Problem 1. For R a subring of \mathbb{C} and $z \in \mathbb{C}$ we denote by $R[z]$ the image of the morphism of rings

$$R[X] \rightarrow \mathbb{C}$$

$$P \mapsto P(z)$$

where $R[X]$ is the ring of polynomials with coefficients in R.

(1) Let A be the intersection of all subring of \mathbb{C} containing R and z (you can check quickly for yourself that it is a subring of \mathbb{C} containing R and z). The map above is a morphism of rings and therefore its image $R[z]$ is a subring of \mathbb{C} containing R and z. So $R[z]$ contains A. Conversely, every polynomial expression in z with coefficients in R lies in any subring of \mathbb{C} containing R and z, so it lies in A : this means that $R[z]$ is contained in A. We have proved that $A = R[z]$.

(2) Find a quotient ring of $\mathbb{Q}[X]$ which is isomorphic to

(a) For $\mathbb{Q}[i\sqrt{7}]$: the map

$$\phi : \mathbb{Q}[X] \rightarrow \mathbb{Q}[i\sqrt{7}]$$

$$P \mapsto P(i\sqrt{7})$$

is a surjective morphism of rings. Its kernel is

$$\ker(\phi) = \{P \in \mathbb{Q}[X], P(i\sqrt{7}) = 0\}.$$

It contains $X^2 + 7$ so it also contains the ideal $(X^2 + 7)$ of $\mathbb{Q}[X]$ generated by $X^2 + 7$. Conversely let P in the kernel of the map. We have $P(i\sqrt{7}) = 0$ and using the complex conjugation, we also have $P(-i\sqrt{7}) = 0$. Write the Euclidean division of P by $X^2 + 7$ in $\mathbb{Q}[X]$: there is $Q, R \in \mathbb{Q}[X]$ such that $P = (X^2 + 7)Q + R$ where R is either zero or a polynomial with degree 0 or 1. Evaluating at $\pm i\sqrt{7}$ we obtain $R(\pm i\sqrt{7}) = 0$ from which we easily deduce that $R = 0$ (do it !). Therefore, $X^2 + 7$ divides P in $\mathbb{Q}[X]$ namely P lies in $(X^2 + 7)$. We have proved that $\ker(\phi) = (X^2 + 7)$. Therefore

$$\mathbb{Q}[X]/(X^2 + 7) \cong \mathbb{Q}[i\sqrt{7}].$$

(b) $\mathbb{Q}[\frac{1 + \sqrt{5}}{2}]$: the map

$$\phi : \mathbb{Q}[X] \rightarrow \mathbb{Q}[\frac{1 + \sqrt{5}}{2}]$$

$$P \mapsto P(\frac{1 + \sqrt{5}}{2})$$

is a surjective morphism of rings. Its kernel is

$$\ker(\phi) = \{P \in \mathbb{Q}[X], P(\frac{1 + \sqrt{5}}{2}) = 0\}.$$
It contains \(X^2 - X - 1 \) so it also contains the ideal \((X^2 - X - 1) \) of \(\mathbb{Q}[X] \) generated by \(X^2 - X - 1 \). Let \(P \) in the kernel of the map. We have \(P(\frac{1+\sqrt{2}}{2}) = 0 \). Write the Euclidean division of \(P \) by \(X^2 - X - 1 \) in \(\mathbb{Q}[X] \) : there is \(Q, R \in \mathbb{Q}[X] \) such that

\[
P = (X^2 - X - 1)Q + R
\]

where \(R \) is either zero or a polynomial with degree 0 or 1 which we write in the form \(aX + b \) with \(a, b \in \mathbb{Q} \). Because \(\sqrt{5} \) is not rational (you can prove it), we easily see that \(a = b = 0 \) so \(R = 0 \). Therefore, \(X^2 - X - 1 \) divides \(P \) in \(\mathbb{Q}[X] \) namely \(P \) lies in \((X^2 - X - 1) \). We have proved that \(\ker(\phi) = (X^2 - X - 1) \).

