LEFM k-asymptote given in the first equation in (19) is used to

determine εk and the arrest/recession transition point tr, while the linear r-asymptote

is used to determine εr. We will refer to this combined solution as the vertex solution.

We have chosen to restrict the comparison between these two different IMMA solutions

to the convective term since this term exhibits the largest difference between the two

solutions and to keep the plot uncluttered. The solution (black −−) that uses multiscale

edge asymptotes through the transition point tr is much smoother than the correspond-

ing vertex solution (red −−). Indeed, the vertex solution has a delayed transition point

that exhibits an extreme jump discontinuity and a subsequent sharp drop to compensate

until the transient effect of neglecting this multiscale behaviour decays around t/ts ∼ 4.

19



The reason that using the r-vertex solution (21) over-estimates εr, and therefore the

recession speed, is that it immediately attributes all the fracture aperture in the tip

region to the linear asymptote. However, we know that, at the transition point tr, the

tip is fully occupied by the stationary g-asymptote. Therefore, it takes some time for the

linear r-asymptote, which is initially only valid on a very small length scale, to displace

this g-asymptote and occupy the tip at the length scale of one computational cell. Thus

using the r-asymptote immediately upon the initiation of recession, without waiting for

the linear asymptote to occupy the tip element, is the cause of the observed jump in

the convective term. By contrast, the multiscale edge solution is able to accumulate the

appropriate amount of the g-vertex in the tip apertures while the arrested fracture is

deflating and, upon the initiation of recession, it is able to distribute the tip aperture

correctly between the stationary g-vertex and the moving r-vertex and thereby identify

the correct recession velocity.
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Exponent evolution:

As a measure of the exponent of the average power law active in the tip region for the

multiscale edge solution, we calculate the quotient δ =
x̂∂ŵ

∂x̂

ŵ in the tip element, which,

for a power law, would yield the value of the exponent. The derivative in this quotient

is approximated by the second order backward difference approximation involving the

three elements closest to the tip. The evolution of δ over the interval t ∈ (ta, tc) is

represented by the blue dots referenced to the right vertical axis in figure 3 (b). As in (a)

the arrest time horizon ta is indicated in this plot by the vertical magenta line, while the

arrest/recession transition horizon tr is indicated by the vertical black line. We observe

that δ evolves from the LEFM exponent of 1/2 at the beginning of the arrest period,

then passes through the g-vertex exponent 3/4 close to the arrest/recession transition

point tr, and finally asymptotes to the r-vertex exponent 1 for t/ts ≳ 4.

The emergence of a dominant balance:

We observe from figure 3 (a) that between the arrest time ta, indicated by the vertical

magenta line, and t ∼ 4ts there is no dominant balance in that no two (or three) terms

form a dominant pair (triplet) so that their magnitudes match and they dominate the

other terms in the lubrication equation. Such a dominant balance would lead to a vertex

asymptotic solution. However, for ta ⩽ t ≲ 4ts there is a mixture of interacting terms

indicating that the tip is governed by multiscale tip asymptotics and not a single vertex

solution. However, beyond t/ts ∼ 4, a leading order match emerges between the second

term |V |∂ŵ∂x̂ and the fourth term ĝ in the lubrication equation (12). These were precisely

the terms used in the dominant balance argument to establish the r-vertex solution (21).

We also note that the two terms ∂ŵ
∂t and ∂q̂

∂x̂ that were found to match at the next order

can also be seen to asymptote to much smaller values than those of the dominant match,

but of a comparable magnitude to one another.
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Impact of using vertex asymptotes rather than edge asymptotes:

From figure 3 (a) and the discussion above we see that using the vertex asymptotes

to track the deflation of the hydraulic fracture results in the jump discontinuity in the

velocity as one passes through the arrest/recession transition tr. Although the existence

of the g-vertex is ephemeral, we see that it is necessary to account for this special solution

in both the multiscale k − g and r− g edge solutions in order to obtain a solution that

will pass smoothly through the arrest/recession transition tr. However, from figure 3

(a) we also observe that, if we use only the vertex asymptotes, the transients that result

from the jump discontinuity decay fairly rapidly and the solution reverts to the same

smooth solution produced by the multiscale edge asymptotes. These transients decay

on roughly the same time scale as the emergence of a dominant balance between the

convection and leak-off terms. Since this latter balance was associated with the r-vertex

solution it is not surprising that the numerical solution that uses only vertex asymptotes

starts to converge to the multiscale solution at this stage of the recession phase.

