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a b s t r a c t 

We describe the development of a fluid-coupled 2D extended finite element method (XFEM) algorithm 

to model the propagation of nonplanar radially-symmetric hydraulic fractures. The model determines the 

fracture propagation trajectory according to the maximum tangential stress criterion of Erdogan and Sih 

(1963). An implicit level-set algorithm (ILSA) is employed for locating the moving fracture front. The aim 

of the paper is to validate the radially-symmetric XFEM-ILSA model for nonplanar fracture propagation for 

mixed modes I and II. First, the results of the model are compared to the analytical solution for viscosity- 

dominated propagation of a penny-shaped crack. Next, we compare the results of the XFEM-ILSA scheme 

to the results of laboratory experiments and the results of an axisymmetric displacement discontinuity 

model for the near-surface propagation of hydraulic fractures with fluid lag (Bunger et al., 2013). For this 

comparison, a mixed-mode toughness tip asymptote is employed within ILSA to locate the fracture front. 

An improved algorithm is used for locating the fluid front within the fracture. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

One of the current trends and open problems in hydraulic

racture (HF) modeling is the development of 3D models able to

apture complex nonplanar fracture geometries. Such models are

sed, e.g., to model near-wellbore fracture complexity ( Sherman

t al., 2015; Zhang and Mack, 2016; Cherny et al., 2016 ), hydraulic

racture propagation in naturally fractured rock ( Damjanac et al.,

013; Settgast et al., 2017 ), and multiple simultaneously propagat-

ng fractures that curve due to stress shadow interactions and well

nterference ( Wong et al., 2013; Castonguay et al., 2013; Kumar and

hassemi, 2016 ). Development of a numerical model for hydraulic

racture propagation is a challenging task that involves devising a

oupling scheme between the deformation of the solid medium,

he fluid flow, and a tracking algorithm for the fracture front. The

evelopment of an accurate numerical model for this non-linear

oving-boundary problem requires proper validation and verifica-

ion of the resulting numerical solution ( Lecampion et al., 2018 ).

erification of 3D HF models is typically performed for simplified

racture geometries, for which reference solutions exist. Examples

re verifications of the numerical solutions against an analytic so-

ution for a planar radially symmetric hydraulic fracture ( Searles
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t al., 2016; Gupta and Duarte, 2016; Settgast et al., 2017 ), and a

omparison of the results of a 3D model with the numerical re-

ults for nonplanar 2D fracture reorientation near a wellbore un-

er plane strain conditions ( Sherman et al., 2015 ). A verification

or a nonplanar 3D hydraulic fracture can also be performed us-

ng the reference solution provided by an axisymmetric nonpla-

ar hydraulic fracture model as done in Sherman et al. (2015) and

ata (2016) , in which the results of 3D models were compared to

he results of 2D axisymmetric models for bowl-shaped hydraulic

ractures. 

In this paper, we further develop a 2D plane strain hydraulic

racture model ( Gordeliy and Peirce, 2013b ), based on the extended

nite element method (XFEM), to handle nonplanar axisymmetric

ydraulic fractures. The axisymmetric fluid-coupled XFEM simula-

or provides a verification tool for the development of fully 3D hy-

raulic fracture models. Despite the fact that it does not include

ode-III (tearing) fracture growth, it does provide the first step in

he verification of the implementation of fluid flow and nonplanar

racture propagation. In addition, this simulator provides means to

tudy interaction of multiple simultaneously propagating fractures

n the absence of stress barriers ( Abbas et al., 2016 ). 

The XFEM is based on the finite element method. It represents

he discontinuities, including fractures, by augmenting the stan-

ard set of finite-element shape functions by enrichment functions

n elements around these features ( Moës et al., 1999; Stolarska
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et al., 2001; Sukumar and Prevost, 2003; Fries and Belytschko,

2010 ). The underlying finite element mesh does not have to ad-

here to the geometry of the fractures, and fracture propagation

can be modeled in the XFEM without computationally intensive

remeshing. Recently, the XFEM has been used for modeling 2D and

3D hydraulic fracture propagation (see Lecampion, 2009; Gordeliy

and Peirce, 2013a; Gordeliy and Peirce, 2013b; Weber et al., 2013;

Zielonka et al., 2014; Searles et al., 2016; Gupta and Duarte, 2016;

Faivre et al., 2016; Haddad and Sepehrnoori, 2016 and references

therein, see also Lecampion et al., 2018; Peirce, 2016 for recent

reviews). For fracture-front tracking, some of the XFEM HF mod-

els have used a propagation criterion based on the fracture tough-

ness ( Gordeliy and Peirce, 2013a; 2013b; Weber et al., 2013 ); other

XFEM models have used a cohesive zone approach (e.g., Searles

et al., 2016; Faivre et al., 2016; Haddad and Sepehrnoori, 2016 ). 

We consider two limiting regimes of hydraulic fracture prop-

agation in an impermeable medium: the toughness-dominated

regime and the viscosity-dominated regime. For a relatively small

fluid viscosity and/or injection rate, and a relatively large tough-

ness, the fracture propagates in the toughness-dominated regime,

for which the energy spent creating new fracture surface domi-

nates the viscous energy spent driving the fluid through the frac-

ture. For a relatively large fluid viscosity and/or injection rate,

and a relatively small toughness, the fracture propagates in the

viscosity-dominated regime, for which, conversely, the viscous en-

ergy dominates. 

The 2D XFEM model, presented in Gordeliy and Peirce (2013b) ,

employed the implicit level-set algorithm (ILSA) ( Peirce and De-

tournay, 2008 ) to locate the fracture front. The ILSA approach is

based on the assumption that the crack width near the crack tip

follows a known asymptotic crack-width function ( Peirce and De-

tournay, 2008 ). Such crack-tip asymptotes have been developed for

several regimes of hydraulic fracture propagation ( Garagash et al.,

2011; Dontsov and Peirce, 2015 ), for planar fractures and are based

on the result ( Peirce and Detournay, 2008 ) that the crack width

near the smooth front of a planar fracture reduces to the equations

for a one-dimensional (plane strain) semi-infinite crack propagat-

ing with a given velocity. Thus, knowledge of the crack width solu-

tion near the crack tip makes it possible to predict the extension of

the fracture front with time, by inverting the crack-tip asymptote. 

We first verify the results of the axisymmetric XFEM-ILSA

model against the analytic solution for the viscosity-dominated

propagation of a penny-shaped crack ( Savitski and Detour-

nay, 2002 ). The XFEM results show excellent agreement with the

analytic solution, even for a relatively coarse finite element mesh. 

Next, we apply the ILSA logic to nonplanar fracture propaga-

tion in a mixed I-II mode. We employ the toughness tip asymptote

to propagate the fracture. For a mode-I fracture, the toughness tip

asymptote is obtained by enforcing that the mode-I stress intensity

factor is equal to the fracture toughness. For a mixed-mode frac-

ture, the toughness asymptote is obtained using the expression for

a mixed-mode stress intensity factor consistent with the propaga-

tion criterion of Erdogan and Sih (1963) . The resulting mixed-mode

tip asymptote relates the combined behavior of the crack width

and the shear displacement jump to the fracture toughness K Ic and

can be inverted to find the extension of the fracture front. 

For validation and verification of the present XFEM-ILSA model

for nonplanar fractures, we compare the results of the XFEM-ILSA

scheme to the results of laboratory experiments for near-surface

propagation of hydraulic fractures with fluid lag ( Bunger et al.,

2013 ). The comparison includes verification against the results

of an independent axisymmetric model based on the displace-

ment discontinuity method (DDM) ( Gordeliy and Detournay, 2011;

Bunger et al., 2013 ). The XFEM model is able to represent the fi-

nite specimens in the experiments. By contrast, the DDM model in

Bunger et al. (2013) approximated the finite specimens by a half-
pace. To locate the fluid front within the fracture, the XFEM model

ses an improved algorithm with logic as how to treat artificial

egative values of the fluid pressure arising due to numerical over-

stimation of the fluid front location. The comprehensive compar-

son of the results from the XFEM with the results from the DDM

nd with the laboratory data validates the present XFEM model. In

ddition, it reveals which components of the present model (that

re missing in the DDM model, such as a finite specimen size) af-

ect the fracture path and other fracture characteristics. 

The present XFEM HF model is a further development of the

FEM-ILSA model ( Gordeliy and Peirce, 2013b ) to be able to cap-

ure nonplanar axisymmetric fractures. Nonplanar fractures are

epresented using the hybrid explicit-implicit crack description of

ries and Baydoun ( Fries and Baydoun, 2012 ). The main contribu-

ions of this work are the development and testing of mixed-mode

ydraulic fracture propagation within the ILSA framework, and a

etailed validation of the axisymmetric XFEM HF model with lab-

ratory experiments. An improved algorithm is used to treat ar-

ificial negative values of fluid pressure within the partially-filled

racture for tracking the fluid front. 

. Problem formulation 

.1. Model of a hydraulic fracture 

We consider the propagation of a radially symmetric hydraulic

racture in an impermeable elastic medium characterized by a

oung’s modulus E , Poisson’s ratio ν , and fracture toughness K Ic 

see Fig. 1 ). The fracture is driven by the injection of a Newto-

ian fluid having a dynamic viscosity μ. The fluid is injected from

 wellbore of radius R w 

, at a time-varying volumetric rate Q ( t ).

 cylindrical coordinate system ( r , z ) is introduced such that the

 -axis is the axis of radial symmetry. In the ( r , z )-plane, the frac-

ure geometry is represented by a 1D curve � evolving with time

 ( Fig. 1 b). Along � we introduce a curvilinear coordinate s , whose

rigin s = 0 is located at the fracture inlet on the wellbore wall.

he fracture length � ( t ) is defined as the arc length of the curve

. During fracture propagation, the fluid front may lag behind the

racture front. The location of the fluid front on the curve � is de-

oted as � f ( t ). The fracture radius at time t is denoted R ( t ), and the

adius of the fluid front is denoted as R f ( t ). Note that the fracture

adius R and the fluid front radius R f are the projections of the

racture front and the fluid front onto the plane z = 0 , respectively

 Fig. 1 c). With these definitions, the locations on the crack given

y s = 0 , s = � f , and s = � correspond to r = R w 

, r = R f , and r = R,

espectively. 

The medium is subject to axisymmetric stresses, applied as

ractions at the finite boundaries or as far-field stresses for an in-

nite domain. 

The fracture propagation model determines the fracture curve

( t ), the location of the fluid front � f ( t ), the fracture width w (s, t) ,

nd the fluid pressure p f ( s , t ) in the fluid-filled part of the fracture

 s < � f ( t )), all of which evolve with time t . 

Throughout the paper, we employ scaled material parameters

 

′ , E ′ , and μ′ , defined by 

 

′ = 

(
32 

π

)1 / 2 

K Ic , E ′ = 

E 

1 − ν2 
, μ′ = 12 μ (1)

.2. Governing equations 

.2.1. Elasticity 

The computational domain is denoted by V , and its outer

oundary is denoted by �. The axisymmetric displacement field

 and the stress field σ at a point x ∈ V are defined with respect

o a cylindrical coordinate system ( r , z ). The equilibrium equation
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Fig. 1. (a) A nonplanar radially symmetric hydraulic fracture propagating from a wellbore. (b) 2D representation of fracture geometry in cylindrical coordinates. (c) Fracture 

and fluid fronts: fracture length � , fluid front location � f , fracture radius R , and fluid front radius R f . The fluid-filled part of the fracture is shown in blue. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Orientation of the unit normal vector and the unit tangent vector along the 

crack and the two crack faces �+ and �− . Adapted from Gordeliy and Peirce (2015) . 
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nd Hooke’s law for the linear elastic medium can be written in

he following form: 

 · σ = 0 (2) 

= C : ε (u ) (3)

n which C is the tensor of elastic constants, and ε ( u ) is the strain

ensor associated with the displacement u , 

 (u ) = 

1 

2 

(∇u + ( ∇u ) 
T 
)

(4) 

The unit normal and the unit tangent vectors along the crack

re denoted by n and s , respectively ( Fig. 2 ). At each point s ∈ �,

he unit tangent vector s is tangent to the crack and oriented in the

irection of increasing coordinate s , and the unit normal vector n

s oriented in a direction rotated π /2 counterclockwise from s . The

wo crack faces are identified as �+ and �−, such that the normal

ector n points in the direction from �− to �+ . The values of the

isplacement and the stress along each face are denoted by u 

+ and

 

− and by σ+ and σ−, respectively. 

The normal and the tangential displacement jumps across the

rack define, respectively, the crack width w and the ride v : 

 = [[ u ]] � · n = (u 

+ − u 

−) · n (5)

 = [[ u ]] � · s = (u 

+ − u 

−) · s (6)

The normal and the shear tractions on the crack are obtained

rom the stress tensor as σ±
n = n 

T ( σ± · n ) and σ±
s = s T ( σ± · n ) . 