Therefore

\[
\mathbb{Q}[X]/(X^2 - X - 1) \cong \mathbb{Q}[1 + \sqrt{2}].
\]

(3) For the same question with \(\mathbb{Z} \) instead of \(\mathbb{Q} \) everything goes through the similarly because we end up doing Euclidean divisions in \(\mathbb{Z}[X] \) by MONIC polynomials. So you can prove that we have isomorphisms or rings :

\[
\mathbb{Z}[X]/(X^2 + 7) \cong \mathbb{Z}[i\sqrt{7}]; \quad \mathbb{Z}[X]/(X^2 - X - 1) \cong \mathbb{Z}[1 + \sqrt{5}].
\]

Compare with : what if we wanted to write \(\mathbb{Z}[\frac{1}{2}] \) as a quotient ring?

(4) Let \(A = \mathbb{Z}[\sqrt{10}] \) and \(K = \mathbb{Q}[\sqrt{10}] \).

(a) Describe the elements of \(A \) and the elements of \(K \).

Let \(z := \sqrt{10} \). By definition, the elements of \(A \) (resp. \(K \)) are of the form \(P(z) \) where \(P \in \mathbb{Z}[X] \) (resp. \(P \in \mathbb{Q}[X] \)). But \(z^2 = 10 \) so \(z^n \) lies in \(\mathbb{Z} \) or in \(n\mathbb{Z} \) for any \(n \geq 1 \). Therefore :

\[
A = \{ a + zb, a, b \in \mathbb{Z} \} \quad \text{and} \quad K = \{ a + zb, a, b \in \mathbb{Q} \}.
\]

(b) For an element \(x \in K \) consider the multiplication \(m_x : K \to K \). Check that it is a \(\mathbb{Q} \)-linear map on the finite dimensional \(\mathbb{Q} \)-vector space \(K \). Denote by \(T(x) \) its trace and by \(N(x) \) its determinant. What happens when \(x \in A \)?

First note that \(K \) is a \(\mathbb{Q} \)-vector space (as a \(\mathbb{Q} \)-subspace of \(\mathbb{R} \) for example). Therefore, it makes sense to ask whether \(m_x \) is linear, and indeed it it clear that for any \(u, v \in K \) and \(\lambda, \mu \in \mathbb{Q} \) we have

\[
m_x(\lambda u + \mu v) = x(\lambda u + \mu v) = \lambda xu + \mu xv = \lambda m_x(u) + \mu m_x(v).
\]

Using the previous question, \(K \) is finite dimensional over \(\mathbb{Q} \) so it makes sense to talk about the determinant and the trace of \(x \). A basis of \(K \) is given by the elements 1 and \(\sqrt{10} \) (indeed, using the previous question this is a generating set, and it is easy to see that it is a basis because \(\sqrt{10} \) is not a rational number).

Given \(x = a + \sqrt{10}b \in K \), the matrix of \(m_x \) in that basis is

\[
\begin{pmatrix}
a & 10b \\
b & a
\end{pmatrix}
\]

so \(N(a + \sqrt{10}b) = a^2 - 10b^2 \) and \(T(a + \sqrt{10}b) = 2a \). If \(x \in A \) then \(N(x), T(x) \in \mathbb{Z} \).

(c) Show that 2 is irreducible in \(A \) namely that if \(2 = xy \) with \(x, y \in A \) then \(x \) or \(y \) is a unit of \(A \).

For \(u, v \in K \) we have \(m_{uv} = m_u \circ m_v \) therefore \(N(uv) = N(u)N(v) \). From this we
deduce that if x is a unit in A then $N(x) = \pm 1$. Conversely, for $x = a + \sqrt{10} \in A$, if $N(x) = \pm 1$ then $\frac{a - \sqrt{10}}{N(x)} \in A$. Since

$$\frac{a - \sqrt{10}}{N(x)} \times x = 1$$

it implies that x is a unit of A. Therefore, an element x of A is a unit if and only if $N(x) = \pm 1$.