Rather than only using individual terms in the lubrication equation to assess the

impact of implementing simple vertex asymptotes as opposed to multiscale edge asymp-

totes on the quality of the solution, we also consider a more global quantity such as the

fracture length. In figure 3 (b) we compare the fracture length ℓ(t) as a function of t/ts

for the multiscale algorithm (solid black) to that for the simple vertex algorithm (dashed

red). The transition point (tr/ts, ℓ(tr)) from arrest to recession for the multiscale solu-

tion is denoted by the black circle and that for the simple vertex asymptotes is denoted

by the red circle. The vertex solution only has a slightly delayed recession initiation

time and exhibits only a slight deviation from the multiscale edge solution, which starts

immediately after the onset of recession and persists until the transients decay. Indeed,

these two solutions differ by less than 1
2 % throughout the duration of the simulation

and are virtually indistinguishable in figure 3 (b).

The analysis presented here has been important in order to provide a rigorous mul-
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tiscale solution for the deflation of a hydraulic fracture during arrest and recession and

particularly around the arrest/recession transition time tr. However, this analysis also

establishes that, unless the purpose of the modelling is to provide a smooth solution with

great detail around the arrest/recession transition point tr, a pragmatic and much more

efficient approach would be to use a simpler algorithm based solely on vertex asymptotes.

4 Scaling Analysis

4.1 Scaling

4.1.1 Scaling for a KGD fracture subject to a constant injection rate Q0

Following [9, 10] we introduce the length scale ℓ∗ and time scale t∗ and characteristic

aperture w∗ and net pressure p∗ such that x = ℓ∗ξ, t = t∗τ, w = w∗Ω, and p = p∗Π into

the governing equations (2)-(5), enabling us to identify the following five dimensionless

groups:

Gv =
ℓ∗w∗
Q0t∗

, Gm =
ℓ∗µ

′Q0

w3
∗p∗

, Gc =
C′ℓ∗

t
1/2
∗ Q0

, Ge =
E′w∗
ℓ∗p∗

, and Gk =
K′ℓ

1/2
∗

E′w∗
. (27)

The viscous m-scaling can be identified by requiring Gv = Gm = Ge = 1, from which it

follows that the length ℓm, aperture wm, and pressure pm scales are respectively given

by

ℓm =

(
E′Q3

0t
4

µ′

)1/6

, wm =

(
µ′Q3

0t
2

E′

)1/6

, and pm =

(
µ′E′2

t

)1/3

, (28)

while the dimensionless toughness and leak-off coefficient become

Gk := Km =

(
K′4

E′3µ′Q0

)1/4

, and Gc := Cm(t) =

(
C′6E′t

µ′Q3
0

)1/6

. (29)

The leak-off (m̃-scaling) can be obtained by requiring Gc = 1 instead of Gv and the

toughness (k-scaling) can be obtained by requiring Gk = 1 instead of Gm. We observe
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from (29) that the dimensionless toughness for a KGD fracture driven by a constant

injection rate Q0 is independent of time, while the dimensionless leak-off coefficient

increases with time. From (29) we observe that the transition time tmm̃ from storage

dominated propagation to leak-off dominated propagation is given by

tmm̃ =
µ′Q3

0

C′6E′ . (30)

4.1.2 Scaling for a KGD fracture after shut-in

The injection of fluid at a constant flux Q0 is followed by shut-in at a certain time ts.

Propagation of the hydraulic fracture, initiated at the beginning of the injection phase,

may continue after shut-in depending on the regime of propagation. A propagating

fracture in a permeable medium will ultimately come to rest either due to excessive

leak-off if K′ = 0 or because the stress intensity factor K has dropped below the fracture

toughness K′. There is an arrest period during which K decreases as the fracture continues

to lose fluid to the porous medium so that ẇ < 0, until transition to the recession

asymptote is initiated when K = 0 and the fracture starts to recede. However, if the

hydraulic fracture is already in the leak-off regime at the time of shut-in, then recession

can be expected to start almost immediately after arrest.