The specific boundary conditions on the outer boundary � are

escribed in Section 5 for each modeling example. For each point

 ∈ �, either a zero displacement u ( x ) = 0 or a given boundary
i 
raction t i ( x ) = t ∗
i 
( x ) is prescribed, in each coordinate direction

 i = r, z). We denote those parts of � with prescribed displace-

ent components, u i ( x ) = 0 , as �u , i , and those parts of � with

rescribed traction components, t i ( x ) = t ∗
i 
( x ) , as �t , i . 

In the particular case, for which the domain V is infinite and

ubjected to nonzero far-field stresses σ∞ 

i j 
, the problem is reduced

o the problem of an infinite domain with zero displacements at

nfinite boundaries, as follows. The problem is decomposed into a

uperposition of problems (a) with the loaded crack and zero far-

eld stress and (b) without the crack and with nonzero applied

ar-field stresses σ∞ 

i j 
(for which the complete stress field σ∞ , b is

nown in the domain V ). The traction vector on the crack in prob-

em (a) is modified using superposition by adding the following

pplied stresses along the crack: 

∞ 

n = −n 

T σ∞ ,b n , σ∞ 

s = −s T σ∞ ,b n (7)

dditionally, we assume that the problem (a) with zero far-field

tresses is equivalent to the problem with zero far-field displace-

ent. Therefore, the problem of an infinite domain V with nonzero

ar-field stress is reduced to the problem of an infinite domain

ith a vanishing displacement at infinity. 

The normal traction σ n on the crack is equal to the fluid pres-

ure (but opposite in sign) within the fluid-filled portion of the

rack and is equal to zero in the fluid lag zone; the shear traction

s is assumed to be zero everywhere along the crack surface. Addi-

ionally, for an infinite domain V with nonzero far-field stress, the

tresses (7) induced by the far-field stresses are applied along the

rack. These boundary conditions on the fracture are formulated as

ollows: 

+ 
n = σ−

n = −p f + σ∞ 

n , 0 < s < � f (8)

+ 
n = σ−

n = σ∞ 

n , s ≥ � f (9) 

+ 
s = σ−

s = σ∞ 

s , 0 < s < � (10)

or a finite domain, σ∞ 

n = σ∞ 

s = 0 , and the superposition principle

s not applied. 

In our previous work ( Gordeliy and Peirce, 2013a; 2013b; 2015 ),

e discussed two boundary value problems for the elastic defor-

ation of a medium with a crack that need to be solved repeat-

dly during the modeling of a propagating HF: 

I) P → W (Neumann to Dirichlet map): Given the Neumann

boundary conditions (8) –(10) along the crack, with prescribed

fluid pressure p f , determine the crack width w along the crack

�. 
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II) P & W (Mixed): Given the asymptotic crack width function w tip 

in a neighbourhood �t of the crack tip, 

w (s ) = w tip (s ) , s ∈ �t (11)

and the prescribed fluid pressure p c in the interior of the crack

(channel) �c = � \ �t , 

p f (s ) = p c (s ) , s ∈ �c (12)

determine the crack width w within the channel �c . Thus in

the P & W scheme, the boundary conditions in the channel �c 

are (8) –(10) , with the given fluid pressure p f = p c . In the tip

region �t , the boundary conditions are (10) and (11) , with a

prescribed crack-tip asymptote w tip . 

The P → W formulation is used in the present paper for the

problem of a hydraulic fracture with fluid lag. The P & W formu-

lation is advantageous for the case when there is no fluid lag and

the fluid pressure near the crack front is characterized by singular

behavior (see Detournay and Peirce, 2014 ). The use of the crack-tip

asymptote for the crack width makes it possible to avoid having to

represent such a singular pressure numerically. The P & W formula-

tion is used in the present paper for the problem of a hydraulic

fracture without fluid lag propagating in the viscosity-dominated

regime. 

2.2.2. Fluid flow 

We assume that lubrication theory is applicable to the problem

of interest. The fluid flow equations are formulated for the fluid-

filled portion of an axisymetric fracture, defined by 0 < s < � f ( t ). For

the case when there is no fluid lag, � f = � . 

The conservation of mass can be expressed as 

∂w 

∂t 
+ 

1 

r 

∂(rq ) 

∂s 
= 0 , 0 < s < � f (t) (13)

where q ( s , t ) is the fluid flux, related to the pressure gradient via

Poiseuille’s law: 

q = −w 

3 

μ′ 
∂ p f 

∂s 
, 0 < s < � f (t) (14)

The boundary condition for the fluid flux at the fracture inlet

on the wellbore wall is expressed via the injection rate Q ( t ), which

can be time dependent and has units of [volume/time]: 

lim 

r→ R w 
(2 π rq ) = Q(t) (15)

The fluid front does not necessarily coincide with the frac-

ture front. If the fluid front lags behind the fracture front, there

are two boundary conditions on the fluid front ( Detournay and

Peirce, 2014 ): a zero fluid pressure at the fluid front 

p f = 0 , s = � f (t) (16)

and the Stefan condition for the fluid front velocity, ˙ � f (t) 

˙ � f (t) = 

q (� f (t) , t) 

w (� f (t) , t) 
(17)

The location of the fluid front at each time instant can be deter-

mined from the fluid front velocity (17) . 

If the fluid and fracture fronts coincide, the Stefan condition

(17) is reduced to a zero flux boundary condition: 

q = 0 , s = � (t) (18)

By integrating the equation of mass conservation (13) over the

crack surface and over the time interval since the start of fluid

injection at t = 0 , and using the boundary conditions (15) and

(17) (for fluid lag) or (18) (when there is no fluid lag), one can

obtain the global fluid volume balance equation ∫ � f (t) 

0 

2 π rw (s, t) d s = 

∫ � f (0) 

0 

2 π rw (s, 0) d s + 

∫ t 

0 

Q(t ′ ) d t ′ (19)

where � f (0) and w (s, 0) denote, respectively, the location of the

fluid front and the crack width at time t = 0 . 
.2.3. Propagation criterion and tip asymptotics 

The moving fracture front � ( t ) is determined from a fracture

ropagation criterion. Following previous work ( Peirce and Detour-

ay, 2008; Gordeliy and Peirce, 2013b ), we formulate the fracture

ropagation condition in terms of an asymptotic solution for the

racture width at the fracture front. The fracture propagates in

obile equilibrium and at every instant the fracture width satis-

es the fracture tip asymptote. We consider the following two tip

symptotes: 

(i) The toughness tip asymptote for a mode I fracture consistent

ith the condition that the mode I stress intensity factor is equal

o the fracture toughness ( Rice, 1968a ): 

 ∼ K 

′ 
E ′ ˆ s 1 / 2 , ˆ s → 0 ( mode I) (20)

here ˆ s = (� − s ) is the distance from the fracture tip. For the

ixed-mode fracture propagation (modes I and II), the correspond-

ng asymptotic condition was formulated in Bunger et al. (2013) by

sing the propagation criterion of Erdogan and Sih (1963) : 

os 
ˆ θ

2 

(
w cos 2 

ˆ θ

2 

− 3 

2 

v sin 

ˆ θ

)
∼ K 

′ 
E ′ ˆ s 1 / 2 , ˆ s → 0 ( modes I and II ) 

(21)

here ˆ θ is the angle that maximizes the hoop stress σ θθ ahead of

he crack. ˆ θ is the angle of deflection of the new crack direction

ith respect to the existing crack-tip orientation. It can be deter-

ined in terms of the ratio η of mode II to mode I stress intensity

actors: 

ˆ = 2 arctan 

( 

1 ±
√ 

1 + 8 η2 

4 η

) 

, η = 

K II 

K I 

= lim 

ˆ s → 0 

v 
w 

(22)

here w is the crack width, and v is the tangential displacement

ump defined in Eq. (6) . The sign in the expression (22) for ˆ θ is

hosen such as to maximize the hoop stress ahead of the crack,

hich is performed numerically by choosing the sign correspond-

ng to the larger value of the left-hand side expression in Eq. (21) . 

The toughness tip asymptote is applicable when the energy dis-

ipated by driving the fluid through the fracture is subdominant

o the energy required to break the rock (toughness-dominated

egime). It is also applicable when the fluid lag is significant so

hat the tip region of the fracture is not fluid-filled. 

(ii) The viscous tip asymptote, applicable for viscosity-

ominated fracture propagation without fluid lag, is expressed by

he following 2/3 power-law behavior ( Desroches et al., 1994 ), 

 ∼ w tip (s ) = βm 

(
μ′ 
E ′ 

˙ � (t) 

)1 / 3 

ˆ s 2 / 3 , ˆ s → 0 , βm 

= 2 

1 / 3 3 

5 / 6 (23)

here ˙ � is the crack front velocity. 

The asymptotic solution, which provides a transition between

hese two limiting asymptotes, has been developed for a planar

mode I) fracture ( Garagash and Detournay, 20 0 0 ). However, it is

ased on the assumption that in the toughness-dominated regime,

he mode-I stress intensity factor is equal to the fracture tough-

ess, and therefore it is not directly applicable to a mixed-mode

racture propagation. 

. XFEM formulation for elastic deformation of a medium 

The formulation of the XFEM for the elastic deformation of the

edium with a fracture is based on the previous work for planar

ractures ( Gordeliy and Peirce, 2013b; 2015 ). The nonplanar cracks

re represented using the hybrid explicit-implicit crack descrip-

ion of Fries and Baydoun (2012) . Below, we summarize the XFEM

odel for completeness. 
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The XFEM weak formulations, corresponding to the P → W

nd to the P & W boundary-value problems, are discussed in Ap-

endix A . In the P → W scheme, the fluid pressure is given in the

rack as the boundary condition, and the unknowns of the prob-

em are the displacements in the domain. In the P & W scheme,

he crack width is given in the tip region �t by the tip asymp-

ote w tip (s ) , and the fluid pressure is given in the channel �c . In

he P & W scheme, the unknowns are the displacements in the do-

ain and the components of the stress tensor in the finite ele-

ents that overlap with the tip region �t . Once the unknown dis-

lacement and stress fields are represented by linear combinations

f shape functions, the weak formulation is reduced to a linear sys-

em for the displacement degrees of freedom (and stress degrees of

reedom, for the P & W scheme), as in the standard finite element

ethod. 

.1. Shape functions 

In the XFEM, interfaces and cracks are represented by aug-

enting the standard set of Lagrange shape functions by special-

zed enrichment functions in the elements around these features

 Moës et al., 1999; Stolarska et al., 2001; Sukumar and Prevost,

003; Fries and Belytschko, 2010 ). Following Gordeliy and Peirce

2013b, 2015) , we consider two enrichment schemes: the XFEM-

 scheme with crack-tip enrichment, in which cracks are repre-

ented by combining a discontinuous sign enrichment and a sin-

ular crack-tip enrichment, and the XFEM-s scheme without crack-

ip enrichment, in which cracks are represented by a discontinu-

us sign enrichment only. Sign enrichment defines the geometry of

he crack whereas the crack-tip enrichment is required to restore

he order of convergence expected of the underlying finite element

iscretization of the elasticity problem, which degrades due to the

resence of the singular behavior at the crack tips. Sign enrich-

ent is relatively inexpensive compared to crack-tip enrichment,

hich requires computationally intensive spatial integration of the

ingular enrichment functions in the tip-enriched elements. 

The discontinuous sign enrichment and the singular crack-tip

nrichment are defined below: 

I) Sign enrichment: elements that intersect the crack are enriched

by the sign function sg ( x ): 

sg ( x ) = sign (φ( x )) , x ∈ V (24)

φ( x ) = ±min 

˜ x ∈ �
| x − ˜ x | (25)

in which φ( x ) is the signed distance function that has different

signs on the two sides of the crack. 

II) Crack-tip enrichment: the singular behavior of the displace-

ment at the crack tip is captured by power-law enrichment ba-

sis functions ( Gordeliy and Peirce, 2015 ) consistent with the

asymptotic behavior of the crack width near the fracture tip,

w tip ∼ ˆ s λ with 

1 
2 ≤ λ < 1 . This range of asymptotes includes the

limiting toughness-dominated ( λ = 

1 
2 ) and viscosity-dominated

( λ = 

2 
3 ) regimes. The crack-tip enrichment for the displacement

comprises the following four singular functions { ψ 

u 
j 
} : 

ψ 

u ,λ = ρλ{ sin ( λθ ) , cos ( λθ ) , sin (λ − 2) θ, cos (λ − 2) θ} (26) 

Here ( ρ , θ ) are polar coordinates centered at the fracture tip,

so that ρ denotes the distance from the fracture tip, and the

values θ = ±π correspond to the two crack faces. 