If $2 = xy$ with $x, y \in A$ and none of x or y is a unit, we have $N(2) = N(x)N(y)$ namely $4 = N(x)N(y)$. Therefore $N(x) = \pm 2$. Compute the squares in $\mathbb{Z}/10\mathbb{Z}$ and find a contradiction...

(d) Show that (2) is not a prime ideal of A.

Use $2 \times 5 = 10 = (\sqrt{10})^2$...

Problem 2. First recall that given a commutative ring A with identity and I an ideal of A, the ideals of the quotient ring A/I are the J/I where J is an ideal of A containing I. Let J be such an ideal. The reduction map

$$\phi : A \to A/J$$

is a morphism of rings, the kernel of which contains I. Therefore it gives a surjective noninjective morphism of rings

$$\bar{\phi} : A/I \to A/J.$$

The kernel of $\bar{\phi}$ is the ideal J/I or A/I, therefore, applying the isomorphism theorem, we get an isomorphism of rings

$$\bar{\phi} : (A/I)/(J/I) \cong A/J.$$

So, $(A/I)/(J/I)$ is an integral domain if and only if A/J is an integral domain. This proves that among the ideals J/I of A/I (where J is an ideal of A containing I), the prime ideals are the ones of the form J/I where J is a prime ideal of A containing I.

njk Recall that for any field K, the ring $K[X]$ is a PID. If P is an irreducible polynomial in $K[X]$, let I be an ideal of $K[X]$ containing (P). There exists $Q \in K[X]$ such that $I = (Q)$. We have

$$(P) \subset (Q) \subset K[X]$$

and therefore Q divides P. But P is irreducible so $Q = uP$ where $u \in K^\times$ and $(P) = (Q)$, or $Q = u$ where $u \in K^\times$ and $(P) = K[X]$. We have proved that in $K[X]$ an irreducible polynomial generates a maximal ideal.

Remark. (we just saw this in class but I recall it here). In a PID

"P irreducible \Rightarrow (P) maximal \Rightarrow (P) prime"

Recall that P is called prime when $P \neq 0$ and (P) is prime. Recall also that the implication "prime \Rightarrow irreducible" is always true. So in a PID, for $P \neq 0$:

"P irreducible $\iff (P)$ maximal $\iff (P)$ prime $\iff P$ prime"
(a) $A = \mathbb{C}[X]$.
Prime ideals: $(X - \alpha)$ for $\alpha \in \mathbb{C}$ and $\{0\}$. Any other ideal which is not A is of the form (P) where $P \subseteq \mathbb{C}[X]$ has degree ≥ 2 so it is a multiple of some $(X - \alpha)$ for $\alpha \in \mathbb{C}$ and therefore (P) is not maximal or prime (see above). You can also prove easily by hand (without using the green remark above) that if $P \subseteq \mathbb{C}[X]$ has degree ≥ 2 it does not generate a prime ideal (since it has a factor of degree 1).

(b) $A = \mathbb{R}[X]/(X^2 + X + 1)$. The only ideal of $\mathbb{R}[X]$ containing $(X^2 + X + 1)$ strictly is $\mathbb{R}[X]$ because $X^2 + X + 1$ is an irreducible polynomial in $\mathbb{R}[X]$. So the only prime ideal of A is $\{0\}$.

(c) $A = \mathbb{R}[X]/(X^3 - 6X^2 + 11X - 6)$. We have $(X^3 - 6X^2 + 11X - 6) = (X - 1)(X^2 - 5X + 6) = (X - 1)(X - 2)(X - 3)$ so the prime ideals of A are $(X - 1)/(X^3 - 6X^2 + 11X - 6)$, $(X - 2)/(X^3 - 6X^2 + 11X - 6)$, $(X - 3)/(X^3 - 6X^2 + 11X - 6)$. (Note that $\{0\}$ here is not a prime ideal! why?)