The appropriate scaling for the dynamics with a fixed injected volume V0 per unit

height of the plain strain hydraulic fracture can be obtained [28] directly from those of a

fracture driven by a constant fluxQ0 given in (28)-(29) by making the simple substitution

Q0 = V0/t. In this case the length ℓVm(t) and aperture wV
m(t) scaling factors are given

by

ℓVm(t) =

(
E′V3

0 t

µ′

)1/6

and wV
m(t) =

(
µ′V3

0

E′t

)1/6

, (31)
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while the dimensionless toughness KV
m(t) and leak-off CV

m(t) parameters become

KV
m(t) =

(
K′4t

E′3µ′V0

)1/4

and CV
m(t) =

(
C′6E′t4

µ′V3
0

)1/6

. (32)

Here we have followed Mori and Lecampion [28] and used the superscript V to denote

the scaling for a fracture with a fixed shut-in volume V0 at time t. Note that for the

propagation of a KGD fracture with a fixed shut-in volume, in contrast to the case of

a constant injection rate, the dimensionless toughness KV
m(t) is time dependent. We

observe from (32) that for a KGD fracture with a fixed shut-in volume V0, the viscous

to toughness transition time tVmk and viscosity-storage to leak-off transition time tVmm̃

are respectively given by

tVmk =
E′3µ′V0

K′4 and tVmm̃ =

(
µ′V3

0

C′6E′

)1/4

. (33)

Once shut-in has occurred these two transition times identify two different ways the

fracture behaves after the time of arrest ta, which, if K
′ > 0, is characterized by the

stress intensity factor dropping below the critical fracture toughness and, as a result,

the velocity of the fracture going to zero. If ta ∼ tVmk ≪ tVmm̃, then at the time of arrest

the fracture is propagating in the toughness regime and still has a significant amount of

fluid that needs to leak-off before recession can start. Conversely, if ta ∼ tVmm̃ ≪ tVmk,

then at the time of arrest the fracture is propagating in the leak-off regime and has lost

sufficient fluid to preclude significant further propagation of the fracture. In this case

recession starts almost immediately. In order to characterize these two arrest modes,

we define the following arrest regime parameter ϕV for a fixed injected volume KGD

hydraulic fracture

ϕV =
tVmk

tVmm̃

=

(
E′13µ′3C′6V0

K′16

) 1
4

. (34)

If ϕV ≫ 1 then the transition to leak-off dominated propagation will occur significantly
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before there would be transition to toughness dominated propagation, so recession can be

expected to start almost immediately and there will be a short arrest period. Conversely,

if ϕV ≪ 1 then the transition to toughness dominated propagation will occur while the

fracture is in the storage regime significantly before there would be a transition to leak-

off dominated propagation. Thus at the time of arrest there is still a significant volume

of fluid contained in the fracture that needs to leak off before recession can begin. Thus

in this case there will be a significant period during which the fracture deflates while it

is in a state of arrest. We observe that the parameter ϕV defined in (34) has no meaning

in the zero toughness case since tVmk = ∞.

4.2 Characteristic Power Laws for arrest and recession

In the analysis that follows we consider a given shut-in time ts, which we define with

respect to the constant injection rate storage-leak-off transition time tmm̃ in terms of

the parameter ω defined by

ω =
ts

tmm̃
. (35)

At shut-in, the injected volume is Vs = Q0ts, the dimensionless leak-off coefficient

Cm(ts) := Cs = ω1/6, while the constant injection rate dimensionless toughness Km :=

Ks remains constant throughout injection. The fixed injected volume transition times,

at which KV
m(t) = 1 and CV

m(t) = 1, can be expressed in terms of Ks and Cs as follows:

tVmk := tsK
−4
s and tVmm̃ := tsC

−3/2
s . (36)

Now making use of (30) and (33) the following relationship can be established between

the fixed injected volume transition time tVmm̃ and the constant injection rate storage-

leak-off transition time tmm̃ in terms of the dimensionless shut-in parameter ω :

tVmm̃ = tmm̃ω
3
4 = tsω

− 1
4 , (37)
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where the second relationship in (37) comes directly from the definition of ω.

