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ABSTRACT: This paper presents a numerical model for the simultaneous growth of multiple parallel hydraulic fractures with a
constant height. The model uses an idealized formulation based on the Elliptic Displacement Discontinuity Method (EDDM). The
EDDM assumes each fracture element to have displacement discontinuities of an elliptical shape and solves the one-dimensional
elasticity problem. In addition to the EDDM, the model employs the multi-scale tip asymptotic solution that allows a coarser mesh
near the fracture tip, compared to the LEFM solution. To show the capabilities of the developed model, the paper presents the
comparison between the computed numerical solution and a reference solution. The latter is calculated using a fully 3D hydraulic
fracturing simulator for multiple parallel hydraulic fractures. We investigate the effect of perforation friction and spacing on the
results. The comparison shows that the EDDM model agrees with the reference solution when spacing between fractures is greater
than the fracture height. However, a discrepancy appears in the zero perforation friction case once the fracture spacing becomes
comparable or smaller than the fracture height.

1. INTRODUCTION

Hydraulic fracturing is a method used to crack rock forma-
tions using high-pressure fluid. The technology is often
applied in oil and gas well stimulation (Economides and
Nolte, 2000), waste disposal (Abou-Sayed et al., 1989),
rock mining (Jeffrey and Mills, 2000), and geothermal en-
ergy extraction (Brown, 2000). Typically, multiple frac-
tures are simultaneously induced to reduce the opera-
tional costs. Therefore, the ability to simulate multi-
ple interacting hydraulic fractures can improve the de-
sign of hydraulic fracture treatment. Hydraulic fractur-
ing simulators often use various approximations that affect
the accuracy and the computational time of the numeri-
cal procedures (Adachi et al., 2007, Olson, 2008, Kresse
et al., 2013, McClure and Zoback, 2013, Wu et al., 2015,
Peirce and Bunger, 2014, Peirce, 2015, Dontsov and
Peirce, 2015a). Constant height hydraulic fractures,
considered in this paper, resemble classical Perkins-
Kern-Nordgren (PKN) fracture geometry (Perkins and
Kern, 1961, Nordgren, 1972). The classical PKN model

uses a local elasticity assumption and ignores an essential
part of constructing a simulator for multiple growing frac-
tures - the interactions between the fracture elements. This
issue is addressed by the enhanced PKN (EPKN) method
for a single fracture (Dontsov and Peirce, 2016, Protasov
and Donstov, 2017), in which the elastic interactions be-
tween cross-sectional elements are based on the elasticity
equation for a planar fracture (Adachi and Peirce, 2008).
The elliptic fracture opening profile from the classical
PKN model is taken as an assumption for the EPKN
method making it possible to reduce the planar elasticity
equation to a one-dimensional relation. In addition, the
EPKN method employs the multiscale tip asymptotic so-
lution (Garagash et al., 2011, Dontsov and Peirce, 2015b)
to make it possible to use a relatively coarse mesh near
the fracture tip without losing accuracy, compared to the
LEFM. As shown in (Dontsov and Peirce, 2016, Pro-
tasov and Donstov, 2017), the EPKN method possesses a
high computational efficiency, compared to the fully pla-
nar simulators, while being able to accurately predict frac-
ture size for a wide set of parameters.
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Fig. 1. A schematic of the hydraulic fracture geometry with coordinate system x, y, z. The fluid, injected into the wellbore, drives the
horizontal propagation of five equally spaced parallel hydraulic fractures along the x-axis. The fractures with height h are restricted
from vertical growth by confinement layers. The spacing ∆y between fractures is uniform. The numerical procedure discretizes the
fractures into elements with length ∆x along x direction. Fractures are numbered from 1 to 5, but due to symmetry, the fractures 1
and 2 are identical to the fractures 5 and 4.

