Lecture 12: Heat equation on a circular ring - full Fourier Series

(Compiled 19 December 2017)

In this lecture we use separation of variables to solve the heat equation subject on a thin circular ring with periodic boundary conditions. In this case we reduce the problem to expanding the initial condition function $f(x)$ in an infinite series of both cosine and sine functions, which we refer to as the Full Range Fourier Series.

Key Concepts: Heat Equation; Periodic Boundary Conditions; separation of variables; Full Fourier Series.

12.1 Heat equation on a circular Ring - Full Fourier Series

Figure 1. Consider a thin conducting ring with thermal conductivity α^{2} that has a given initial temperature distribution

Physical Interpretation: Consider a thin circular wire in which there is no radial temperature dependence, i.e., $u(r, \theta)=u(\theta)$ so that $\frac{\partial u}{\partial r}=0$. In this case the polar Laplacian reduces to

$$
\begin{align*}
\Delta u & =\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}} \\
& =\frac{\partial^{2} u}{\partial(r \theta)^{2}} \tag{12.1}
\end{align*}
$$

and if we let $x=r \theta$ then $\frac{\partial^{2} u}{\partial(r \theta)^{2}}=u_{x x}$. In this case the heat distribution in the ring is determined by the following initial value problem with periodic boundary conditions

$$
\begin{align*}
& u_{t}=\alpha^{2} u_{x x} \tag{12.2}\\
& \\
\text { BC: } & =u(L, t) \\
& \frac{\partial u}{\partial x}(-L, t) \\
\text { IC: } & u(x, 0)=f(x)
\end{align*}
$$

Assume $u(x, t)=X(x) T(t)$.
As before: $\frac{X^{\prime \prime}(x)}{X(x)}=\frac{\dot{T}(t)}{\alpha^{2} T(t)}=-\lambda^{2}$.
IVP: $\frac{\dot{T}(t)}{\alpha^{2} T(t)}=-\lambda^{2} \Rightarrow T(t)=c \mathrm{e}^{-\lambda^{2} t}$.
$r=\frac{2 L}{2 \pi}=\frac{L}{\pi}=$ Constant.
$\left.\begin{array}{ll}X^{\prime \prime}+\lambda^{2} X=0 \\ \text { BVP: } & X(-L)=X(L) \\ & X^{\prime}(-L)=X^{\prime}(L)\end{array}\right\} \quad \begin{aligned} & \text { Eigenvalue Problem } \\ & \text { look for } \lambda \text { such that } \\ & \text { nontrivial } x \text { can be found. }\end{aligned}$

$$
\begin{align*}
& X(x)= A \cos (\lambda x)+B \sin (\lambda x) \\
& X(-L)=A \cos (\lambda L)-B \sin (\lambda L)=A \cos (\lambda L)+B \sin (\lambda L)=X(L) \\
& \text { therefore } 2 B \sin (\lambda L)=0 \\
& X^{\prime}(x)=- A \lambda \sin \lambda x+B \lambda \cos (\lambda x) \tag{12.3}\\
& X^{\prime}(-L)=+A \lambda \sin (\lambda L)+B \lambda \cos (\lambda L)=-A \lambda \sin (\lambda L)+B \lambda \cos (\lambda L)=X^{\prime}(L) \\
& \quad \text { therefore } 2 A \lambda \sin (\lambda L)=0
\end{align*}
$$

Therefore $\lambda_{n} L=(n \pi) \quad n=0,1, \ldots$.

Solutions to (12.2) that satisfy the BC are thus of the form

$$
\begin{equation*}
u_{n}(x, t)=\mathrm{e}^{-\left(\frac{n \pi}{L}\right)^{2} \alpha^{2} t}\left\{A_{n} \cos \left(\frac{n \pi x}{L}\right)+B_{n} \sin \left(\frac{n \pi x}{L}\right)\right\} . \tag{12.4}
\end{equation*}
$$

Superposition of all these solutions yields the general solution

$$
\begin{equation*}
u(x, t)=A_{0}+\sum_{n=1}^{\infty}\left\{A_{n} \cos \left(\frac{n \pi x}{L}\right)+B_{n} \sin \left(\frac{n \pi x}{L}\right)\right\} \mathrm{e}^{-\left(\frac{n \pi}{L}\right)^{2} \alpha^{2} t} \tag{12.5}
\end{equation*}
$$

In order to match the IC we have

$$
\begin{equation*}
f(x)=u(x, 0)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi x}{L}\right)+B_{n} \sin \left(\frac{n \pi x}{L}\right) \tag{12.6}
\end{equation*}
$$

As before we obtain expressions for the A_{n} and B_{n} by projecting $f(x)$ onto $\sin \left(\frac{n \pi x}{L}\right)$ and $\cos \left(\frac{n \pi x}{L}\right)$.

$$
\begin{align*}
\int_{-L}^{L} f(x)\left\{\begin{array}{l}
\sin \left(\frac{m \pi x}{L}\right) \\
\cos \left(\frac{m \pi x}{L}\right)
\end{array}\right\} d x= & A_{0} \int_{-L}^{L}\left\{\begin{array}{l}
\sin \left(\frac{m \pi x}{L}\right) \\
\cos \left(\frac{m \pi x}{L}\right)
\end{array}\right\} d x \tag{12.7}\\
& +\sum_{n=1}^{\infty} A_{n} \int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right)\left\{\begin{array}{c}
\sin \left(\frac{m \pi x}{L}\right) \\
\cos \left(\frac{m \pi x}{L}\right)
\end{array}\right\} d x \\
& +\sum_{n=1}^{\infty} B_{n} \int_{-L}^{L} \sin \left(\frac{n \pi x}{L}\right)\left\{\begin{array}{c}
\sin \left(\frac{m \pi x}{L}\right) \\
\cos \left(\frac{m \pi x}{L}\right)
\end{array}\right\} d x
\end{align*}
$$

As in the previous example we use the orthogonality relations:

$$
\begin{align*}
& \int_{-L}^{L} \sin \left(\frac{m \pi x}{L}\right) \sin \left(\frac{n \pi x}{L}\right) d x
\end{aligned}=L \delta_{m n}, ~ \begin{aligned}
\int_{-L}^{L} \cos \left(\frac{m \pi x}{L}\right) \cos \left(\frac{n \pi x}{L}\right) d x & =L \delta_{m n} \quad m \text { and } n \neq 0 \\
& =2 L \quad m=n=0 \tag{12.8}\\
\int_{-L}^{L} \sin \left(\frac{m \pi x}{L}\right) \cos \left(\frac{n \pi x}{L}\right) d x & =0 \quad \forall m, n
\end{align*}
$$

Plugging these orthogonality conditions into (12.7) we obtain

$$
\left.\begin{array}{l}
A_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x=\text { average value of } f(x) \text { on }[-L, L] \tag{12.9}\\
A_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x \text { and } B_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
\end{array}\right\}
$$

Observations:
(1) (12.6) and (12.9) represent the full Fourier Series Expansion for $f(x)$ on the interval $[-L, L]$.
(2) By defining $a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x=\left\{\begin{array}{c}2 A_{0} \\ A_{n}\end{array}\right.$ and $b_{n}=B_{n}$ the Fourier Series (12.6) is often written in the form

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right) . \tag{12.10}
\end{equation*}
$$