Modes of arrest and recession: Using (37) and (34) we are now able to characterize

the way in which the arrest time ta and recession time tr are impacted by the relative

magnitudes of ϕV and ω.

� If ϕV ≪ 1 :

– If ω ≪ 1, it follows from (37) and (34) that

ts & tVmk ≪ tVmm̃ ≪ tmm̃,

then, after shut-in, arrest will be determined by ta ∼ tVmk and recession will

be determined by tr ∼ tVmm̃.

– If ω ≫ 1, it follows from (37) and (34) that

tmm̃ & tVmk ≪ tVmm̃ ≪ ts,

then, after shut-in, arrest and recession will be determined by ta ∼ tr ∼ ts.

� If ϕV ≫ 1 :

– If ω ≪ 1, it follows from (37) and (34) that

ts ≪ tVmm̃ ≪ tmm̃ & tVmk,

then, after shut-in, arrest and recession will be determined by tVmm̃, i.e. ta ∼

tr ∼ tVmm̃.

– If ω ≫ 1, it follows from (37) and (34) that

tmm̃ ≪ tVmm̃ ≪ ts & tVmk,
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then, after shut-in, arrest and recession will be determined by ta ∼ tr ∼ ts.

4.2.1 Zero Toughness Case (K ′ = 0)

From (34) it follows that if K′ → 0 then ϕV → ∞, which, from the modes of arrest and

recession identified above, clearly identifies the scaling for the time of arrest ta, which,

in this case, coincides with that of recession.

Arrest Scaling: If the dimensionless shut-in time ω ≪ 1 then the arrest time ta is

determined by the time that the fixed volume fracture transitions from storage to leak-

off dominated propagation, i.e.

ta ∼ tVmm̃ = tsC
−3/2
s = tsω

−1/4. (38)

The corresponding length and aperture scales, ℓa := ℓVm(ta) and wa := wV
m(ta), can be

expressed in terms of ω, ℓs := ℓm(ts), and ws := wm(ts) as follows:

ℓa =

(
E′V5

0

µ′C′2

)1/8

= ℓsω
−1/24 and wa =

(
µ′C′2V3

0

E′

)1/8

= wsω
1/24. (39)

If ω ≫ 1, then shut-in occurs considerably later than the constant injection rate storage-

leak-off transition time tmm̃, so arrest can be expected to occur shortly after shut-in.

These two limiting scalings can be summarized as follows:

ta/ts ∼

 ω−1/4 if ω ≪ 1

1 if ω ≫ 1
, (40)

ℓa/ℓs ∼

 ω−1/24 if ω ≪ 1

1 if ω ≫ 1
, (41)

wa/ws ∼

 ω1/24 if ω ≪ 1

1 if ω ≫ 1
. (42)
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Figure 4: The solid black lines indicate the numerical solutions for the: (a) arrest time to
shut-in time ratios, (b) arrest length to shut-in length ratios, and (c) deflation
time to storage-leak-off transition time ratios T/tmm̃ all plotted as a function
of ω for the zero toughness case K ′ = 0. The dashed red lines represents log
linear regressions for each of these plots using the first few data points.

Results of numerous simulations using the IMMA algorithm are reported in figure 4

for the zero toughness case. The plots show the variation of ta/ts, ℓa/ℓs, and T/tmm̃

(where T = tc − ta is the deflation time) as functions of the dimensionless shut-in time

ω. The red line in each plot represents the power law Aωα with coefficient A and index

α computed by a log linear regression for a few data points corresponding to the smallest

values of ω. The regression yields α = −0.25 for the ratio ta/ts, which is consistent

with the power law (40), and α = −0.041 for the ratio ℓa/ℓs, which is again consistent

with the power law (41).