This study is dedicated to the extension of the EPKN
model (Protasov and Donstov, 2017) to the case of mul-
tiple parallel constant-height hydraulic fractures. This
is done by extending the elasticity calculation procedure
from the EPKN model to the elliptic displacement discon-
tinuity method (EDDM). The classical displacement dis-
continuity method (DDM) (Crouch and Starfield, 1983)
provides an analytical solution for the fracture-induced
stresses in form of a two-dimensional integral over the
fracture surface. The common procedure in the DDM is
to discretize fractures into piece-wise constant elements
for the purpose of numerical integration and collocation
at element centers. In contrast to the two-dimensional
discretization used in the classical DDM approach, the
EDDM employs one-dimensional mesh, since the EPKN
elliptic fracture opening assumption allows us to analyt-
ically reduce two-dimensional numerical integration. A
similar method for simulating multiple interacting hy-
draulic fractures is presented in (Wu and Olson, 2015),
where each fracture element is assumed to have a constant
opening in the height direction also allowing for the ana-
lytical calculation of the DDM integrals. Since the frac-
ture opening is constant, additional correction coefficients
are introduced to account for the fracture width variation
in the vertical direction. One of the advantaged of the
EDDM is that it does not rely on any correction factors be-
cause it automatically accounts for the fracture width vari-
ation along the height. In addition, similar to the EPKN
model (Protasov and Donstov, 2017) the algorithm uses
the multiscale tip asymptotic solution to model dynamics
of fracture growth.

In this paper, we compare the results of the developed
EDDM-based hydraulic fracturing simulator with a refer-

ence solution. The latter is obtained using a fully cou-
pled hydraulic fracturing simulator for multiple parallel
hydraulic fractures. In particular, we investigate the in-
fluence of the fracture spacing and height on the accuracy
of the solution. To achieve this goal, a test problem com-
prising simultaneously propagating five parallel constant
height hydraulic fractures is considered.

2. MATHEMATICAL MODEL

2.1. Problem Formulation

We consider five planar hydraulic fractures propagating
perpendicularly to the wellbore, which are restricted from
vertical height growth as shown in the hydraulic fracture
scheme illustrated in Fig. 1. Within the given x, y, z co-
ordinate system, the wellbore is located along the y axis,
each fracture is contained in the (x, z) plane and can be
translates in the y direction, uniform fracture spacing ∆y
is used, and h denotes the fracture height. The simulator
can handle a different number of fractures and the spac-
ing between them can also be changed. The rock is mod-
eled as a homogeneous linear elastic material character-
ized by a Young’s modulusE, Poisson’s ratio ν, and mode
I fracture toughness KIc. The fluid flow is laminar and
the fluid is considered to be an incompressible Newtonian
fluid with dynamic viscosity µ. Leak-off is included in the
simulator via Carter’s leak-off model [5] with a leak-off
coefficient CL, which represents a one-dimensional leak-
off perpendicular to the fracture surface. We assume the
fluid lag to be negligible. The total volumetric fluid injec-
tion rate Q0 is distributed between fractures depending on
the perforation friction.



2.2. Elliptic Displacement Discontinuity Method

We utilize the Elliptic Displacement Discontinuity
Method (EDDM), which is an extension of the method
used in the EPKN model (Dontsov and Peirce, 2016) to
represent the elastic interaction between multiple frac-
tures. The method involves dividing the fracture into mul-
tiple elements along its length (x-direction) as shown in
the hydraulic fracturing scheme in Fig. 1. The displace-
ment discontinuity is a jump of a displacement vector
across fracture surface. In the EDDM method we focus on
the displacement components ux, uy, which are assumed
to have an elliptic profile in a vertical cross-section, as
shown in the unit fracture element scheme in Fig. 2, where
a fracture element has length ∆x, height h, and opening
w. In this case

ux(x,+0, z)−ux(x,−0, z)=
4

π
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h
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,
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where normal Dn and shear Ds displacement discontinu-
ities represent the average of the corresponding displace-
ment jumps along fracture height (z-direction). The val-
uesDs, Dn change along fracture length (x-direction) and
Dn is the average fracture opening. Each fracture is dis-
cretized using piece-wise constant normal and shear dis-
placement discontinuities D(i)

n,s along the x direction, so
that ith fracture element is defined as

D(i)
n,s = Dn,s (xi) , (2)

where xi is the coordinate center of the ith element. Let
Dn and Ds be the normal and shear displacements discon-
tinuity vectors containing the discontinuity components of
all the fracture elements:

Dn = {D(1)
n , D(2)

n , ..., D(N)
n },

Ds = {D(1)
s , D(2)

s , ..., D(N)
s }.

(3)

Similarly, the stresses are defined at each element center
σ
(i)
n,s = σn,s (xi) and can be written in a vector form as

σn = {σ(1)n , σ(2)n , ..., σ(N)
n },

σs = {σ(1)s , σ(2)s , ..., σ(N)
s },

(4)

where σn is the vector of normal stresses and σs is the
vector of shear stresses.
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Fig. 2. A unit fracture element used in the numerical procedure
with length ∆x, height h, and opening w. The element has an
elliptic shape due to the assumption of an elliptic displacement
discontinuity field.