(d) $A = \mathbb{R}[X]/(X^4 - 1)$. Since $X^4 - 1 = (X^2 + 1)(X + 1)(X - 1)$ the prime ideals of A are $(X^2 + 1)/(X^4 - 1)$, $(X + 1)/(X^4 - 1)$, $(X - 1)/(X^4 - 1)$. (Note that $\{0\}$ here is not a prime ideal! why?)

(2) For each of these rings A we can define a morphism of rings $\mathbb{R} \to A$.

(This is enough to define a structure of \mathbb{R}-vector spaces on these rings, see blue comments at the end of the "solution" to HW1).

(3) A morphism of \mathbb{R}-algebra $f_0 : \mathbb{R}[X]/(X^4 - 1) \to \mathbb{C}$ can be precomposed with the projection $\text{pr} : \mathbb{R}[X] \to \mathbb{R}[X]/(X^4 - 1)$ which is also a morphism of \mathbb{R}-algebra. We obtain this way a morphism $f := f_0 \circ \text{pr} : \mathbb{R}[X] \to \mathbb{C}$

which contains $(X^4 - 1)$ in its kernel. But f being a morphism of \mathbb{R}-algebras, it is entirely determined by the image $z := f(X)$ of X. Since $f(X^4 - 1) = 0$, we know that $z^4 = 1$ so $z \in \{\pm 1, \pm i\}$. We need to check that for each of these z there is a well defined map f_0.

So for $z \in \{\pm 1, \pm i\}$, we consider indeed the morphism of \mathbb{R}-algebras $f : \mathbb{R}[X] \to \mathbb{C}$ determined by $f(X) = z$. Its kernel contains $X^4 - 1$ therefore, there is $\bar{f} : \mathbb{R}[X]/(X^4 - 1) \to \mathbb{C}$ a morphism of rings such that $\bar{f} \circ \text{pr} = f$. It is easy to check that \bar{f} is also a morphism of \mathbb{R}-algebras.

This proves that we have 4 possible morphisms of \mathbb{R}-algebras $\mathbb{R}[X]/(X^4 - 1) \to \mathbb{C}$. They correspond to the roots of $X^4 - 1$.

Alternatively, the kernel of a morphism of \mathbb{R}-algebras $\mathbb{R}[X]/(X^4 - 1) \to \mathbb{C}$ is necessarily a prime ideal. WHY?

Since such a morphism of algebras is determined by the image of X mod $(X^4 - 1)$, it has to be one of the 4 ones we found above. Do you understand this argument?

Problem 3. Let k be a field with characteristic different from 2 and $G = \{e, g\}$ the group with two elements. We consider the group ring $A = k[G]$ (see Section 7.2).
(1) What are the ideals of A?

Consider the map $k[X] \rightarrow A$, $P(X) \mapsto P(g)$. It is a morphism of rings. Its kernel contains $X^2 - 1$ since $g^2 = e$. It does not contain $X - 1$ or $X + 1$ therefore the kernel is exactly the ideal generated by $X^2 - 1$. This proves that $A = k[X]/(X^2 - 1)$ which makes the rest of the problem very straightforward. For example, the proper ideals of A correspond to the proper ideals of $k[X]/(X^2 - 1)$ namely $(X - 1)/(X^2 - 1)$ or $(X + 1)/(X^2 - 1)$ (note that k has characteristic different from 2 therefore $X - 1 \neq X + 1$). Concretely in A these ideals are $(g - e)A$ and $(g + e)A$.

To find these ideals without the isomorphism : notice that A is a 2-dimensional vector space over k. A proper ideal of A is in particular a sub-k-vector space with dimension 1 so it has the form $k(\alpha e + \beta g)$ for $\alpha, \beta \in k$. But not all such vector spaces are ideals. If $k(\alpha e + \beta g)$ is an ideal I then $\alpha g + \beta e = g(\alpha e + \beta g) \in k(\alpha e + \beta g)$ which means that the matrix $\begin{pmatrix} \alpha & \beta \\ \beta & \alpha \end{pmatrix}$ has determinant 1 namely $\alpha^2 = \beta^2$, i.e. $\alpha = \pm \beta$.