Deflation Time Scaling: Motivated by the recession asymptote, in which the dominant

balance is between the term representing the rate of change of aperture and the leak-off

term, we consider the following model to estimate the deflation time T

∂w

∂t′
∼

C′
√
T − t′

, (43)

where we define the reverse time variable to be t′ = tc − t. Integrating (43), it follows

that w ∼ C′√T at time t′ = T (t = ta). Then equating this aperture to wV
m(ta), and
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using the fact that ws = C′t
1/2
mm̃ω1/3, it follows that

T ∼ tmm̃ω3/4 (44)

The dashed red line in figure 4 (c) represents a log linear regression of T/tmm̃ ∼ Aωα

in which α = 0.749, which is very close to the power law (44) predicted by the scaling

analysis.

4.2.2 Finite Toughness Case (K ′ > 0)

Arrest Scalings: If the dimensionless shut-in time ω ≪ 1, then the arrest time ta

is determined by when the fracture transitions from viscosity to toughness dominated

propagation, which according to (34) occurs when

ta ∼ tVmk = ϕVtVmm̃ = tsϕ
Vω−1/4. (45)

As with the zero toughness case, the corresponding length and aperture scales can be

obtained by substituting ta into (31). If ω ≫ 1 then shut-in occurs considerably later

than the constant injection rate storage-leak-off transition time tmm̃, so arrest can be

expected to occur shortly after shut-in. These two limiting scalings can be summarized

as follows:

ta/ts ∼

 ϕVω−1/4 if ω ≪ 1

1 if ω ≫ 1
, (46)

ℓa/ℓs ∼


(
ϕV
)1/6

ω−1/24 if ω ≪ 1

1 if ω ≫ 1
, (47)

w(ta)/ws ∼


(
ϕV
)−1/6

ω1/24 if ω ≪ 1

1 if ω ≫ 1
. (48)
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Figure 5: The solid black lines indicate the numerical solutions for: (a) the arrest time
to shut-in time ratios, (b) the arrest length to shut-in length ratios, and (c)
the deflation time to storage-leak-off transition time ratios T/tmm̃ all plotted
as functions of ω for the following range of values of the regime parameter
ϕV = 10j, j ∈ {−3,−2,−1, 0, 1, 2, 3}. In each of the figures (a)-(c) the symbol
• plotted at the abscissa ω = 10−12 is used to indicate the curve corresponding
to the regime parameter ϕV = 10−3. In each figure, as ϕV increases the curves
move progressively away from that marked with the • symbol. The dashed red
lines represent log linear regressions for each of these plots using the first few
data points for the case ϕV = 1.
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The IMMA results for the non-zero toughness case are presented in figure 5, in a form

similar to the K′ = 0 results illustrated in figure 4. Here the dashed red line represents

the power law Aωα for the particular case ϕV = 1, with A and α computed by a log

linear regression of the first few data points. The regression yields α = −0.25 for ta/ts,

consistent with the power law (46), and α = −0.041 for ℓa/ℓs, again consistent with the

power law (47).

We see that the same power law holds for all but the smallest values of ϕV , which

would require sampling at even smaller values of ω in order for the asymptote to fully

manifest itself. We observe that the ta/ts curves in figure 5 (a) are further spread out

than those of ℓa/ℓs in figure 5 (b), because ϕV has a significantly larger range than(
ϕV
)1/6

.

Deflation Time Scaling: In order to determine the deflation time T , we follow the same

steps as for the case K′ = 0; i.e., we match w ∼ C′√T to the aperture given in (48) and

use ws = C′t
1/2
mm̃ω1/3 to obtain

T ∼ tmm̃

(
ϕV
)−1/3

ω3/4. (49)

The ratio T/tmm̃ is plotted in figure 5 (c) as a function of the dimensionless shut-in

time ω for the same range of ϕV values. The dashed red line represents a log linear

regression of T/tmm̃ ∼ Aωα using the first few data points for the case ϕV = 1. The

regression yields α = 0.746, which is very close to the power law (49) predicted by the

scaling analysis.