We refer to a fracture element with elliptic displace-
ment discontinuity variation as an elliptic displacement
discontinuity element. According to the Displacement
Discontinuity Method (DDM), stress components have a
linear relationship to the normal and shear discontinuities
and far field stresses as:

σn = CnnDn +CnsDs + σ∗n,

σs = CsnDn +CssDs + σ∗s ,
(5)

where Cnn,Cns,Csn,Css are the elasticity matrices and
σ∗n,σ

∗
s are the vectors representing the values of the far

field stresses in each element. Crouch and Starfield, 1983
solved the elasticity problem of a constant displacement
jump over an arbitrarily oriented, rectangular element in
an infinite elastic medium by employing the Green’s func-
tion approach. We utilize this approach to solve the elas-
ticity problem of an elliptic displacement discontinuity el-
ement, so that the elements of the elasticity matrices from
Eq. (5) can be calculated using the Salamon representa-
tion (Crouch and Starfield, 1983):

C(i,j)
nn = − E

8π(1− ν2)
(I,yy − yI,yyy) ,

C(i,j)
ns =

E

8π(1− ν2)
yI,xyy,

C(i,j)
sn =

E

8π(1− ν2)
yI,xyy,

C(i,j)
ss = − E

8π(1− ν2)
(
I,yy + νI,zz − yI,xxy

)
,

(6)

where I,ij are the derivatives of the integral of the Newto-



nian potential:
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Here the integral is evaluated at x = xi − xj , y =
yi − yj , z = 0, where i and j correspond to the particular
location in the elasticity matrix. The function Î(x, x′, y, z)
in Eq. (7) can be computed analytically.

2.3. Boundary conditions on the fluid-solid interface

The traction on the boundary between solid and fluid has
to be continuous and, thus, the normal stress on a fracture
surface has to be equal to the negative fluid pressure, and
the shear stress has to be zero in order to satisfy the no-slip
condition for fluid contacting solid:

σn = −p,
σs = 0.

(8)

Here p is a vector containing fluid pressure in all fracture
elements.

Combining these boundary conditions with Eq. (5)
yields

p = CDn − σ∗, (9)

where the full elasticity matrix C and the full far field
stress σ∗ are defined in terms of the Schur Complement
as follows:

C = −(Cnn−CnsC
−1
ss Csn),

σ∗ =(σ∗n−CnsC
−1
ss σ

∗
s).

(10)

This expression provides a relation between fluid pressure
and fracture opening, which incorporates shear stress free
boundary condition at the fracture surface.

2.4. Lubrication equation

Since we consider the fractures propagating horizontally
along their length (x-direction) and restricted from verti-
cal growth (z-direction), the fluid balance in each fracture
has the following form:

∂wk

∂t
+
∂qk
∂x

+
2CL√

t− t0,k(x)
=
Qk

h
δ(x), (11)

where the last term on the left hand side captures the fluid
leak-off according to Carter’s model; wk is the average
opening of the k-th fracture, which, once discretized, is

equal to the normal displacement discontinuity Dn of that
fracture; t0,k(x) is the time instant at which the k-th frac-
ture tip was located at the point x; Qk is the fluid flux
that enters k-th fracture; and qk is a fluid flow rate, which
can be calculated based on Poiseuille flow of a Newtonian
fluid in an elliptic DDM element of k-th fracture as:

qk = −
w3
k

π2µ

∂pk
∂x

. (12)

Eq. (11) applies for all displacement discontinuity ele-
ments. The distribution of fluxes entering each fracture
depends on the perforation friction, but the total flux Q0

in the wellbore is prescribed.∑
Qk = Q0,

pk + ppf,k = p0,
(13)

where pk is the pressure at the injection point of the k-th
fracture, ppf,k is the pressure loss on friction at k-th per-
foration, and p0 is the pressure in wellbore.