So I has to be $k(e + g)$ or $k(e - g)$. And indeed, one checks that these are indeed ideals of A.

(2) Is A principal? No because it is not an integral domain $(g + e)(g - e) = 0$.

(3) What are the nilpotent elements of A? We look for $P \in k[X]$ such that its image \overline{P} in $k[X]/(X^2 - 1)$ is nilpotent namely there is $n \geq 1$ such that $\overline{P^n} \in (X^2 - 1)$, which implies that $P^n(1) = (P(1))^n = 0$. But k is a field so $P(1)^n = 0$ is equivalent to $P(1) = 0$. Likewise, we obtain $P(-1) = 0$. This means that P is a multiple of $X^2 + 1$ (write the Euclidean division of P by $X^2 + 1$ if you like and analyze the remainder...). Note that it matters here that $-1 \neq 1$ again... Therefore we have $P = 0$ and there is no nilpotent element in $k[X]/(X^2 - 1)$ and no nilpotent element in A.

Now if we want to work directly in A : since k has characteristic different from 2 we can invert 2 in k and consider
\[f_1 := \frac{1}{2}(e + g) \quad f_2 := \frac{1}{2}(e - g). \]

Notice $e = f_1 + f_2$ such that $f_1 f_2 = f_2 f_1 = 0$. This means that $A = f_1 A \times f_2 A$

as a ring, where $f_i A$ is a ring with identity element f_i. Therefore, we are reduced to looking for the nilpotent elements in each $f_i A$. But it is easy to see that $f_i A = k f_i$ and since f_i is not nilpotent, there is no nilpotent element in $f_i A$ and therefore in A.

Note : by the Chinese Remainder Theorem, we have
\[k[X]/(X^2 - 1) \cong k[X]/(X - 1) \times k[X]/(X + 1). \]

Compare this with the decomposition of A above!

Namely, which pieces correspond to each other? What element in $k[X]/(X^2 - 1)$ (and then in A) corresponds to $(1, 0)$? $(0, 1)$? f_1? f_2?

(4) What is the intersection of all prime ideals of A?

Problem 4. Let A be an integral domain and $a, b \in A$ such that $(a) = (b)$. What can you say about a and b?
Problem 5. We admit the following result known as Eisenstein Criterion.
Let \(f \in \mathbb{Q}[X] \) a monic polynomial with degree \(m \geq 1 \)
\[
f = X^m + a_{m-1}X^{n-1} + \cdots + a_1X + a_0.
\]
Suppose that

(i) \(a_0, \ldots, a_{m-1} \in \mathbb{Z} \),
(ii) there is a prime number \(p \) that divides \(a_0, \ldots, a_{m-1} \) and
(iii) \(p^2 \) does not divide \(a_0 \).

Then \(f \) is irreducible over \(\mathbb{Q} \) namely if \(f = gh \) with \(g, h \in \mathbb{Q}[X] \) then \(g \) or \(h \) is a nonzero constant polynomial.

Let \(p \) be a prime number and \(\epsilon \) a primitive root of 1 in \(\mathbb{C} \). Let \(A = \mathbb{Z}[\epsilon] \) be the subring of \(\mathbb{Z} \) generated by \(\epsilon \), namely the intersection of all subrings of \(\mathbb{C} \) containing \(\epsilon \). Note that \(\mathbb{Z} \) is a subring of \(A \).

(1) Show that the polynomial \(\Phi_p = 1 + X + \cdots + X^{p-1} \) is irreducible over \(\mathbb{Q} \). This is a classic question. See wikipedia, Eisenstein Criterion, Cyclotomic polynomials...