Comparing (40)-(42) to (46)-(48) and (44) to (49), we observe that expressing the

scaling analysis in terms of the pair of dimensionless parameters (ω,ϕV) yields power

laws for the arrest time, the arrest length, the arrest aperture, and the deflation time as

functions of ω, which are the same for both the zero and finite fracture toughness cases.
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Table 1: Scaled length ℓ(t)/ℓs vs t/ts plotted for different ϕV and ω values

5 Receding Fracture Solution

5.1 Solution Landscape represented by the evolving fracture length ℓ

In table 1 the ratio of the fracture length scaled to the shut-in length ℓ(t)/ℓs is plotted

as a function of the scaled time t/ts for a range of different ϕV and ω values. The

value of the arrest regime parameter ϕV is constant for each column of the table while

the value of the dimensionless shut-in parameter ω is constant for each row. Fracture

lengths are plotted for ϕV = 10−2, 10−1, 1, 10 and ω = 10−8, 1, 102. The red parts

of the curve represent the dynamics up to the shut-in time ts, which is designated

by a red asterisk ∗. The subsequent black part of the curve between the red shut-in
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point ∗ and the magenta arrest point • represents the length increase as the fracture

continues to propagate between the time fluid injection ceased and the point of arrest.

The magenta part of the curve between the arrest point • and the recession initiation

point ▼ represents the period during which the fracture continues to lose fluid while at

arrest, so that V = 0 and ∂w
∂t < 0. The subsequent black part of the curve starting

with ▼ represents the decreasing fracture length ℓ while the fracture recedes. Scanning

down the first column ϕV = 10−2, we observe that the collapse time occurs a factor of

61.25 times later than the shut-in time for the case ω = 10−8, which is reduced to 1.89

for ω = 1, and is reduced further to 1.35 for the case ω = 102. These factors remain

roughly constant for the other three columns. Scanning across the rows the proportion

of the time spent deflating while arrested (magenta portions of the curves) decreases as

ϕV is increased, while the proportion of time spent on recession alone remains almost

constant. This behaviour is to be expected given the definition of ϕV in (34).
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5.2 Aperture and Pressure profiles
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(a) ϕV = 10−2 and ω = 10−8
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(b) ϕV = 10−1 and ω = 10−8
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(c) ϕV = 1 and ω = 10−8
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(d) ϕV = 10 and ω = 10−8

Figure 6: For each of (a), (b), (c), and (d) the following plots are provided: Top row:
scaled fracture length ℓ/ℓs, fracture efficiency η, and wellbore pressure Π(0, t)
all plotted as a function of t/ts; Middle row: snapshots of the dimensionless
fracture aperture Ω after arrest (magenta and black) compared to the aperture
at shut-in (red) all plotted as a function of x/ℓs; Bottom row: snapshots of
the dimensionless pressure Π after arrest (magenta and black) compared to the
pressure at shut-in (red) all plotted as a function of x/ℓs

In figure 6 we provide more detailed plots of the numerical solutions for the first row

in table 1 associated with the value of the dimensionless shut-in time ω = 10−8 and the

following the values of the arrest regime parameter ϕV = 10−2, 10−1, 1, 10 located in

(a)-(d), respectively. In the first row for each parameter pair (ϕV ,ω), we provide plots

of the scaled length ℓ(t)/ℓs, the efficiency η(t), and the dimensionless wellbore pressure
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Π(0, t) against the scaled time t/ts. The efficiency is defined to be the ratio of the

volume of fluid in the fracture to the pumped volume Vf(t) defined below (9)

η(t) :=

2
ℓ�
0

w(x, t)dx

Vf(t)
,

In the second row of each of (a), (b), (c), and (d), we provide plots of the dimensionless

fracture aperture Ω against the scaled distance from the centre of the fracture x/ℓs for

a number of sample times. The red curves represent the fracture aperture at shut-in

t = ts. Except for a small region near the tip, many of the red curves extend beyond the

maximum ordinate range, which, for clarity, have been restricted to a maximum value

set by the arrest aperture profile. The magenta curves represent the aperture profiles

for the hydraulic fracture while it deflates during the arrest phase. The solid magenta

curve, indicated by the magenta circle • at the wellbore, is the aperture profile sampled

at the point of arrest t = ta. The black curves correspond to the aperture profiles

while the hydraulic fracture is receding. The curve indicated by the black circle • at the

wellbore is the aperture profile sampled at the recession initiation time t = tr. For the

four cases considered in figure 6, the scaled sample times t/ts that correspond to each

of the symbols located at the wellbore are listed in Table 2. These symbols have also

been indicated on the time evolution plots provided in the first rows of plots (a)-(d).