2.5. Boundary conditions at the moving fracture tip

The linear elastic fracture mechanics solution is often
valid only in a small region near the fracture tip (Garagash
et al., 2011), which imposes a restriction to use a very fine
mesh. In order to avoid this limitation, we incorporate the
approximate multiscale asymptotic solution (Dontsov and
Peirce, 2015b, Dontsov, 2017), as a boundary condition to
account for the effect of fluid viscosity and leak-off near
the fracture tip region at a larger scale. In this case, the
boundary condition near the fracture tip can be written as

w(s) ≈ wa(s), s = o (L) , (14)

where s is the distance from the tip, wa(s) is the fracture
opening from the multiscale asymptotic solution, and L
is the characteristic length of the fracture. The multiscale
asymptotic solution wa can be calculated by considering
the problem of a semi-infinite hydraulic fracture propagat-
ing steadily with the velocity V under plane strain condi-
tions (Garagash et al., 2011, Peirce and Detournay, 2008).

2.6. Reference solution

The Implicit Level Set Algorithm (ILSA) (Peirce and
Detournay, 2008, Peirce and Bunger, 2014, Dontsov and
Peirce, 2017) is a displacement discontinuity-based hy-
draulic fracturing simulator capable of modeling multiple
planar hydraulic fractures in elastically isotropic elastic
media. ILSA gradually changes the position of the frac-
ture front within each tip element to capture the necessary
multiscale behavior associated with the tip asymptotic so-
lution. For our study, we use ILSA solutions to evaluate
the accuracy of the developed EDDM method.



(a) Five hydraulic fractures with 20 m spacing, EDDM results. (b) Five hydraulic fractures with 20 m spacing, ILSA results.

(c) Fracture surface area vs time, spacing 20 m. (d) Fracture surface area vs spacing, time t = 351.

Fig. 3. A comparison of the EDDM and reference (ILSA) numerical solutions for the simulation of five parallel constant height
hydraulic fractures. This no perforation friction case exhibits significant stress shadowing. (a) and (b) show fracture footprints for
spacing ∆y = 20 m at time t = 351 s computed by the EDDM and ILSA respectively. (c) shows the comparison of the fracture
surface area vs time for the two models with spacing ∆y = 20 m. The numbers in the legend denote fracture numbers considering
the symmetry of the problem, see Fig. 1. (d) shows the difference in computed fracture surface area for different values of spacing at
time t = 351 s.

3. RESULTS

In this section we present the numerical solution computed
using the developed EDDM model and compare it to the
reference solution (ILSA). The comparison is made for the
problem of five equally spaced parallel hydraulic fractures
restricted from vertical growth.

The material parameters in the simulation are the fol-
lowing: Young’s modulus E = 20 GPa, Poisson’s ratio
ν = 0.2, fracture toughness KIc = 1.6 MPa

√
m, fluid

viscosity µ = 3 · 10−3 Pa·s. In this simulation we con-
sider no fluid leak-off but the EDDM model is able to cap-
ture non-zero leak-off. Constant wellbore injection rate of
Q0 = 0.03 m3/s is used and the flux distribution between
fractures depends on the perforation friction. We present
a series of simulations for different test cases without per-
foration friction and with large perforation friction. In ad-
dition, spacing ∆y between fractures varied from 5 to 30
m. The fracture height is taken as 20 m in all cases.

The results of the simulations for the case of no per-

foration friction are presented in Fig. 3. Fig. 3a shows
the final fracture geometry that is computed using the
EDDM model at time instant t = 351 s and for the spac-
ing ∆y = 20 m. The numerical solution can be visually
compared to the same result that is obtained using the ref-
erence ILSA solution in Fig. 3b. As can be seen from the
figure, there is a reasonable agreement between the two
approaches.

The black line around the fracture footprint in Fig. 3b
denotes the exact position of the fracture front in ILSA.
Since ILSA is a 3D hydraulic fracturing simulator, the
front of each fracture is curved. The standard fracture
front in the EDDM is flat. It is possible to include a
curved fracture front to further increase the accuracy of
the model at early times, when fracture is closer to a ra-
dial crack [10].

The evolution of fracture surface area versus time is
provided in Fig. 3c. The solutions of the EDDM and ILSA
are superimposed for comparison for spacing ∆y = 20 m.



(a) Five hydraulic fractures with ∆y = 20, EDDM results. (b) Five hydraulic fractures with ∆y = 20, ILSA results.

(c) Fracture surface area vs time, ∆y = 20 m. (d) Fracture surface area vs spacing ∆y, time t = 351.