The computational domain V is discretized into quadrilateral el-

ments. In the XFEM-t scheme, the displacement is approximated

y functions in the trial space U 

h 
u , 

 

h 
u = 

{
u 

h | u 

h ∈ U, u 

h 
i = 0 on �u,i , i = 1 , 2 

}
, 
here the shape function space U is spanned by the following ap-

roximations of the displacement components u k ( k = 1 , 2 ) : 

u 

h 
k = 

∑ 

i ∈ I 
a k i N i ( x ) + R s ( x ) 

∑ 

i ∈ I ∗s 
b k i N i ( x )( sg ( x ) − sg ( x i )) 

+ R t ( x ) 
∑ 

i ∈ I ∗t 
N i ( x ) 

4 ∑ 

j=1 

c j,k 
i 

(ψ 

u 
j ( x ) − ψ 

u 
j ( x i )) (27) 

n (27) , x ∈ V ��; N i are the standard piecewise bilinear Lagrange

asis functions and a k 
i 
, b k 

i 
, c 

j,k 
i 

∈ R . The set I t is the set of all nodes

hat are within a prescribed radius ρt of the crack tip. The set I s 
omprises all the nodes of the elements cut by the crack, excluding

he nodes already in I t , so that I t ∩ I s = ∅ . The set I ∗s is the set of all

odes of elements that are cut by the crack and that have at least

ne node in I s , and I ∗t is the set of all nodes in elements that have

t least one node in I t . To prevent the loss of partition of unity

n the intermediate elements that have both tip-enriched and non-

ip-enriched nodes, the two ramp functions R t ( x ) = 

∑ 

i ∈ I t N i ( x ) and

 s ( x ) = 

∑ 

i ∈ I s N i ( x ) are introduced to blend the two enrichments

 Fries, 2008 ). For details, the reader is referred to Gordeliy and

eirce (2015) . 

In the XFEM-s scheme, cracks are represented by the sign en-

ichment only, and the crack tip enrichment is not involved. The

rack is extended virtually beyond each crack tip, in the direction

angential to the crack, to the farthest edge of the encompassing

nite element. The nodal set I s for the sign enrichment is defined

s the set of all nodes of the elements cut by the crack, excluding

he two nodes on the farthest edge of that encompassing finite ele-

ent. The set I ∗s comprises all the nodes of the elements cut by the

rack. The approximation space for the displacement is spanned

y the shape functions given by Eq. (27) , where I ∗t = I t = ∅ and

 t ( x ) = 0 . The surface integrals over the crack surface in the crack-

ip elements are treated in such a way that there is no contri-

ution to the weak form from integrals over the extended crack

urface beyond the actual crack tip. In other words, the crack tip

symptote is imposed in a weak sense. While the sign enrichment

oes not capture the exact location of the crack tip or the singu-

ar behavior of the elastic fields at the crack tips, it is relatively

nexpensive compared to the crack-tip enrichment ( Gordeliy and

eirce, 2013b; 2015 ). For the XFEM-s scheme, the sign enrichment

nly needs to be updated when the fracture front breaks into a

ew finite element. By contrast, for the XFEM-t scheme the singu-

ar crack tip enrichment and the stiffness matrix of the XFEM are

pdated each time the fracture front is moved. 

Further details of the shape functions for the XFEM-t and the

FEM-s schemes, including the enrichment for the stress required

n the P & W scheme, are given in Gordeliy and Peirce (2015) . 

.2. Level-set representation of the fracture 

To represent a nonplanar crack in the XFEM setting, we use

he hybrid explicit-implicit crack description of Fries and Bay-

oun (2012) . The crack is represented by three level-set functions.

n the numerical implementation, these level-set functions are em-

loyed to determine which nodes of the mesh are to be enriched

ith either sign or crack-tip enrichments, and to define the curvi-

inear polar coordinates, ( ρ( x ), θ ( x )), associated with the crack and

mployed in Eq. (26) to calculate the crack-tip enrichment func-

ions. We summarize this approach in Appendix A.3 ; for further

etails the reader is referred to Fries and Baydoun (2012) . 

The advantages of this representation include the ability to ex-

licitly update the crack geometry upon crack propagation, the

vailability of the level-set representation of the crack to define

hich nodes of the FEM mesh are to be enriched, the ability to

onstruct the power-law XFEM enrichment (26) in a curvilinear
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Fig. 3. Discretization of a curved crack with fluid lag within a finite element mesh. 

Blue crosses denote the pressure nodes s i +1 / 2 for i = 1 , . . . , m + 1 , where the node 

s m +3 / 2 = � f corresponds to the location of the fluid front. 
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coordinate system corresponding to the nonplanar crack, and a

straight-forward extension from 2D to 3D problems. 

3.3. Modeling infinite domains 

To model an infinite domain, we employ mapped infinite el-

ements that make it possible to capture a decaying far-field dis-

placement ( Zienkiewicz et al., 1983; Marques and Owen, 1984;

Bettess, 1992; Zienkiewicz et al., 2013 ). To represent an infi-

nite domain, assuming a vanishing displacement at infinity, we

distribute infinite elements along the boundaries of a finite

computational subdomain that includes the crack. Mapping for

the infinite elements is performed using the formulation from

Zienkiewicz et al. (2013) and Liu and Quek (2003) . This formula-

tion makes it possible to use 2D infinite elements that extend to

infinity in one direction and are finite in the other direction. The

shape functions in the mapped infinite elements are formulated in

terms of Lagrange polynomials, as described in our previous work

( Gordeliy and Peirce, 2013a ) for the singly infinite elements. In the

XFEM simulations in Section 5.1 , the shape functions in the infinite

elements were products of a Lagrange polynomial of order 6 in the

infinite direction and a Lagrange polynomial of order 1 (linear) in

the finite direction. 

4. XFEM-ILSA algorithm for nonplanar fracture propagation 

4.1. Hydraulic fracture with fluid lag, P → W XFEM-t scheme 

The XFEM-ILSA algorithm was developed in Gordeliy and

Peirce (2013b) for planar plane strain fractures without fluid

lag. The modifications developed in this paper to model nonpla-

nar fractures with fluid lag are described below. In contrast to

Gordeliy and Peirce (2013a) , in which the propagation of a non-

planar plane strain fracture with fluid lag was considered, the

present work employs the ILSA algorithm for locating the frac-

ture front and an improved algorithm for locating the fluid front

with time; in addition, a 1D finite volume scheme replaces the

1D finite-element solution used in Gordeliy and Peirce (2013a) for

solving the lubrication equation within the fracture. We use the

XFEM to solve for the elastic deformation of the medium contain-

ing the propagating HF, and a finite volume scheme to solve for

the fluid flow within the HF. 

4.1.1. XFEM Solution 

For the problem involving a fluid lag, we employ the P → W

XFEM-t scheme in the present work. The curved crack is approx-

imated by multiple line segments, with kinks at finite element

edges ( Fig. 3 ). We assume that the crack does not cut through the

nodes of the finite element mesh, consistent with the definition of

the displacement shape functions that are assumed to be continu-

ous at the nodes (see Appendix D in this regard). We also assume

that the crack does not intersect itself. 

The crack, cutting N finite elements, is discretized into N

straight-line segments comprising the intersections of the crack

with the finite elements and referred to as “crack elements”. The

arc-length coordinate s , equal to the distance from the wellbore

along the crack, defines points on the crack. The crack elements

are denoted by [ s i , s i +1 ] , where i = 1 , . . . , N and where s i is equal

to the arc-length coordinate of node i . The nodes s i for i = 1 , . . . , N

are located at the finite element edges, and the node s N+1 is lo-

cated at the crack tip. The node s 1 = 0 is located at the wellbore

wall. The radial coordinate of node s i is denoted r i , for all i . 

For a problem with fluid lag, where � f < � , we denote the num-

ber of fluid-filled elements by m , and denote the element contain-

ing the fluid front (the “partially filled” element) as element m + 1 ,
uch that s m +1 ≤ � f < s m +2 . To discretize the lubrication equation,

e introduce the pressure nodes s i +1 / 2 as follows ( Fig. 3 ): 

 i +1 / 2 = 

s i + s i +1 

2 

, for i = 1 , . . . , m (28)

 m +3 / 2 = � f (29)

The approximation of the fluid pressure p f ( s , t ) for s ≤ � f is con-

tructed in terms of piecewise linear basis functions h i +1 / 2 (s ) as-

ociated with the nodal values p i +1 / 2 = p f (s i +1 / 2 , t) as follows: 

p f (s, t) ≈
m +1 ∑ 

i =1 

p i +1 / 2 h i +1 / 2 (s ) (30)

unctions h i +1 / 2 (s ) are defined in Appendix B . Eq. (30) provides a

 

0 -continuous approximation of p f in the fluid-filled portion of the

rack ( s ≤ � f ), and ensures that p f = 0 for s > � f . Using the linearity

f the elasticity problem, and given the nodal pressures p j+1 / 2 ( j =
 , . . . , m + 1 ), the XFEM approximation for the nodal crack widths,

 i = w (s i , t) , is obtained in the form 

 i = 

m +1 ∑ 

j=1 

D i j p j+1 / 2 + ω σ,i , i = 1 , . . . , N (31)

n (31) , D ij and ω σ , i express, correspondingly, the effects of the

ressure basis functions h j+1 / 2 (s ) and of the tractions applied

o external boundaries of V onto the crack width at node s i 
 Appendix B ). 

.1.2. Discretization of the fluid flow equations 

We denote by m 0 the number of fluid-filled elements at

he previous time step t 0 = t − �t . We assume that ˙ � f ≥ 0 , thus

 ≥ m 0 . (A formulation for a more general case, when 

˙ � f can be-

ome negative, can be obtained in a similar way.) In the following,

he superscript “o ” denotes the quantities obtained at the previous

ime step, e.g., w 

o = w (s, t 0 ) and � o 
f 

= � f (t 0 ) represent, correspond-

ngly, the values of the crack width and of the fluid front at the

revious time step t 0 . 

The volume of fluid in the element [ s k , s k +1 ] at time t is found

rom 

ol f (s k , s k +1 , t) = 2 π

∫ min (� f ,s k +1 ) 

s k 

rw ds (32)

he integrals in Eq. (32) are approximated using the trapezoidal

ule. Therefore the approximated volume of fluid in the element



E. Gordeliy, S. Abbas and A. Peirce / International Journal of Solids and Structures 159 (2019) 135–155 141 

[  

a

V

S  

d  

r

 

m  

i  

o  

e[
 

w

r

a

r  

N  

e  

[[
 

 

4

 

t  

w  

p  

p  

t  

t  

t  

f  

t

4

 

�

�  

T  

(

�

w  

c

 

n  

E  

f  

s  

f  

E  

n  

a  

t  

e  

f  

c  

t  

n  

fl  

f  

E  

(  

a  

f  

n  

E  

t

 

l  

fl  

fi

s

T  

 

�  

i  

E  

fl  

d

u

4

 

G  

p  

r  

p

4

 

p  

b  

c

 

T  

l  

1  

t  

X  

t  

t

 

c  

p  

d  

P  

t

 s k , s k +1 ] at time t , denoted Vol k , is computed for k = 1 , . . . , m + 1

s follows: 

ol k = 2 π ×

⎧ ⎪ ⎨ 

⎪ ⎩ 

r k w k + r k +1 w k +1 

2 

( s k +1 − s k ) , k ≤ m 

r k w k + R f w (� f , t) 

2 

(
� f − s k 

)
, k = m + 1 

(33) 

imilarly, the volume of fluid in the element [ s k , s k +1 ] at time t 0 ,

enoted Vol 
o 
k , can be found from Eq. (33) in which w, � f , and t are

eplaced, correspondingly, by w 

o , � o 
f 
, and t 0 . 

By integrating Eq. (13) over the time step �t and over the ele-

ent [ s k , s k +1 ] , using the boundary condition (15) at the wellbore

nlet and using central differencing for the fluxes in Eq. (14) , we

btain the following finite-volume discretization of the fluid-flow

quations for elements [ s k , s k +1 ] , for 1 ≤ k ≤ m − 1 : 

Vol k − Vol 
o 
k 

]
+ 2 π�t ( r k +1 q k +1 − r k q k ) = 0 , 1 ≤ k ≤ m − 1 (34)

here 

 1 q 1 = 

Q(t) 

2 π
(35) 

nd 

 k q k = −r k 
w 

3 
k 

μ′ 
p k +1 / 2 − p k −1 / 2 

s k +1 / 2 − s k −1 / 2 

, k = 2 , . . . , m (36)

ote that (34) is a backward Euler approximation to the evolution

quation (13) . Similarly, by combining the elements [ s m 

, s m +1 ] and

 s m +1 , s m +2 ] , one can obtain the following discretized equation: 

Vol m 

− Vol 
o 
m 

]
+ 

[
Vol m +1 − Vol 

o 
m +1 

]
= 2 π�t r m 

q m 

(37)

The fluid pressure at the fluid front is set to zero: 

p f (� f , t) = p m +3 / 2 = 0 . (38)

.1.3. Iterative solution of coupled equations 

For a given trial crack front � and a trial fluid front � f at time

 , the algorithm determines the N -vector of nodal crack widths

 = (w 1 , . . . , w N ) and the (m + 1) -vector of nodal fluid pressures

 = (p 3 / 2 , . . . , p m +3 / 2 ) . The elasticity equation (31) is used to ex-

ress the nodal crack widths in terms of the nodal pressures and

o reformulate the nonlinear Reynolds equations (34) and (37) in

erms of the nodal pressures p = (p 3 / 2 , . . . , p m +3 / 2 ) only. The sys-

em of (m + 1) nonlinear equations (34), (37) , and (38) is solved

or the nodal pressures p = (p 3 / 2 , . . . , p m +3 / 2 ) using Newton itera-

ion. 