Note that \(\Phi_p = X^{p-1} \). Let
\[
P = \Phi_p(X + 1) = \frac{(X + 1)^p - 1}{X} = \sum_{k=1}^{p} \binom{p}{k} X^{k-1}.
\]

It is a monic polynomial. For \(k \in \{1, \ldots, p\} \) we have \(k \binom{p}{k} = p \binom{p-1}{k-1} \) so \(p \) divides \(k \binom{p}{k} \). But when \(k \neq p \) it is prime to \(p \) therefore \(p \) divides \(\binom{p}{k} \) for \(k \in \{2, \ldots, p-1\} \).

The constant term of \(P \) is \(\binom{p}{1} \). It is not divisible by \(p^2 \). By Eisenstein criterion, \(P \) is irreducible over \(\mathbb{Q} \) and therefore \(\Phi_p \) is irreducible over \(\mathbb{Q} \).

(2) The ideal \(\{P \in \mathbb{Q}[X], P(\epsilon)\} \) is not equal to \(\mathbb{Q}[X] \) and it contains \(\Phi_p \) therefore it contains \((\Phi_p) \). Furthermore, \(\mathbb{Q}[X] \) being principal, there is \(\Pi \in \mathbb{Q}[X] \) such that \(\Pi = \{P \in \mathbb{Q}[X], P(\epsilon)\} \). It satisfies \(\Pi \subseteq (\Phi_p) \). But \(\Phi_p \) being irreducible in a PID it generates a maximal ideal so \(\Pi = (\Phi_p) \) (alternatively, \(\Pi \subseteq (\Phi_p) \) means that \(\Pi \) divides \(\Phi_p \) and since \(\Phi_p \) is irreducible, that \(\Pi \in \mathbb{Q}^x \) or \(\Pi \) and \(\Phi_p \) are associate...... conclude.....)

(3) Show that the map
\[
F : \quad \mathbb{Z}^{p-1} \longrightarrow A
\]
\[
(x_0, \ldots, x_{p-2}) \longmapsto \sum_{i=0}^{p-2} x_i \epsilon^i
\]
is an isomorphism of additive groups. It is clearly a morphism of groups. First we want to check that it is surjective. It is enough to prove for any \(n \geq 0 \) that \(\epsilon^n \) is in the image of the map. If \(n \leq p - 2 \) it is clear. For \(n = p - 1 \), it is also clear because \(\epsilon^p = 1 \) and \(\epsilon \neq 1 \) so \(\Phi_p(\epsilon) = 0 \) therefore \(\epsilon^{p-1} = -1 - \epsilon - \cdots - \epsilon^{p-2} \). Suppose that \(\epsilon^n \) is in the image and consider \(\epsilon^{n+1} \). Let
\[
X^n = Q\Phi_p + R
\]
be the Euclidean division of \(X^n \) by \(\Phi_p \) in \(\mathbb{Q}[X] \) and in fact in \(\mathbb{Z}[X] \) since \(\Phi_p \) is monic. We have \(\deg R < p - 2 \) and \(R \in \mathbb{Z}[X] \) therefore
\[
\epsilon^n = R(\epsilon) \in \sum_{i=0}^{p-2} \mathbb{Z}\epsilon^i = \text{Im}(F).
\]
This proves that the map is surjective.

For the injectivity, let \((x_0, \ldots, x_{p-2}) \in \mathbb{Z}^{p-1}\) and suppose that it lies in the kernel of the map. It means that the polynomial \(x_0 + x_1X + \ldots, x_{p-2}X^{p-2}\) lies in the ideal \(\{P \in \mathbb{Q}[X], P(\epsilon) = 0\} = \Phi_p\mathbb{Q}[X]\). Because of the degrees, it means that \(x_0 + x_1X + \ldots, x_{p-2}X^{p-2}\) is the zero polynomial so \((x_0, \ldots, x_{p-2}) = (0, \ldots, 0)\) which concludes the proof.