Subfigure ϕV • ♦ ▲ • ▼ ♦ ▲ ▶
(a) 10−2 4.46 10.84 23.59 29.97 41.22 50.85 56.63 60.18

(b) 10−1 9.53 11.66 15.93 18.06 29.61 39.83 45.99 49.69

(c) 1 14.05 14.26 14.66 14.87 26.88 37.55 43.92 47.76

(d) 10 16.56 16.56 16.57 16.57 26.39 37.21 43.64 47.54

Table 2: The scaled sample times t/ts corresponding to each of the markers in figure 6

As the fracture approaches the collapse time tc it can be seen that the solutions are

approximately self-similar. Indeed, it is possible to derive the following sunset similarity
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solution [34] for a receding KGD fracture in a permeable elastic medium:

w(x, t) = g0(tc−t)
(
1− ξ2

)
, p(x, t) =

(tc − t)E′g0
2πℓ

[
2+ ξ log

∣∣∣∣1− ξ

1+ ξ

∣∣∣∣] , ξ = x/ℓ, ℓ = Λ(tc−t)1/2,

(50)

where g0 is the constant leak-off asymptote g = C′√
t−to(x)

t→tc
∼ g0 and Λ is determined

by the amount of fluid in the fracture at a given length ℓ on the way to collapse. For the

last three sample times indicated by the (♦,▲,▶) symbols at the wellbore, the sunset

solution (50) is represented by the dashed blue curves for comparison with the numerical

solution. As t → tc these two solutions show close agreement.

In the third row of each of (a), (b), (c), and (d), we provide plots of the dimensionless

fracture pressure Π against the scaled distance from the centre of the fracture x/ℓs for

a number of sample times. The red curves represent the pressure profile at shut-in

t = ts. Except for a small region near the tip, many of the red curves extend beyond the

maximum ordinate range, which, for clarity, have been restricted to a maximum value

set by the arrest pressure profile. The magenta curves represent the pressure profiles for

the hydraulic fracture while it deflates during the arrest phase. The solid magenta curve,

indicated by the magenta circle • at the wellbore, is the pressure profile sampled at the

point of arrest t = ta. The black curves correspond to the pressure profiles while the

hydraulic fracture is receding. The curve indicated by the black circle • at the wellbore is

the pressure profile sampled at the recession initiation time t = tr. As with the aperture

profiles, the scaled sample times t/ts that correspond to each of the symbols located at

the wellbore are listed in Table 2. The pressure field associated with the sunset solution

is provided in (50). For the last three sample times indicated by the (♦,▲,▶) symbols

at the wellbore, the sunset pressure profile is represented by the dashed blue curves

for comparison with the numerical solution. As t → tc there two solutions show close

agreement.
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5.3 Solution using field parameters

20 40 60
0

200

0 20 40 60
0

0.5

1

0 20 40 60
0

100

0 50 100 150 200 250 300
0

2

4

0 50 100 150 200 250 300
0

10

20

Figure 7: Top row: fracture length ℓ(t) [m], fracture efficiency η, and wellbore pressure
p(0, t) [kPa] all plotted as a function of t measured in hours [h]; Middle row:
snapshots of the fracture aperture w [mm] after arrest (magenta and black)
compared to the aperture at shut-in (red) all plotted as a function of x [m];
Bottom row: snapshots of the pressure p [kPa] after arrest (magenta and black)
compared to the pressure at shut-in (red) all plotted as a function of x [m]

We have demonstrated that the dimensionless shut-in time ω and regime parameter

ϕV fully characterize the arrest and recession dynamics of deflating plane strain hydraulic

fractures. In order to get an idea of the range of values that the dimensionless pair

(ω,ϕV) might assume when typical field parameters are used, consider the following

ranges of material parameters: E′ ∼ 1− 30 GPa, µ′ ∼ 10−2 − 10 Pa · s, C′ ∼ 10−5 − 10−8
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ms−1/2, K′ ∼ 0.3 − 3 MPa ·m1/2, ts ∼ 3600 s and Q0 ∼ 10−5 − 10−3 m2s−1. For these

ranges of material and injection parameters, the range of the dimensionless parameters

is 10−23 ≲ ω ≲ 10 and 10−11 ≲ ϕV ≲ 104.