.1.4. Fluid front 

The fluid front � f can be located by using the fluid front velocity
˙ 
 f : 

 f = � o f + 

˙ � f �t (39)

he fluid front velocity can be obtained from the Stefan equation

17) and Poiseuille’s law (14) : 

˙ 
 f = −w (� f ) 

2 

μ′ 
∂ p f (s ) 

∂s 
| s = � −

f 
(40) 

here we have omitted the time variable t to keep expressions

oncise. 

For a given location of the crack front � at time t , the present

umerical algorithm starts to locate the fluid front � f by using

qs. (39) and (40) iteratively: initially the velocity of the fluid

ront is set to the value at the previous time step, ˙ � (1) 
f 

= 

˙ � o 
f 
; at

ubsequent iterations, the velocity of the fluid front is updated

rom Eq. (40) , and the location of the fluid front is updated from

q. (39) . However, it was found that this iterative procedure may

ot converge once the fluid front location � f is overestimated, such
s in case of a relatively rapidly changing injection rate Q ( t ) in the

est case representing the conditions that prevail for the laboratory

xperiments in Section 5 . Indeed, if the overestimation of the fluid

ront location � f is too large, the solution of the discretized lubri-

ation equation may lead to a negative fluid pressure p f ( s ) < 0 near

he fluid front, at s < � f and s → � −
f 

. It was found that, with the

egative fluid pressure near the fluid front in the presence of the

uid lag, Eq. (40) does not provide an accurate estimate of the fluid

ront velocity. Indeed, if the fluid front is advancing (i.e., ˙ � f > 0 ),

q. (40) requires a positive pressure gradient at the fluid front

i.e., ∇p f (s ) | s = � −
f 

> 0 ), which together with the zero fluid pressure

t the fluid front ( Eq. (16) ), requires that p f ( s ) > 0 near the fluid

ront at s < � f and s → � −
f 

. In other words, a negative fluid pressure

ear the fluid front (when the fluid lag is non-negligible) violates

q. (16) and cannot be assumed to provide an accurate solution for

he fluid front velocity. 

To circumvent the lack of convergence of the iterative fluid front

ocation once a negative fluid pressure has been obtained near the

uid front, in subsequent iterations we solve Eqs. (39) and (40) by

nding the root, � f = � ∗
f 
, of the following function f : 

f (� f ) = 

{ 

w (� f ) 
2 

μ′ 

(
∂ p f (s ) 

∂s 
| s = � −

f 

)
− � f −� o 

f 

�t 
, p f (s ) > 0 for all s < � f 

−1 , p f (s ) < 0 for some s < � f 

(41) 

uch that 

f (� ∗f ) = 0 (42) 

he root of the function (41) is found using a bi-section algorithm.

In summary, for a given trial location of the crack front

 at time t , the algorithm locates the fluid front � f by us-

ng Eqs. (39) and (40) iteratively and by switching to solving

q. (42) once a negative fluid pressure has been obtained near the

uid front. For each trial location of the fluid front � f , the algorithm

etermines the corresponding crack width w and fluid pressure p f 
sing Newton’s iteration. 

.2. Hydraulic fracture without fluid lag, P & W scheme 

The XFEM-ILSA algorithm with the P & W scheme was used in

ordeliy and Peirce (2013b) to model planar plane strain fracture

ropagating in viscosity-, toughness-, and transition- propagation

egimes. The modifications developed in this paper to model non-

lanar fractures are described below. 

.2.1. The XFEM solution 

In the P & W scheme, the XFEM solution is represented as a su-

erposition of solutions that approximate the asymptotic width

oundary condition in �t ( Eq. (11) ) and the pressure boundary

ondition in �c ( Eq. (12) ). 

The crack discretization is similar to that in the P → W scheme.

he crack, cutting N finite elements, is discretized into N straight-

ine crack elements [ s i , s i +1 ] , i = 1 , . . . , N. The nodes s i for i =
 , . . . , N are located at the finite element edges. For the XFEM-

 scheme, the node s N+1 = � is located at the crack tip. For the

FEM-s scheme, the crack is virtually extended beyond the crack

ip to the farthest edge of the encompassing finite element, and

he node s N+1 is located at the virtual crack tip (see Fig. 4 ). 

The crack tip region �t comprises one or more crack elements

ounting from the crack tip; the rest of the crack elements com-

rise the channel �c . By analogy with the fluid lag problem, we

enote by m the number of elements in the channel region for the

 & W scheme, i.e., �c = { s 1 ≤ s ≤ s m +1 } and �t = { s m +1 < s < � } . If

here is one element in the crack tip region �t , then m = N − 1 . 
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Fig. 4. Discretization of a crack within a finite element mesh, for the P& W XFEM-t (left) and P& W XFEM-s (right) schemes. Blue crosses denote the pressure nodes s i +1 / 2 

for i = 1 , . . . , N. For the XFEM-s scheme, the red circle denotes the location of the actual crack front. In the configuration shown, only one element belongs to the crack tip 

region �t , which corresponds to the number of elements in the channel region m = N − 1 . (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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The pressure nodes s i +1 / 2 , for i = 1 , . . . , m + 1 (see Fig. 4 ), are

defined for i = 1 , . . . , m by Eq. (28) , and for i = m + 1 by 

s m +3 / 2 = 

s m +1 + s N+1 

2 

(43)

The fluid pressure p f in the channel ( s ∈ �c ) is expanded in terms

of the piecewise linear basis functions h i +1 / 2 (s ) associated with the

nodal values p i +1 / 2 = p f (s i +1 / 2 ) using Eq. (30) , which provides a

C 0 -continuous approximation of p f within the channel �c . 

The XFEM approximation for the nodal widths in the channel is

then obtained in the form 

w i = w (s i , t) = 

m +1 ∑ 

j=1 

D i j p j+1 / 2 + ω t,i + ω σ,i , i = 1 , . . . , m + 1 (44)

where D ij is the influence matrix that expresses the effects of the

pressure basis functions h j+1 / 2 (s ) ; and ω t , i and ω σ , i express, cor-

respondingly, the effects of the crack-tip width and of the far-field

stress ( Appendix B.2 ). 

The crack width in the tip region is given by the tip asymptote

w (s ) = w tip (s ) for s ∈ �t (45)

4.2.2. Discretization and solution of the fluid flow equations 

The finite-volume discretization of the fluid-flow equations in

the P & W scheme is similar to that used in the P → W scheme

in Section 4.1.2 . This discretization was given in Gordeliy and

Peirce (2013b) for a plane strain fracture. The channel elements are

treated similarly to the fluid-filled elements in the P → W scheme.

The main difference in the discretization for the P & W scheme, is

the use of the crack-tip asymptote in the crack-tip region �t . 

The volume of fluid in the tip region �t is computed using the

crack tip asymptote: 

Vol m +1 = 2 π

∫ � 

s m +1 

rw tip (s ) ds (46)

Similarly, the volume of fluid, present at time t 0 , is computed ana-

lytically using the crack tip asymptote for those elements that were

in the tip region at time t 0 . For the tip region [ s m +1 , � ] , by virtue of

the boundary condition (18) at the fracture front, the finite volume

approximation becomes [
Vol m +1 − Vol 

o 
m +1 

]
= 2 π�t r m +1 q m +1 (47)

The equations for the elements in the channel �c are similar to

Eqs. (34) –(36) . The volume Vol k for k ≤ m is defined by Eq. (33) . 

For a given trial crack front � at time t , the P & W scheme

determines the (m + 1) -vector of nodal crack widths w =
(w 1 , . . . , w m +1 ) and the (m + 1) -vector of nodal fluid pressures

 = (p 3 / 2 , . . . , p m +3 / 2 ) . The elasticity equations (44) are used to

xpress the nodal crack widths in terms of the nodal pressures,

nd the system of (m + 1) nonlinear equations, resulting from the

nite-volume discretization of the Reynolds equation, is solved for

he nodal pressures p = (p 3 / 2 , . . . , p m +3 / 2 ) using Newton iteration.

.3. Fracture propagation 

.3.1. Fracture propagation direction 

When the solutions for the fracture front, fluid pressure, crack

idth, and fluid front have been obtained at time t 0 , the direction

f fracture propagation for the next time step, t = t 0 + �t, is deter-

ined using the propagation criterion of Erdogan and Sih (1963) .

e recall the polar coordinates ( ρ , θ ) introduced at the fracture

ip, in which θ = 0 corresponds to the existing crack-tip orienta-

ion. For a homogeneous intact elastic material around the crack

ip, the criterion in Erdogan and Sih (1963) states that the crack

rows at an angle θ for which the hoop stress σ θθ is maximized

r equivalently when the shear stress is zero, σρθ = 0 . Such an an-

le θ can be found from the mode I and II stress intensity fac-

ors using Eq. (22) . To find the stress intensity factors, one can use

he interaction energy integral (e.g. Gosz and Moran, 2002 ) which

s related to a decomposition of the J -integral ( Rice, 1968b ) for a

ixed-mode fracture. 

However, in this work we investigate an alternative approach

n which the stresses are computed numerically at a number of

enchmark points ahead of the crack tip and the angle θ , for which

θθ is maximized or σρθ is zero, is determined. In Fries and Bay-

oun (2012) and Baydoun and Fries (2012) , this approach was suc-

essfully used to predict the direction of fracture growth in an

FEM model and was found to be simple to implement and to pro-

ide a straightforward extension to 3D. 

The new crack direction is found by computing the shear stress

ρθ ( ̂  ρ, θ ) at a number of points distributed on a circle of a small

adius ˆ ρ from the crack tip, and finding the angle θ = 

ˆ θ for which

he shear stress is zero: 

ρθ ( ̂  ρ, ˆ θ ) = 0 (48)

or a fracture propagating in a homogeneous intact elastic ma-

erial and dominated by mode I (opening), the points are dis-

ributed in the interval θ ∈ (−72 ◦, 72 ◦) . These margins for θ agree

ith the observation that for a mixed-mode crack, the direction of

rack deflection is expected to be within about 70.5 ° ( Erdogan and

ih, 1963 ). (The range of values of the angle (22) falls within the
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Fig. 5. Extension of the crack within a finite element mesh from its configuration 

at t 0 to the new configuration at t . 

m  

E  

i

i

 

a  

d  

d  

ρ  

a

 

c  

m  

c  

fi

 

m  

t  

t  

m  

p  

i  

f  

t  

t  

a  

e

4

 

b  

i  

T  

t  

e  

a  

p  

i  

t  

f

 

t  

c  

s

 

o  

w  

r  

d  

m  

l

F  

w  

g  

f

θ

(  

t

T

T  

f

�

T  

w  

f

4

 

i  

s  

 

 

w  

p

 

 

 

 

 

 

 

 

 

 

 

 

 

5

5

 

t  

s  

D  

c  

h  

6  

fl  

a  

a  
argins θ ∈ (−70 . 5 ◦, 70 . 5 ◦) for varying K II / K I . See also Fig. 5 in

rdogan and Sih (1963) .) If multiple values of θ are found that sat-

sfy Eq. (48) , the value ˆ θ is chosen for which the hoop stress σ θθ

s the largest. 

If the radius ˆ ρ is sufficiently small, such that the stress field

head of the crack tip within a distance ˆ ρ can be assumed to be

ominated by the square-root singularity ρ−1 / 2 , the propagation

irection found from Eq. (48) should be relatively independent of

ˆ . A numerical example, investigating the dependence of the prop-

gation direction on the distance ˆ ρ, is considered in Section 5.2.5 . 

The crack is extended from its configuration at t 0 to the new

onfiguration at t as shown in Fig. 5 . The new crack trajectory is

odified in the element containing the previous location of the

rack tip so that the crack kinks are located at the edges of the

nite element mesh. 

Note that the XFEM-s scheme (the scheme with the sign enrich-

ent only) does not capture the singular stress near the fracture

ip, due to the lack of the crack-tip enrichment in this scheme. Al-

hough it is an efficient alternative to the fully crack-tip enriched

odel, the XFEM-s scheme may or may not provide an accurate

rediction for the fracture propagation direction if this direction

s determined from the stress ahead of the crack tip for a brittle

racture. Therefore, to ensure the accuracy of the fracture path ob-

ained in the XFEM-s simulation, after the solution for a particular

ime step has been obtained using the XFEM-s scheme, the stress

head of the fracture tip can be computed using the full crack-tip

nrichment. 