Fig. 4. A comparison of the EDDM and reference (ILSA) numerical solutions for the simulation of five parallel constant height
hydraulic fractures. This even flux distribution case exhibits very little stress shadowing. (a) and (b) show fracture footprints for
spacing ∆y = 20 m at time t = 351 s computed by the EDDM and ILSA respectively. (c) shows the comparison of the fracture
surface area vs time for the two models with spacing ∆y = 20 m. The numbers in the legend denote the fracture numbers considering
the symmetry of the problem, see Fig. 1. (d) shows the difference in computed fracture surface area for different values of spacing
∆y at time t = 351 s.

The numbers in the legend denote fracture numbers as in
the hydraulic fracturing problem scheme defined in Fig. 1.
Due to symmetry, fractures 5, 4 have the same properties
as fractures 1, 2, thus they are not present in the figure.

The dependence of the fracture surface area on spac-
ing ∆y between the fractures is given in Fig. 3d. Here, the
results are compared at time instant t = 351 s. The ILSA
results are shown by markers due to scarcity of the com-
puted results, while EDDM results are plotted by lines.
This is dictated by computational efficiency of the algo-
rithms. Each ILSA result for time t = 351 s takes approx-
imately 40 hours to compute. At the same time, EDDM
is able to provide a result for similar problem within 10
minutes.

The discrepancy between the results in Fig. 3d for
∆y < 20 m can be explained by the difference in real frac-
ture shape versus the elliptic shape used as an assumption
in the EDDM model. Lower values of spacing between
fractures lead to increased pressure on the central part of
the inner fractures. This increased pressure can change the

real fracture shape. The elliptic fracture shape assumption
may influence the pressure values that are used in the cal-
culation of the flux distribution. The assumption becomes
inaccurate when spacing is equal or lower than the fracture
height. However, the computationally efficient EDDM
model captures the approximate behavior of the fracture
propagation for the case of zero perforation friction.

The results of simulations for the case of large perfo-
ration friction (which leads to a uniform flux distribution)
are presented in Fig. 4. Fig. 4a and 4b show the frac-
ture footprints for spacing ∆y = 20 m computed with
the EDDM and ILSA, respectively. The evolution of frac-
ture surface area versus time for spacing ∆y = 20 m is
shown in Fig. 4c, where the EDDM and ILSA solutions
are put together for comparison. The variation of fracture
area versus spacing ∆y is given in Fig. 4d for time instant
t = 351 s. Large perforation friction results in an almost
uniform flux distribution among the fractures and there-
fore all fractures have approximately the same volume.
However, since inner fractures are pressurized by outer



fractures, they are longer and have larger surface area
compared to the outer ones as can be seen from Fig. 4a
and 4b. The EDDM model shows a good agreement with
the reference solution for the case of large perforation fric-
tion as can be seen from the evolution of the fracture sur-
face area versus time in Fig. 4c. Variation of the fracture
surface area versus spacing ∆y, shown in Fig. 4d, indi-
cates that the EDDM agrees with the reference ILSA solu-
tion for the various spacings considered. The fact that the
EDDM model gives more accurate results for large per-
foration friction than zero perforation friction shows that
elliptic fracture shape assumption may influence the flux
distribution calculation.

4. SUMMARY

This paper presents a developed EDDM hydraulic fractur-
ing simulator for modeling simultaneous growth of mul-
tiple parallel constant height hydraulic fractures. This
simulator is the extension of the original EPKN simula-
tor for a single fracture. One of the basic assumptions
is that fracture has normal and shear displacement dis-
continuities of elliptical shape, which allows us to reduce
the elasticity problem from a two-dimensional to a one-
dimensional, which leads to the elliptic displacement dis-
continuity method. The other feature of the algorithm is
the multiscale tip asymptotic solution that can accurately
capture effects of fluid viscosity and fracture toughness,
which increases computational efficiency of the developed
simulator by allowing a coarser mesh. The EDDM simu-
lator uses a fixed mesh algorithm, which can allow for a
further extension to model curved fractures. In order to
verify the developed model, we compare it to the fully
3D hydraulic fracturing simulator for multiple parallel hy-
draulic fractures. In particular, we consider five uniformly
spaced parallel constant height fractures. We investigate
the effect of perforation friction and spacing on the re-
sults. The EDDM model agrees with the reference solu-
tion when spacing between fractures is greater than the
fracture height. A discrepancy in the flux distribution ap-
pears for the zero perforation friction case when the frac-
ture spacing becomes comparable or smaller than the frac-
ture height. However, the EDDM model can handle the
considered problem within several minutes on a regular
computer.
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