• All rings here are unitary and commutative.
• Let \(A \) be a ring. Let \(S \) be a nonempty subset of \(A \). One can show that the intersection of all the subrings of \(A \) containing \(S \) is a ring. It is called the subring of \(A \) generated by \(S \). It is contained in any subring of \(A \) containing \(S \).
• We also saw/will see in class that the intersection of all the ideals of \(A \) containing \(S \) is an ideal of \(A \). It is called the ideal of \(A \) generated by \(S \). It is contained in any ideal of \(A \) containing \(S \). It is denoted by \((S) \).
• If \(S = \{a\} \), we write simply \((a) \) for the ideal generated by \(S \). We have \((a) = Aa \).
• Let \(K \) be a field. Recall the Euclidean division of polynomials in \(K[X] \): given \(A, B \in K[X] \) with \(B \neq 0 \), there is a unique pair \((Q, R) \in K[X]^2 \) satisfying
\[
A = BQ + R
\]
and \(\deg(R) < \deg(B) \) (recall that the zero polynomial has degree \(-\infty\) so it is possible that \(R \) is zero).

If \(A, B \in \mathbb{Z}[X] \) we may write the division of \(A \) by \(B \) in \(\mathbb{Q}[X] \) but the quotient and the remainder do not necessarily lie in \(\mathbb{Z}[X] \) (try with examples). However, we admit the following (it is not too difficult but a bit tedious to prove) : if \(A, B \in \mathbb{Z}[X] \) and \(B \) is a monic polynomial (namely the leading coefficient of \(B \) is 1), then the quotient \(Q \) and the remainder \(R \) of the Euclidean division of \(A \) by \(B \) in \(\mathbb{Q}[X] \) actually lie in \(\mathbb{Z}[X] \).

Problem 1. For \(R \) a subring of \(\mathbb{C} \) and \(z \in \mathbb{C} \) we denote by \(R[z] \) the image of the morphism of rings
\[
\begin{align*}
R[X] & \longrightarrow \mathbb{C} \\
P & \longmapsto P(z)
\end{align*}
\]
where \(R[X] \) is the ring of polynomials with coefficients in \(R \).

1. Show that \(R[z] \) is the subring of \(\mathbb{C} \) generated by \(R \) and \(z \).
 This is somewhat formal. You can denote by \(A \) the subring of \(\mathbb{C} \) generated by \(R \) and \(z \) and explain why the image \(R[z] \) of the above map is equal to \(A \).

2. Find a quotient ring of \(\mathbb{Q}[X] \) which is isomorphic to
 (a) \(\mathbb{Q}[i\sqrt{7}] \),
 (b) \(\mathbb{Q}\left[\frac{1+\sqrt{5}}{2}\right] \).

3. Find a quotient ring of \(\mathbb{Z}[X] \) which is isomorphic to
 (a) \(\mathbb{Z}[i\sqrt{7}] \),
 (b) \(\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right] \).

4. Let \(A = \mathbb{Z}[\sqrt{10}] \) and \(K = \mathbb{Q}[\sqrt{10}] \).
 (a) Describe the elements of \(A \) and the elements of \(K \). Justify your answer.
 (b) For an element \(x \in K \) consider the multiplication \(m_x : K \rightarrow K \). Check that it is a \(\mathbb{Q} \)-linear map on the 2-dimensional \(\mathbb{Q} \)-vector space \(K \). Give a basis of \(K \) as a \(\mathbb{Q} \)-vector space. If \(x = a + b\sqrt{10} \) with \(a, b \in \mathbb{Q} \), write the matrix of \(m_x \) in the basis you just gave. Denote by \(T(x) \) its trace and by \(N(x) \) its determinant. Explain without calculation why \(N(xy) = N(x)N(y) \). What happens when \(x \in A \)? namely where do \(N(x) \) and \(T(x) \) lie?
 (c) Show that \(2 \) is irreducible in \(A \) namely that if \(2 = xy \) with \(x, y \in A \) then \(x \) or \(y \) is a unit of \(A \).
 (d) Show that \((2) \) is not a prime ideal of \(A \).
Problem 2. In a commutative and unitary ring A, an ideal I is prime if $I \neq A$ and A/I is an integral domain.