.3.2. Implicit level-set algorithm 

Once the direction of crack propagation for the time step t has

een found, the extension of the fracture front along that direction

s determined using the ILSA scheme ( Peirce and Detournay, 2008 ).

he ILSA scheme determines the fracture front location � such that

he fracture width near the crack tip, obtained from the coupled

lasto-hydrodynamic equations, is compatible with the crack-tip

symptote. The application of the ILSA to model mode-I fracture

ropagation in the P & W scheme was described in the XFEM model

n Gordeliy and Peirce (2013b) and is used here without modifica-

ion. Below we present the use of the ILSA for the mixed-mode

racture propagation in modes I and II, for the P → W scheme. 

At time t , the ILSA scheme iterates on the location of the frac-

ure front � . Consider a trial value � ( i ) at front iteration i . Let us

onsider a node s K near the crack tip, e.g. with K = N − 1 . It is as-

umed that the crack tip asymptote is valid at the node s K . 

For the current trial value of the fracture length � ( i ) , the solution

f the elasto-hydrodynamic equations determines the nodal crack

idths in the channel, including the nodal crack width w K and the

ide v k at the node s K . We denote by T K = −(� − s K ) the signed

istance from the point s K to the true fracture front location � . The

ixed-mode asymptote (21) , applied at the node s K , yields the fol-

owing condition: 

 (w K , v K ) = 

K 

′ 
′ (−T K ) 1 / 2 (49)
E 
here F (w K , v K ) = cos 
ˆ θK 
2 

(
w K cos 2 

ˆ θK 
2 − 3 

2 v K sin 

ˆ θK 

)
, v K is the tan-

ential displacement jump at node s K , and the angle ˆ θK is found

rom 

ˆ 
K = 2 arctan 

( 

1 ±
√ 

1 + 8 η2 

4 η

) 

, η = 

v K 
w K 

(50) 

Note that the angle ˆ θK in Eq. (50) is an estimate of the angle ˆ θ for

he fracture propagation direction at the next time step.) 

Eq. (49) is inverted to compute the signed distance T K : 

 K = −
(

E ′ 
K 

′ F (w K , v K ) 
)2 

(51) 

hen the fracture front is updated for the next ILSA iteration as

ollows: 

 

(i +1) = s K − T K (52) 

his process is repeated until convergence in � is achieved, at

hich stage the crack width w K and the location of the fracture

ront � are compatible with the tip asymptote. 

.4. Summary of the algorithm 

The summary of the algorithm for one time step, t = t 0 + �t,

s shown below. For numerical computations, all the equations are

caled in order to improve the accuracy of numerical solutions, see

Appendix C . 

Given the solutions for the fracture front � o , the fluid pressure

p o 
f 
, the crack width w 

o , and the fluid front � o 
f 

(for the problem

ith fluid lag) at time step t 0 , and the new direction of fracture

ropagation 

ˆ θ : 

• Find the crack length � ( t ) using ILSA iterations, assuming the

crack growth is in the propagation direction 

ˆ θ . For each value

of the trial fracture length � ( i ) : 

1. For the problem with fluid lag, locate the fluid front � f by

solving Eq. (42) . For each location of the trial fluid front

� f , solve the coupled elasto-hydrodynamic equations to de-

termine the crack width w and the fluid pressure p f using

Newton iteration. 

2. For the problem without fluid lag, solve the coupled elasto-

hydrodynamic equations to determine the crack width w

and the fluid pressure p f using Newton iteration. 

3. Update the crack length � (i +1) for the next ILSA iteration. If

| � (i +1) − � (i ) | is within a specified tolerance, break. 

• For the new crack length � ( t ), compute the shear stress

σρθ ( ̂  ρ, θ ) on a circle of radius ˆ ρ around the crack tip. Find the

angle θ = 

ˆ θ for which the shear stress is zero, Eq. (48) . The an-

gle ˆ θ provides the direction of fracture propagation for the next

time step. 

. Numerical results 

.1. Fracture propagation in the viscosity-dominated regime 

In this section we verify the results of the XFEM model against

he analytical solution for the propagation of a radial (penny-

haped) fracture in the viscosity-dominated regime ( Savitski and

etournay, 2002 ). This analytical solution corresponds to the so-

alled “M-vertex” solution. The far-field stresses are assumed to

ave an axisymmetric distribution with σ∞ 

rr = 70 MPa and σ∞ 

zz =
0 MPa. The rock is characterized by E = 35 GPa and ν = 0 . 2 . The

uid, having a viscosity of μ = 0 . 1 Pa.s, is assumed to be injected

t a constant rate Q = 0 . 026 m 

3 / s . The initial fracture is taken as

 penny-shaped crack of radius approximately R = 1 m, with the
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Fig. 6. Evolution of fracture radius, for a radial fracture propagating in the 

viscosity-dominated regime. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Crack width and fluid pressure at times t = 10.4 s, 20.4 s, 50.4 s, and 100.4 s, 

for a radial fracture propagating in the viscosity-dominated regime. 
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initial solution set to the M-vertex analytical solution ( Savitski and

Detournay, 2002 ). The wellbore is approximated as a point-source.

The planar radial fracture is assumed to propagate in an infinite

domain. 

The XFEM results for this example were obtained using the

P & W XFEM-t scheme (the scheme with the full crack-tip en-

richment, with the tip asymptote used in the XFEM weak form)

and the P & W XFEM-s scheme (the scheme with the sign en-

richment only, with the tip asymptote imposed in the XFEM in

a weak sense). The computational domain in cylindrical coordi-

nates was defined by 0 ≤ r ≤ 25 m, −6 . 38 m ≤ z ≤ 6 . 62 m . The do-

main was discretized into a structured mesh of 5200 quadrilat-

eral finite elements of dimensions 0.25 m × 0.25 m. Along the

boundary { r = 0 } , the conditions of axisymmetry were enforced;

along the rest of the domain boundary, infinite elements were em-

ployed ( Section 3.3 ). The initial fracture geometry was defined by

0 ≤ r ≤ 1.0 0 01 m, and z = 0 . Figs. 6 and 7 show a comparison of the

XFEM results with the M-vertex analytical solution ( Savitski and

Detournay, 2002 ) for the fracture radius, crack width and the

fluid pressure in the fracture. The XFEM results show an excellent

agreement with the analytical solution. The XFEM-s scheme, with

only sign enrichment representing the crack, provides an efficient

and sufficiently accurate alternative to a crack-tip enriched XFEM

model, due to the use of the crack tip asymptote in the weak for-

mulation of the XFEM. By virtue of the infinite elements, the XFEM

results match the infinite-space solution even for times at which

the fracture tip approaches the interface between the finite and

infinite elements (at r = 25 m). 

5.2. Near-surface fracture propagation with fluid lag 

In this section, we compare the XFEM results with the re-

sults of laboratory experiments for bowl-shaped hydraulic frac-

tures ( Bunger et al., 2013 ). The results of the displacement dis-

continuity model OribiC, compared to the laboratory data in

Bunger et al. (2013) , are included as well. We summarize below the

details of the experiments required for setting up the XFEM model

and interpreting its results. For complete details of the experi-

ments, the reader is referred to the work of Bunger et al. ( Bunger,

2005; Bunger et al., 2004; 2013 ). 

5.2.1. Summary of experiments and DDM simulations from 

Bunger et al. (2013) 

We consider five of the six experiments presented in

Bunger et al. (2013) ( ab5 , c6m1 , pg1 , pg4 , pg2 ). The details of

the experiments, considered in this paper, are summarized in
able 1 . In each experiment, a specimen, made of either poly-

ethyl methacrylate (PMMA) or glass, was subject to axisymmetric

ateral (confining) stress σ rr and hydraulically fractured, as shown

n Fig. 3 in Bunger et al. (2013) . The fractures initiated at manufac-

ured notches at the end of the wellbore and propagated towards

he free surface of the specimens. The fractures developed bowl-

haped trajectories. It was confirmed that the trajectories corre-

pond to the ratio χ = 

| σrr | √ 

H 
K Ic 

, in accordance with the hypothesis

arlier suggested by Zhang et al. (2002) , where H is the distance

rom the initial crack to the free surface. 

In tests c6m1 , pg1 , pg4 , and pg2 , the specimens were cylindri-

al, with diameter 145 mm and thickness 60 mm. Each specimen

as put in a Hoek-type pressure cell, which was used to apply the

ateral stress σ rr to the specimen. In test ab5 , the specimen was

 rectangular block of dimensions 360 mm x 400 mm x 120 mm

hick. In tests pg1 and ab5 , no lateral load was applied to the spec-

mens. (The effect of the atmospheric pressure was neglected in

he DDM model, and the lateral load for tests pg1 and ab5 was set

o σrr = 0 .) Table 1 lists the stress value which is representative of

he stress σ rr applied in each experiment and which was used in

he DDM model in Bunger et al. (2013) . 

Each specimen contained a borehole (7.4-mm diameter in

MMA, 8.0-mm diameter in glass) with a steel injection tube

6.4 mm outer diameter) cemented in the borehole using epoxy.

he fracture initiated at a circular notch, of approximately 12 mm

iameter, manufactured at the end of the wellbore. In tests pg1 ,

g4 , and pg2 (in glass), significant fluid lag was observed between

he fracture and fluid fronts. In tests ab5 and c6m1 (in PMMA),

o fluid lag was observed, due to a relatively larger dimensionless

oughness associated with these tests. 

The experiments were modeled in Bunger et al. (2013) by using

 hydraulic fracture model OribiC, based on the axisymmetric dis-
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Table 1 

Parameters of the laboratory experiments of Bunger et al. (2013) considered in this paper. 

Test Material χ | σ rr | E ν K Ic μ Q 0 H 

(MPa) (GPa) (MPa m 

1/2 ) (Pa s) (ml/s) (mm) 

ab5 PMMA 0 0 3.3 0.4 1.37 2.5 0.1 15 

c6m1 PMMA 0.5 6.3 3.3 0.4 1.37 1.63 0.12 12 

pg1 Glass 0 0 62.8 0.2 0.64 0.16 0.0 0 02 12 

pg4 Glass 0.5 2.9 62.8 0.2 0.64 0.14 0.08 12 

pg2 Glass 1 5.8 62.8 0.2 0.64 0.12 0.08 12 
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Fig. 8. XFEM model of the cylindrical specimen with computed fracture path for 

test pg4 : computational domain with a square inset area marked by a red line (top) 

and mesh detail around the initial notch in the square inset area (bottom). The 

fracture path is shown by the blue line; the steel injection tube and the epoxy liner 

along the wellbore are shaded in dark grey and light grey color, respectively. (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
lacement discontinuity method ( Gordeliy and Detournay, 2011 ).

he specimens were modeled as an elastic half-space without

 wellbore. The fractures were modeled as axisymmetric (bowl-

haped), with the fluid injected from a point source at the center

f the fracture. While a nominally constant injection rate Q 0 was

upplied to the wellbore in the experiments (given in Table 1 ), the

ate of fluid entering the fracture was time-dependent due to the

ompressibility of the injection system. To account for the time-

ependent fluid rate entering the fractures, the OribiC model used

iecewise-linear time-dependent injection rates chosen such that

he injected volume would correspond to the recorded injected

olume from the experiments. 

.2.2. XFEM model 

The XFEM results have been obtained using the P → W XFEM-t

cheme. The mixed-mode tip asymptote (21) was used in the ILSA

lgorithm outside of the XFEM solver, to track the fracture front

ith time. 

For the XFEM simulations for tests c6m1 , pg1 , pg4 , and pg2 , the

omputational domain represents the cylindrical specimen having

 radius of 72.5 mm and thickness of 60 mm, consistent with the

pecimen dimensions used in the experiments. For the XFEM simu-

ation for test ab5 , the computational domain represents an equiv-

lent cylindrical specimen with a radius of 180 mm and thickness

f 120 mm. As an example, the computational domain for test pg4 ,

ith the background finite element mesh, is shown in Fig. 8 . 

The domain is discretized using a structured rectangular mesh

n cylindrical coordinates. The wellbore includes the steel tube

with Young’s modulus 200 GPa, Poisson’s ratio 0.3) and the epoxy

dhesive layer (with Young’s modulus 2 GPa, Poisson’s ratio 0.4),

odeled as elastic materials. The effects of any inelastic behavior

f the wellbore system are assumed to be negligible. The initial

adial notch is represented by an initial crack having dimensions

orresponding to the initial notch size in the experiments. 

The outer cylindrical surface of the specimen (the cylindrical

urface on the right, in Fig. 8 (top)) is subject to the normal confin-

ng stress σrr = −χK Ic √ 

H 
and zero shear stress, σrz = 0 . (The tension-

ositive convention for stresses is employed.) The surfaces paral-

el to the initial notch (top and bottom surfaces of the specimen,

n Fig. 8 (top)) are traction-free. (This assumption is discussed in

he next section.) The surface of the wellbore is subject to a uni-

orm wellbore pressure, equal to the fluid pressure p f (0, t ) at the

racture inlet, and zero shear stress. Along the boundary at r = 0 ,

xial symmetry requires that u r = 0 . To remove rigid body mo-

ion, a zero displacement component u z , u z = 0 , is enforced at

he corner node of the outer cylindrical surface, corresponding to

 = 72 . 5 mm and z = 0 . 