We now provide a solution, in physical units and for input parameters that are within

the range one might expect in the field, for a deflating KGD hydraulic fracture that

arrests and recedes. Let E′ = 5 GPa, µ′ = 0.2 Pa · s, C′ = 0.693 × 10−5 ms−1/2,

K′ = 0.223 MPa · m1/2, ts = 3600 s and Q0 = 10−3 m2s−1. This parameter set has

been chosen so that the dimensionless shut-in time ω ∼ 10−8 and regime parameter

ϕV ∼ 10−2, which correspond to the case considered in figure 6 (a) in which the results

were given in dimensionless form. The resemblance between the results in figure 7 and

figure 6 (a) is clear. For the time evolution plots shown in the first row of figure 7 the

resemblance is emphasized by the fact that t is plotted in hours while the shut-in time

ts = 1 hour. Indeed, the plots are almost identical, except that the scales on the axes

are now provided in physical units rather than in dimensionless form. The same symbol

and line conventions have been used for figure 7 as those defined for figure 6.

6 Conclusions

In this paper we have considered the post shut-in dynamics of a deflating plane strain

hydraulic fracture in a porous elastic medium. We have shown how the recently devel-

oped multiscale tip asymptotic solutions ŵkg for arrest and ŵrg for recession can be

implemented in a numerical scheme that yields a smooth solution through the arrest-

recession transition. In contrast, an algorithm that uses only the k and r-vertex asymp-

totes exhibits jump discontinuities through the arrest-recession transition point, while

the multiscale solution is smooth. This is because, immediately after recession starts, the

linear r-asymptote is only valid on a much smaller length scale compared to that of a tip

element. Thus ascribing all the aperture in the tip to the r-asymptote and ignoring the

contribution of the g-asymptote, results in a recession velocity that is much too large.
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However, using the multiscale asymptotes, one is able to apportion these components

correctly and in an adaptive fashion to achieve a smooth solution. We demonstrate

that, even on a coarse mesh, the algorithm that uses the multiscale asymptotes is able

to capture the power law exponents in the range 1/2 ⩽ δ ⩽ 1, which are predicted by

asymptotic analysis. Despite the jump discontinuity through the arrest-recession tran-

sition exhibited by the algorithm using vertex as opposed to multiscale asymptotes, the

two solutions ultimately converge once the transients have decayed. This analysis thus

establishes the important result that, unless the purpose of the modelling is to provide

a smooth solution with great detail around the arrest-recession transition point tr, a

pragmatic, and much more efficient approach, is to use a simpler algorithm based solely

on vertex asymptotes.

We perform a scaling analysis using a novel parameterization in terms of the dimen-

sionless shut-in time ω and the dimensionless arrest regime parameter ϕV , which are

able to capture the power law dependencies on ω of the arrest time, the arrest length,

the arrest aperture, and the deflation time, which remain the same for both the zero and

finite fracture toughness cases. All these power law relationships are confirmed using

a numerical scheme that uses the arrest-recession multiscale tip solutions, which were

established using rigorous asymptotic analysis.

Using an implicit moving mesh algorithm that incorporates the rigorous multiscale

arrest-recession asymptotics, we explore the impact that changes in the dimensionless

parameters ω and ϕV have on the time between shut-in and arrest, the duration of

arrest, and the elapsed time from the initiation of arrest to collapse of the fracture. For

fixed ϕV , the ratio tc/ts between the collapse time and the shut-in time decreases as

the dimensionless shut-in time ω increases. For fixed ω, the proportion of time spent

deflating while the fracture has arrested decreases as ϕV increases, while the proportion

of time spent solely on recession remains almost constant. We discuss the range of values

that the pair (ω,ϕV) are likely to assume if the injection rate and material parameters
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are restricted to values one might expect in the field. We also provide, for a value of the

pair (ω,ϕV) that might occur in the field, the post shut-in solution in physical units for

a plane strain hydraulic fracture that propagates after shut-in, deflates during arrest,

and recedes till collapse.
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