1. What are the prime ideals of
 (a) $A = \mathbb{C}[X]$,
 (b) $A = \mathbb{R}[X]/(X^2 + X + 1)$,
 (c) $A = \mathbb{R}[X]/(X^3 - 6X^2 + 11X - 6)$,
 (d) $A = \mathbb{R}[X]/(X^4 - 1)$.
2. Explain why these rings are also vector spaces over \mathbb{R}.
3. (not to be handed in) Determine the morphisms of \mathbb{R}-algebras from these rings into \mathbb{C} (respectively into \mathbb{R}), namely the morphisms of rings $A \rightarrow \mathbb{C}$ (respectively $A \rightarrow \mathbb{R}$) which fix \mathbb{R}.

Problem 3. Let k be a field with characteristic different from 2 and $G = \{ e, g \}$ the group with two elements (the element e is the identity in G and in A). We consider the group ring $A = k[G]$ (see Section 7.2).

1. What are the ideals of A?
 You can notice that A is a 2-dimensional vector space. Then check that an ideal of A is also a sub-vector-space of A, therefore it can have dimension 0, 1 or 2. Then among the 1-dimensional vector subspaces of A, find the ones which are also ideals.

2. Is A principal? Namely is it a principal ideal domain, see the definition in 8.2 of the book

3. What are the nilpotent elements of A, namely the elements a such that there is $n \geq 1$ satisfying $a^n = 0$. This question is a bit more difficult. Two kinds of approaches:
 - Find two orthogonal idempotents x and y in A such that $x + y = e$ (namely two elements x and y in A such that $xy = yx = 0$ and $x^2 = x$, $y^2 = y$). It implies (prove it) that A is isomorphic to the product of rings $Ax \times Ay$ (where Ax has x as identity element and Ay has y as identity element). Conclude....
 - Prove that A is isomorphic to $k[X]/(X^2 - 1)$ and work with the latter ring, which most likely you understand better than A.
 Remark : if you understand both approaches, you can wonder how they relate to each other. Can you write $k[X]/(X^2 - 1)$ as a product of two rings? What happens if k has characteristic 2? These are very good questions to think of, but they are not part of the problem set.

4. What is the intersection of all prime ideals of A?

Problem 4. Let A be an integral domain and $a, b \in A$ such that $(a) = (b)$. What can you say about a and b?

Problem 5. We admit the following result known as Eisenstein Criterion.

Let $f \in \mathbb{Q}[X]$ a monic polynomial with degree $m \geq 1$

$$f = X^m + a_{m-1}X^{m-1} + \cdots + a_1X + a_0.$$

Suppose that
 (i) $a_0, \ldots, a_{m-1} \in \mathbb{Z}$,
 (ii) there is a prime number p that divides a_0, \ldots, a_{m-1} and
 (iii) p^2 does not divide a_0.

Then f is irreducible over \mathbb{Q} namely if $f = gh$ with $g, h \in \mathbb{Q}[X]$ then g or h is a nonzero constant polynomial.

Let p be a prime number and ϵ a p^{th} primitive root of 1 in \mathbb{C}. Let $A = \mathbb{Z}[\epsilon]$ be the subring of \mathbb{C} generated by ϵ, namely the intersection of all subrings of \mathbb{C} containing ϵ. Note that \mathbb{Z} is a subring of A.

1. Show that the polynomial $\Phi_p = 1 + X + \ldots + X^{p-1}$ is irreducible over \mathbb{Q}. This is the p^{th} cyclotomic polynomial. You can introduce the polynomial $\Phi_p(X + 1)$ to prove its irreducibility. This is a classic result.
2. Deduce that $\Phi_p = 1 + X + \ldots + X^{p-1}$ is a generator for the ideal $\{ P \in \mathbb{Q}[X], P(\epsilon) = 0 \}$.
(3) Show that the map

\[\mathbb{Z}^{p-1} \rightarrow A \]

\[(x_0, \ldots, x_{p-2}) \mapsto \sum_{i=0}^{p-2} x_i \epsilon^i \]

is an isomorphism of additive groups.

END OF PROBLEMSET 2. THE REST OF THIS PROBLEM AND PROBLEM 6 WILL BE PART OF PROBLEMSET 3.

(4) Show that the intersection of \(\mathbb{Z} \) with the ideal \((1 - \epsilon)A\) is equal to the ideal \(p\mathbb{Z}\) of \(\mathbb{Z}\). (You can consider the Euclidean division of \(\Phi_p\) by \((X - 1)\)).

(5) Deduce \(A/(1 - \epsilon)A \cong \mathbb{Z}/p\mathbb{Z}\).

(6) What can we say about the ideal \((1 - \epsilon)A\)?

Problem 6. Problem 33 of Section 7.4 except for question (d).

Problem 7. Some recommended problems, not to be handed in:

Problems 9, 15, 16, 17 of Section 7.4

Problem 1 Section 7.6