The initial cracks were subject to a uniform pressure. The prob-

em parameters were taken according to the values in Table 1 (ex-

ept for the injection rates). The same time-dependent injec-

ion rates Q ( t ) were used in the XFEM simulations as the ones

sed in the corresponding OribiC simulations, given in Fig. A3 in

unger et al. (2013) . 



146 E. Gordeliy, S. Abbas and A. Peirce / International Journal of Solids and Structures 159 (2019) 135–155 

Fig. 9. Results for test pg4 , obtained in the experiment and computed with the DDM model OribiC ( Bunger et al., 2013 ), and computed with the XFEM using different 

boundary conditions along the interface between the glass specimen and the plug filling the Hoek cell: fracture path (top), and crack opening at fracture inlet (bottom, left) 

and half-way into the fracture (at r = R/ 2 ) (bottom, right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Fracture and fluid fronts for test pg4 , computed with the XFEM using three 

mesh levels. 
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5.2.3. Boundary conditions along the interface between two materials

In tests c6m1 , pg1 , pg4 , and pg2 , the specimen was put in a

Hoek cell. To fill the back of the Hoek cell, a PMMA plug was in-

serted into the cell behind the specimen, as shown in Fig. 3 in

Bunger et al. (2013) . The specimen and the plug were not bonded,

i.e., a gap could have existed between the specimen and the plug,

while on the other hand, the specimen and the plug could have

come into contact during the experiment. 

For test pg4, we studied the effect of the boundary conditions

along the interface between the glass specimen and the PMMA

plug on the fracture shape and the fracture opening. The fracture

width was compared at the fracture inlet and at half of the frac-

ture radius, at r = R/ 2 . Fig. 9 shows a comparison of the XFEM

results obtained using two types of the boundary conditions: the

PMMA plug bonded to the glass to form a bi-material specimen,

and a traction-free surface along the interface between the glass

specimen and the PMMA plug. (In the XFEM simulation with the

PMMA plug bonded to the glass, the cylindrical PMMA plug had a

72.5 mm radius and 170 mm thickness. A zero displacement com-

ponent u z , u z = 0 , was enforced at the corner node of the mesh

corresponding to r = 72 . 5 mm and z = 0 , to remove rigid body mo-

tion. A normal confining stress σrr = −χK Ic √ 

H 
and zero shear stress,

σrz = 0 , were applied to the lateral cylindrical surface of the plug

and of the specimen.) For comparison, Fig. 9 includes the OribiC re-

sults from Bunger et al. (2013) , which were based on a half-space

approximation of the specimen. 

The interface boundary conditions have a significant effect on

the fracture trajectory and the fracture opening. The XFEM result

with the traction-free specimen boundary along the interface and

the DDM results are in good agreement with the experimental data

for the fracture opening. The fracture paths from all three simula-

tions slightly deviate from the experimental result. We note that

the XFEM result, assuming that the glass specimen and the PMMA

plug are bonded, results in a deflection of the fracture path to-

ward the free surface compared to the traction-free XFEM simula-

tion and the DDM result. This is due to the significant contrast in

the elastic properties of the PMMA plug and the glass specimen,

w  
hich affects the orientation of principal stresses in the specimen

onded to the plug and causes the fracture path to deflect toward

he free surface. As the result, the fracture opening is larger for

he XFEM simulation with the PMMA plug bonded to the glass, in

omparison to the other two simulations, and does not follow the

ehavior of the fracture width in the experiment. 

The capacity of the XFEM to model a bi-material specimen thus

nables us to discount any significant contact between the glass

nd the PMMA plug in the experiment. Therefore a zero-traction

nterface boundary condition is used in the following for all XFEM

imulations for the tests c6m1 , pg1 , pg4 , and pg2. 

.2.4. Convergence with mesh refinement 

A level of mesh refinement, sufficient to compute the re-

ults with reasonable accuracy and within a reasonable compu-

ational time, was chosen by comparing the results for three

esh levels for test pg4 . Figs. 10 and 11 show a comparison

f the results obtained using 10,760 finite elements (mesh level

, with h x ∈ {0.43 mm, 0.61 mm} and h y = 0 . 33 mm , where h x × h y
re the dimensions of a rectangular element in the subdomain

f fracture propagation), 24396 finite elements (mesh level 2,

ith h x ∈ {0.29 mm, 0.40 mm} and h y = 0 . 22 mm ), and 43,489 fi-
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Fig. 11. Fluid pressure (left) and fracture width (right) at the fracture inlet for test pg4 , computed with the XFEM using three mesh levels. 

Fig. 12. Fracture path (top) and fracture radius (bottom) for test pg4 , computed with the XFEM using three values of the distance ˆ ρ from the crack tip, at which the stress 

is computed. 
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ite elements (mesh level 3, with h x ∈ {0.21 mm, 0.30 mm} and h y =
 . 16 mm ). The dimensions of all the finite elements were uni-

ormly decreased from mesh level 1 to the mesh levels 2 and 3. A

napshot of the finite element mesh, corresponding to mesh level

, is shown in Fig. 8 (bottom). Figs. 10 and 11 show that there is

o significant difference between the results for the pressure, frac-

ure width, and fluid front, for all three meshes. The largest dif-

erence between the solutions for the three meshes is observed in

he fracture radius R in Fig. 10 . With mesh refinement, the XFEM

esults for the fracture radius become closer to the OribiC result,

hich was obtained with constant-strength displacement disconti-

uity elements of length �s OribiC = 0 . 12 mm . (Both the XFEM and

he DDM (OribiC) solutions overestimate the fracture front radius

or this experiment.) Based on the comparison between the three

FEM solutions, the mesh level 2 is found to be sufficient and is

sed in the following simulations for tests pg1 , pg4 , and pg2 . A

imilar mesh refinement level is used for the simulation for test

6m1. For test ab5 , a coarser mesh is used due to the larger speci-

en size in this test. 

The crack radius in the XFEM results in Fig. 10 , for mesh lev-

ls 1 and 2, shows some ragged behavior. This can be attributed
o the mesh-dependence of the XFEM solution, since the crack

adius for mesh level 3 shows a smoother growth. Another con-

ributing aspect is the convergence of the solution for the crack-

ront. Note that the original ILSA algorithm of Peirce and Detour-

ay (2008) employs the crack-width asymptote to explicitly de-

ne the boundary values of crack width near the fracture front

ithin the discretization of the coupled equations for fluid flow

nd linearly-elastic solid deformation. This approach ties down the

oundary values of the crack width near the crack tip and con-

ributes to a fast convergence of the ILSA algorithm. However, since

he mixed-mode tip asymptote does not provide an explicit asymp-

ote for the crack width alone, it is not employed to set the bound-

ry values of crack width near the fracture front within the dis-

retization of the coupled fluid-solid equations. Therefore, for sim-

lations of the mixed-mode propagation for laboratory tests, we

ave used the P → W scheme which is simple in implementation

ut does not enforce the crack-tip asymptote in the fluid flow and

lasticity equations. Such a reduced ILSA algorithm has a slower

onvergence rate than the original ILSA approach. 
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Fig. 13. Fracture paths for glass specimens. 

Fig. 14. Fracture and fluid fronts for glass specimens. 
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5.2.5. Dependence of crack propagation angle on the distance ˆ ρ
To test the dependence of the crack propagation direction on

the distance ˆ ρ from the crack tip, at which the stress is com-

puted ( Eq. (48) ), we performed the XFEM simulations for test pg4

with ˆ ρ = 0.2 mm, 0.1 mm and 0.05 mm. The comparison of the re-

sults for the crack path and the fracture radius is shown in Fig. 12 .

There are no significant differences in the results for the three val-

ues of ˆ ρ, except for the time when the fracture tip approaches the

free surface. Near the surface, the smallest value of ˆ ρ results in a

more accurate crack path. In the following XFEM simulations, ˆ ρ =
0.05 mm is used. 

5.2.6. Results for glass specimens 

Figs. 13–15 show the XFEM results obtained for tests pg1 , pg4 ,

and pg2 using mesh level 2. 

Note that for test pg1 , a small initial kink (shown by the change

of the fracture curvature between r/H = 0 . 4 and r/H = 0 . 64 in

Fig. 13 ) was introduced in both numerical models to be able to
atch the crack path with the experiment. Similarly, an initial kink

n the fracture path was introduced for test ab5 in both numerical

odels, to be able to match the fracture path ( Section 5.2.7 ). It was

onjectured in Bunger et al. (2013) that the DDM model was not

ble to predict the initial sharp kinks in the crack paths for tests

g1 and ab5 (corresponding to σrr = 0 ) because it did not include

he influence of the wellbore. However, we found that the XFEM

odel, which includes the wellbore configuration corresponding to

he experiment, is also unable to match the crack path for tests

g1 and ab5 with the experiment, unless the initial kink was in-

roduced. 

The comparisons for the crack paths ( Fig. 13 ), the fracture ra-

ius, and the fluid front location ( Fig. 14 ), the fluid pressure, and

he crack opening at the fracture inlet ( Fig. 15 ) show that the XFEM

esults are in good agreement with both the experimental data

nd the DDM model. This comparison not only serves as a valida-

ion of the XFEM implementation presented in this paper, but also

akes it possible to identify the effects of the differences between

he XFEM and the DDM models in comparison to the experimen-

al data. For test pg2 , the XFEM predicts a fracture shape which

s closer to the experimental results. This could be attributed to

he effect of the finite domain and the pressurized wellbore in

he XFEM model, in comparison to the half-space model with a

oint-source in the DDM model. In particular, in test pg2 shown

n Fig. 13 , the fracture in the experiment daylighted at the outer

ylindrical surface of the specimen (at r = 72 . 5 mm); therefore, the

nite size of the specimen could be expected to have a significant

mpact on the fracture trajectory in this test. Naturally, the finite-

omain model of the XFEM is more representative of this test than

he half-space DDM model. As a result, the fracture shape from the

FEM simulation for test pg2 is closer to the experimental result

han that of the DDM model. 

The fracture radius shown in Fig. 14 is captured by the

FEM model relatively well, and a better convergence to the re-

ults of the DDM model is expected upon mesh refinement (see

ection 5.2.4 ). For test pg4, Fig. 14 includes the additional XFEM

esults obtained with the refined mesh (mesh level 3). Note that

ven though both numerical models overestimate the fracture ra-

ius, the fluid front radius R f is captured well. For tests pg1 and

g4 , the XFEM prediction for the fluid front radius is in fact closer

o the experimental data. 

It should be noted that, for test pg2 only, there is an error in

he plot of the experimental data for the fracture and fluid fronts

n Fig. 9 (bottom, left) in Bunger et al. (2013) . The correct ex-

erimental data for R and R f for test pg2 correspond to those in

ig. 9 (bottom, left) in Bunger et al. (2013) multiplied by a fac-

or 0.8. The correct experimental values for R / H for test pg2 can

lso be obtained from the supplementary data in Appendix C of

 Bunger et al., 2013 ). 

Since the numerical models overestimate the fracture radius,

he models overestimate the created fracture surface area. As a

est, we have tried to increase the fracture toughness K Ic in the

FEM model, in order to try to match the fracture radius R with
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Fig. 15. Fluid pressure (right) and crack opening (left) at fracture inlet (at r = 4 mm), for glass specimens. 

Fig. 16. Fracture paths for PMMA specimens. 
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he experimental data. Since the fracture trajectory depends on

he ratio χ = 

| σrr | √ 

H 
K Ic 

, changing the fracture toughness K Ic and/or

he lateral stress σ rr leads to a change in the crack path, unless

hese two quantities are changed proportionally. We were not able

o find a unique pair of values ( K Ic , σ rr ), such that it would make it

ossible to consistently match the fracture radius and the fracture

ath for all three tests in glass ( pg1 , pg4 , and pg2 ). 

There is no significant difference between the results of the

FEM and DDM models for the fluid pressure and the crack open-

ng at the fracture inlet ( Fig. 15 ). The results of both models show

xcellent agreement with the experimental data. 

.2.7. Results for PMMA specimens 

In this section we present the XFEM results for tests in the

MMA samples (tests ab5 and c6m1 ) . No fluid lag was observed

n these tests in the laboratory. The fractures in the PMMA spec-

mens lost their axial symmetry during the experiments and be-

ame significantly asymmetric (“egg-shaped”) once the fracture ra-
ius was sufficiently large ( Bunger et al., 2013 ). This symmetry-

reaking is typical of toughness-dominated propagation ( Bunger,

005; Gao and Rice, 1985 ). The fracture radius R , reported from

he experiment, was computed as the average radius over several

adial directions from the injection point ( Bunger et al., 2013 ). 

We use the same XFEM model as the one used for the glass

pecimens, i.e., the fluid front is not forced to coincide with the

racture front. An initial kink in the fracture path was introduced

or test ab5 in the XFEM model as well as in the OribiC model, to

e able to match the fracture path. 

Figs. 16–18 show the results for the fracture path, the fracture

adius and the fluid front radius, the wellbore pressure, and the

racture width at the fracture inlet and sampled at half of the frac-

ure radius (at r = R/ 2 ). The XFEM results are again in good agree-

ent with the experimental data and the OribiC results, except

hat the results of both numerical models overestimate the frac-

ure opening. The fracture fronts and the fluid fronts coincide in

oth XFEM simulations, in agreement with the laboratory observa-
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Fig. 17. Fracture and fluid fronts (right) and fluid pressure at fracture inlet (left), for PMMA specimens. 

Fig. 18. Crack opening at fracture inlet (left) and half-way into the fracture (at r = R/ 2 ) (right), for PMMA specimens. For test ab5 (top left), the cross mark depicts the 

maximum fracture opening observed in the experiment at time t ≈ 5.6 s. 
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tions. Note that the results for test ab5 are slightly ragged, which

can be due to the coarser mesh used for this test. (The finite ele-

ment size for test ab5 was about twice that for the mesh used for

the XFEM simulation for test c6m1 .) 

It was noted in Bunger et al. (2013) that the OribiC modeling re-

sults for the PMMA specimens overestimated the fracture opening

by as much as 20%. This overestimation can be directly linked to
he fact that the fractures in the PMMA samples were loosing their

ymmetry during the experiments and were becoming egg-shaped

nce the fracture radius was sufficiently large, as shown in Fig. 6

n Bunger et al. (2013) and Fig. 6.11 in Bunger (2005) . As the result

f this shape change, the location of the maximum fracture open-

ng was no longer at the inlet but shifted towards the largest ra-

ius, as can be seen from Fig. 6.11 in Bunger (2005) . Therefore, for
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he same injected volume and the same average fracture radius R ,

he fracture opening at the center of a radially symmetric fracture

hould be larger than the fracture opening at the injection point

f an asymmetric fracture. In other words, it is to be expected that

he inlet crack width obtained in the axisymmetric XFEM and DDM

odels should be larger than the inlet crack width observed in the

aboratory experiments when the fractures became egg-shaped. In

act, at time t ≈ 5.6 s for test ab5 , the magnitude of the maximum

racture opening in the experiment in Fig. 6.11 in Bunger (2005) is

oughly 0.24 mm (while the fracture opening at the injection point

s roughly 0.18 mm). The modeling results for the inlet crack width

t time t ≈ 5.6 s ( Fig. 18 ) are roughly 0.25 mm, i.e. very close to the

aximum fracture opening observed in the experiment (shown in

ig. 18 by a cross). Thus, the XFEM and the DDM results for the

racture opening can be considered to be consistent with the labo-

atory experiments for tests ab5 and c6m1 . 

. Conclusions 

In this paper we have further developed the 2D plane strain hy-

raulic fracture XFEM model ( Gordeliy and Peirce, 2013b ) to enable

t to model nonplanar axisymmetric hydraulic fractures. Nonplanar

ractures are represented by using the hybrid explicit-implicit crack

escription of Fries and Baydoun (2012) . The fracture propagation

n the mixed mode (I-II) is modeled within the framework of the

mplicit level-set algorithm ( Peirce and Detournay, 2008 ). The di-

ection of fracture propagation is found according to the propaga-

ion criterion of Erdogan and Sih (1963) . 

We verified the results of the axisymmetric XFEM formulation

gainst the analytical solution for propagation of a radial fracture

n the viscosity-dominated regime. The XFEM results show excel-

ent agreement with the analytical solution ( Savitski and Detour-

ay, 2002 ). 

We have validated the axisymmetric XFEM HF simulator against

he results of laboratory experiments and the results of a DDM

F model. The comprehensive comparison of the results from the

FEM with the results from the DDM and with the laboratory data

eveals which components of the present XFEM model (that are

issing in the DDM model) affect the fracture characteristics. In

articular, we found that for the conditions of these experiments,

he wellbore and the finite lateral boundary of the specimen, ex-

licitly represented by the XFEM, did not have a significant impact

n the numerical results, since the two models predicted similar

esults. On the other hand, the ability of the XFEM to model a fi-

ite domain and inhomogeneous elastic materials made it possible

o discount a bi-material contact between the specimen and a plug

sed in the experiments performed in the Hoek cell. The new al-

orithm to track the fluid front, implemented in the XFEM model,

ade it possible to obtain fluid front results that are closer to the

xperimental values than the results from the DDM model. Finally,

ith mesh refinement in the XFEM, the XFEM results for the frac-

ure radius converge to the DDM results. 
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ppendix A. XFEM formulation for a nonplanar fracture 

Below we present the XFEM solution for the elastic deforma-

ion of the medium. The formulation is based on the previous work

 Gordeliy and Peirce, 2013b; 2015 ), with new components included

o represent a non-planar fracture. 

For all examples in this paper, at each point on the domain

oundary, x ∈ �, either a zero displacement u i ( x ) = 0 or a given

oundary traction t i ( x ) = t ∗
i 
( x ) is prescribed, in each coordinate di-

ection ( i = r, z). We denote those parts of � with prescribed dis-

lacement components, u i ( x ) = 0 , as �u , i , and those parts of �

ith prescribed traction components, t i ( x ) = t ∗
i 
( x ) , as �t , i . 

The computational domain V is discretized into a finite ele-

ent mesh comprising a set of nonoverlapping quadrilateral ele-

ents. The displacement in V is approximated by functions in the

rial space U 

h 
u = 

{
u 

h | u 

h ∈ U, u h 
i 

= 0 on �u,i , i = 1 , 2 
}
, and varia-

ions v h are taken from the test space (which is the same as the

rial space, consistent with a Galerkin formulation), v h ∈ U 

h 
u . In

he description that follows, U = H 

1 h × H 

1 h is a finite-dimensional

ubspace of the Sobolev space H 

1 ( V ��) × H 

1 ( V ��) that consists of

he shape functions representing the discretization u 

h . The shape

unctions for the XFEM-t scheme and the XFEM-s scheme are dis-

ussed in Section 3.1 . The domain V includes the crack �. The do-

ain V �� that does not contain the crack is assumed to be piece-

ise Lipshitz. The test and trial functions are chosen so that they

re discontinuous at the crack � in a direction normal to the crack.

.1. Weak formulation for the P → W scheme 

For a test function u 

h , the corresponding strain ε ( u 

h ) can be

omputed from (4) , and the corresponding stress can be obtained

rom Hooke’s law (3) to yield σ(u 

h ) = C : ε (u 

h ) . The discretized

eak formulation of the elasticity problem corresponding to the

 → W scheme follows ( Fries, 2008 ) and seeks to find u 

h ∈ U 

h 
u such

hat for all v h ∈ U 

h 
u 

 = 

∫ 
V \ �

ε (v h ) : σ(u 

h ) d V −
∑ 

i =1 , 2 

∫ 
�t,i 

v h i t 
∗
i d A 

 

∫ 
�

[[ v h ]] ·
(
(σ∞ 

n − p f ) n + σ∞ 

s s 
)
d A (A.1)

n the above, [[ v ]] = (v + − v −) denotes the jump of v across the

rack. Note that the volume element dV and the surface area el-

ment dA in the volume and surface integrals in Eq. (A.1) include

 factor of 2 π r for integration in cylindrical coordinates ( r , z ), to

ccount for the axisymmetric formulation. 

.2. Weak formulation for the P & W scheme 

In order to prescribe the crack width as the boundary condition

n the tip region �t , the P & W scheme employs the localized mixed

ybrid formulation from Zilian and Fries (2009) for finite elements

hat overlap with the crack tip region �t . In finite elements over-

apping with the tip region �t , the stress σ is introduced as an

uxiliary tensor variable for which Hooke’s law (3) is weakly im-

osed. The formulation for the rest of the domain is similar to the

 → W scheme. 

http://www.xfem.rwth-aachen.de/Background/Download/XFEM_Download.php
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Fig. A.19. Isolines for level-set functions (a) φ1 ( x ) = 1 , 2 , 3 , (b) φ2 ( x ) = 1 , 2 , 3 , and 

(c) φ3 ( x ) = −3 , −2 , −1 , 0 , 1 , 2 , 3 , and (d) the sets �I , �II , �III , �IV defined by the 

level-set functions for a 2D crack description. Solid black lines denote the crack �; 

dashed black lines denote the extended crack ˆ �; blue lines denote the set �IV (the 

boundary of the set �I ); red lines denote the isolines of the level-set functions. (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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φ . 
The weak formulation for the P & W scheme for a plane strain

fracture in an infinite domain was given in Eqs. (41)–(43) in

Gordeliy and Peirce (2013b) . Modifications for an axisymmetric

fracture are introduced in the same way as in Eq. (A.1) for the

P → W scheme, by replacing the arc-length element d ζ in the in-

tegrals over the crack surface in Eqs. (41)–(43) in Gordeliy and

Peirce (2013b) by the surface area element dA , including the 2 π r

factor for integration in cylindrical coordinates ( r , z ) in the volume

element dV and the surface area element dA in the volume and

surface integrals, and rewriting the elastic tensors and tensor op-

erations in the cylindrical coordinates ( r , z ) . If the problem under

consideration includes prescribed surface tractions t ∗
i 

over a part

of the domain boundary �t , i , the weak formulation includes the

corresponding integral over the boundary �t , i as in Eq. (A.1) . 

A.3. Level-set representation of the fracture 

The crack is represented by the following three level-set func-

tions ( Fries and Baydoun, 2012 ): 

• φ1 ( x ) = min 

˜ x ∈ �
| x − ˜ x | is the distance to the crack � (or to the vir-

tual crack extension �, for the XFEM-s scheme); 

• φ2 ( x ) = | x − x tip | is the distance to the crack tip x tip ; 

• φ3 ( x ) = ±min 

ˆ x ∈ ̂ �
| x − ˆ x | is the signed distance to the extended

crack ˆ �. The extended crack ˆ � includes the crack � (and the

virtually extended crack �, for the XFEM-s scheme) and ex-

tends beyond each crack tip in the direction tangent to the

crack to infinity. The sign of φ3 ( x ) is defined by the direction of

the normal vector of the crack segment that contains the near-

est point to x . Note that we thus define two crack extensions:

the virtually extended crack �, for the XFEM-s scheme, extends

to the boundaries of the crack-tip finite elements; the extended

crack ˆ � extends to infinity. 

The isolines for the level-set functions φj ( j = 1 , 2 , 3 ) are

shown in Fig. A.19 . Whereas in 2D, two level-set functions would

be sufficient to define a crack (e.g., as in Stolarska et al., 2001 ),
he present representation by the three level-set functions can be

xtended to 3D cracks in a straightforward manner ( Fries and Bay-

oun, 2012 ). In the numerical implementation, the level-set func-

ions φj ( j = 1 , 2 , 3 ) are employed to determine which nodes of

he mesh are to be enriched with either sign or crack-tip enrich-

ents ( Fries and Baydoun, 2012 ), and to define the curvilinear po-

ar coordinates, ( ρ( x ), θ ( x )), associated with the crack and em-

loyed in Eq. (26) to calculate the crack-tip enrichment functions. 

For computational efficiency, the level-set functions φj ( j =
 , 2 , 3 ) are computed at the nodes of the FEM mesh and are in-

erpolated in the domain using the Lagrange shape functions, via

h 
j ( x ) = 

∑ 

i ∈ I 
φ j ( x i ) N i ( x ) (A.2)

his discretization of the level-set functions translates into an

pproximate representation of the crack surface ( Fries and Bay-

oun, 2012 ). 

The polar coordinates ( ρ( x ), θ ( x )), used to evaluate the crack-

ip enrichment functions (26) for any point x in the domain, are

efined as follows. The domain is decomposed into four sets, �I ,

II , �III , �IV , shown in Fig. A.19 and defined by: 

I = { x : φ1 � = | φ3 |} (A.3)

II = { x : φ1 < φ2 , φ3 > 0 } (A.4)

I I I = { x : φ1 < φ2 , φ3 ≤ 0 } (A.5)

IV = { x : φ1 = φ2 = | φ3 |} (A.6)

n addition, an auxilliary angle θ ∗( x ) is defined by 

∗( x ) = sin 

−1 φ3 ( x ) 

φ2 ( x ) 
(A.7)

he polar coordinates ( ρ( x ), θ ( x )) for a point x are then defined by

( x ) = φ2 ( x ) (A.8)

( x ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

θ ∗( x ) , x ∈ �I 

π − θ ∗( x ) , x ∈ �II 

−π − θ ∗( x ) , x ∈ �I I I 

θ ∗( x ) = ±π
2 
, x ∈ �IV 

(A.9)

The following comments must be made about the definition of

he sets �I , �II , �III , �IV in the present work: 

• In the present paper, axisymmetric cracks are represented by

1D curves in a 2D domain. We assume that the crack is ex-

tended in the direction tangential to the crack, as shown in

Fig. A.19 . In this case, the set �IV is a straight line orthog-

onal to the crack and intersecting the crack at the crack tip

( Fig. A.19 ). In the work of Fries and Baydoun (2012) , a more

general 3D crack description is discussed. In Fig. 11 in Fries and

Baydoun (2012) , the crack extension is not tangential to the

crack, and the set �IV is a region (not a line). However, it is

mentioned in Fries and Baydoun (2012) that for a 2D crack de-

scription, the crack can be extended along the crack direction. 

• We have used alternative definitions (A.4) and (A.5) of the sets

�II and �III to those in Fries and Baydoun (2012) , due to the

sensitivity of the regions �II and �III defined in Fries and Bay-

doun (2012) to slight numerical errors in the values of φ1 and
3 
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ppendix B. Approximations of pressure and influence matrix 

.1. Hydraulic fracture with fluid lag, P → W scheme 

The fluid pressure p f ( s , t ) is expanded in terms of the ba-

is functions h i +1 / 2 (s ) associated with the nodal values p i +1 / 2 =
p f (s i +1 / 2 , t) , as shown by Eq. (30) . The piecewise linear basis func-

ions h i +1 / 2 (s ) , associated with the nodes s i +1 / 2 , are defined as 

 i +1 / 2 (s ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

s −s i −1 / 2 

s i +1 / 2 −s i −1 / 2 

, if s i −1 / 2 ≤ s < s i +1 / 2 

s i +3 / 2 −s 

s i +3 / 2 −s i +1 / 2 

, if s i +1 / 2 ≤ s < s i +3 / 2 , i = 2 , . . . , m 

0 , else 

(B.1) 

 3 / 2 (s ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 , if s < s 3 / 2 

s 5 / 2 − s 

s 5 / 2 − s 3 / 2 
, if s 3 / 2 ≤ s < s 5 / 2 

0 , else 

(B.2) 

 m +3 / 2 (s ) = 

⎧ ⎨ 

⎩ 

s − s m +1 / 2 

s m +3 / 2 − s m +1 / 2 

, if s m +1 / 2 ≤ s ≤ � f 

0 , else 

(B.3) 

We consider a finite domain V with prescribed tractions on

he external boundaries �t , i and with zero displacement u i on

he external boundaries �u , i for i = 1 , 2 . (More general cases with

nfinite boundaries and/or applied nonzero displacements can be

reated via straightforward modifications.) Due to the linearity of

he elasticity problem, the crack width w (s, t) can be found as the

uperposition of the following basis functions: 

 (s, t) ≈
m +1 ∑ 

j=1 

p j+1 / 2 ω j+1 / 2 (s ) + ω σ (s ) (B.4)

here 

• ω j+1 / 2 (s ) for j = 1 , . . . , m + 1 represents the jump in the nor-

mal displacement across � that is the XFEM solution to the

boundary value problem in which the prescribed pressure in

the crack is given by the basis function h j+1 / 2 (s ) , and any loads,

applied to the external boundaries of the domain V , are set to

zero: 

σ+ 
n = σ−

n = −h j+1 / 2 (s ) for s ∈ �, σ+ 
s = σ−

s = 0 

for s ∈ �; t i = 0 on �t,i , i = 1 , 2 (B.5) 

• ω σ ( s ) represents the jump in the normal displacement across

� that is the XFEM solution to the boundary value problem

with zero pressure in the crack and any tractions, applied to the

external boundaries �t , i , set to their values t ∗
i 

in the original

problem: 

σ+ 
n = σ−

n = 0 for s ∈ �, σ+ 
s = σ−

s = 0 

for s ∈ �; t i = t ∗i on �t,i , i = 1 , 2 (B.6) 

Evaluating the width basis functions ω j+1 / 2 (s ) and ω σ ( s ) at

odes s i , i = 1 : N, we obtain the influence matrix D i j = ω j+1 / 2 (s i )

nd the effect of tractions applied to the external boundaries

 σ,i = ω σ (s i ) . Then the XFEM approximation for the nodal crack

idths can be written in the form of Eq. (31) . 

i  
.2. Hydraulic fracture without fluid lag, P & W scheme 

We consider an infinite domain V with applied far-field stresses
∞ 

i j 
, for the P & W scheme. (More general cases of boundary condi-

ions for a finite or an infinite domain can be treated via straight-

orward modifications.) The crack width w (s, t) in the channel can

e approximated as the superposition of the following width basis

unctions: 

 (s, t) ≈
m +1 ∑ 

j=1 

p j+1 / 2 ω j+1 / 2 (s ) + ω t (s ) + ω σ (s ) , s ∈ �c (B.7)

here the width basis functions represent the jump in the normal

isplacement across � that are the XFEM solutions to the follow-

ng mixed boundary value problems: 

• ω j+1 / 2 (s ) for j = 1 , . . . , m + 1 is the XFEM solution to the prob-

lem in which the prescribed pressure in the channel is given

by the basis function h j+1 / 2 (s ) while the crack width in the tip

region is set to zero: 

σ+ 
n = σ−

n = −h j+1 / 2 (s ) for s ∈ �c , σ+ 
s = σ−

s = 0 for s ∈ �

(B.8) 

w (s ) = [[ u ]] � · n = 0 for s ∈ �t (B.9)

• ω t ( s ) is the XFEM solution to the problem with zero pressure

in the channel, and the crack width in the tip region set to the

tip asymptote, 

σ+ 
n = σ−

n = 0 for s ∈ �c , σ+ 
s = σ−

s = 0 for s ∈ � (B.10)

w (s ) = [[ u ]] � · n = w tip (s ) for s ∈ �t (B.11)

• ω σ ( s ) is the XFEM solution to the problem with the normal

traction in the channel and the shear traction in the crack given

by the tractions corresponding to the far-field stress, according

to Eqs. (8) and (10) : 

σ+ 
n = σ−

n = σ∞ 

n for s ∈ �c , σ+ 
s = σ−

s = σ∞ 

s for s ∈ �

(B.12) 

and for which the crack width in the tip region is set to zero as

in Eq. (B.9) . 

All width basis functions are obtained by using the P & W XFEM

cheme. The crack width constraints (B.9) and (B.11) are set via the

eak formulation. 

Evaluating the width basis functions ω j+1 / 2 (s ) , ω t ( s ) and

 σ ( s ) at nodes s i , i = 1 : N, we obtain the influence matrix D i j =
 j+1 / 2 (s i ) , the effect of crack-tip width ω t,i = ω t (s i ) , and the effect

f the far-field stress ω σ,i = ω σ (s i ) . Then the XFEM approximation

or the nodal crack widths can be written in the form of Eq. (44) . 

ppendix C. Scaling for numerical computations 

The problem of hydraulic fracture propagation involves quanti-

ies at multiple scales that differ by several orders of magnitude,

.g., a crack width in the order of 10 −4 m, a fracture radius of

rder 10 −1 m in the laboratory and tens of meters in the field,

tresses of order of 10 6 Pa, Young’s modulus of order 10 10 Pa, etc.

ombinations of such quantities in a numerical scheme can reduce

he overall accuracy of the solution due to machine precision is-

ues. To improve the accuracy of numerical solutions, we introduce

haracteristic scales for the unknowns in the problem to numeri-

ally handle quantities of orders 10 −1 –10 2 . Thus, for the numer-

cal computations, we scale all the governing equations and the
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equations for the XFEM algorithm (i.e., Eqs. (2) –(52) ) using the fol-

lowing characteristic scales for time ( t ∗ ), length ( � ∗ ), pressure ( p ∗ ),

crack width ( w * ), and fluid flow rate ( Q 

∗ ) (scaling formulation from

Bunger et al., 2013 ): 

 * = 

(
μ′ � 9 

* 

E ′ Q 

3 ∗

)1 / 4 

, p * = 

(
μ′ Q ∗E ′ 3 

� 3 
* 

)1 / 4 

, w * = 

(
μ′ Q ∗� * 

E ′ 

)1 / 4 

(C.1)

 = t * ̃  t , s = � * ̃  s , � (t) = � * ̃  � ( ̃ t ) , � f (t) = � * ̃  � f ( ̃ t ) (C.2)

r = � * ̃  r , R (t) = � * ̃  R ( ̃ t ) , R f (t) = � * ̃  R f ( ̃ t ) (C.3)

p f (s, t) = p * ̃  p f ( ̃  s , ̃  t ) , σi j = p * ̃  σi j (C.4)

w (s, t) = w * ˜ w ( ̃  s , ̃  t ) , u i = w * ̃  u i (C.5)

q (s, t) = Q * ̃  q ( ̃  s , ̃  t ) , Q(t) = Q * 
˜ Q ( ̃ t ) (C.6)

where the resulting dimensionless quantities are time ˜ t , arc-length

coordinate ˜ s , crack length 

˜ � , fluid front ˜ � f , radial coordinate ˜ r ,

fracture radius ˜ R , fluid front radius ˜ R f , fluid pressure ˜ p f , stress

field ˜ σi j , crack width ˜ w , displacement field ˜ u i , fluid flux ˜ q , and

fluid injection rate ˜ Q . The characteristic scales are used to pre-

condition the input data to the XFEM-ILSA model (such as the

Young’s modulus E , fluid viscosity μ, fracture toughness K Ic , in-

jection rate Q ( t ), length dimensions of the domain and of the ini-

tial crack, applied boundary tractions, far-field stress, etc.) and to

scale the output of the numerical model back to the physical di-

mensions. The resulting equations for the dimensionless quantities

( ̃ t , ˜ s , ˜ � , ˜ � f , ˜ r , ˜ R , ˜ R f , ˜ p f , ˜ σi j , ˜ w , ˜ u i , ˜ q , ˜ Q ) can be obtained from

the equations for the corresponding physical quantities ( t , s , � , � f ,

r , R , R f p f , σ ij , w, u i , q , Q ), upon the change of quantities from

physical to dimensionless, 
{

t, s, �, � f , r, R, R f p f , σi j , w, u i , q, Q 

}
�→
Fig. D.20. Computed fracture path for test pg1 and the background finite-element mesh

(bottom). The fracture path is shown by the blue line; the cross markers depict location

legend, the reader is referred to the web version of this article.) 
˜ t , ̃  s , ̃  � , ̃  � f , ̃  r , ˜ R , ˜ R f , ˜ p f , ˜ σi j , ˜ w , ̃  u i , ̃  q , ˜ Q 

}
, and the change of the mate-

ial properties from physical to scaled, 
{

K 

′ , E ′ , μ′ } �→ 

{
˜ K 

′ , ˜ E ′ , ˜ μ′ },

here 

˜ 
 

′ = 

K 

′ 

(Q * E ′ 3 μ′ � −1 
* 

) 1 / 4 
, ˜ E ′ = 1 , ˜ μ′ = 1 (C.7)

The characteristic length-scale � ∗ in (C.1) is chosen according

o the expected scale of the fracture radius, e.g., � * = 10 −3 m for

he simulations of laboratory experiments described in Section 5 .

he characteristic fluid flux scale Q 

∗ in (C.1) can be chosen, e.g., as

 * = Q(t 1 ) where t 1 is the initial time of the simulation. 

ppendix D. XFEM solution for a fracture in the vicinity of a 

nite-element node 

In the XFEM solution, we assume that the crack does not cut

hrough the nodes of the finite element mesh. This assumption

oes not limit the applicability of the present XFEM to modeling

n arbitrary crack path. If a crack extension segment is predicted

o pass through a node of the finite-element mesh, a negligibly

mall perturbation is introduced to the direction of the crack ex-

ension so that the crack does not pass through the finite-element

FE) node but passes its vicinity. 

We have not observed any issues in the present model when

he crack passes the vicinity of a FE node. As an example, we

onsider the solution obtained at time t = 4.7 s in the XFEM

imulation for the laboratory test pg1 , described in Section 5.2.6 .

ig. D.20 shows the computed fracture path in the background

nite-element mesh. Several locations are observed where the

racture passes in a close proximity to a FE node. At r = 11 . 78 mm,

he fracture passes within a distance of the order 10 −9 mm from

he closest FE node, and the length of the crack element [ s i , s i +1 ]

reated between the two intersections of the fracture with the FE

dges adjacent to this FE node, is of the order 10 −9 mm. One can-

ot distinguish between these two crack nodes in Fig. D.20 . How-

ver, the solution for the crack width and the fluid pressure, ob-

ained from the coupled XFEM-HF model, is smooth around r =
1 . 78 mm and does not show any issue ( Fig. D.21 ). 
, with an inset area marked by a red line (top), and mesh detail in the inset area 

s of crack-width nodes. (For interpretation of the references to color in this figure 
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Fig. D.21. Crack width and fluid pressure at time t = 4.7 s, computed in the XFEM 

simulation for test pg1 . 
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