Recall that an integer is an element of \(\mathbb{Z} \).

Problem 1. Determine whether the following statements are logically equivalent:

1. \(P \iff Q \) and \(\sim P \iff \sim Q \).
2. \(P \implies (Q \lor R) \) and \(P \implies ((\sim Q) \implies R) \).
3. \(P \implies (Q \lor R) \) and \((Q \land R) \implies P \).

Problem 2. Let \(P, Q, R \) and \(S \) be statements. Suppose that \(P \) is false and \([(R \implies S) \iff (P \land Q)] \) is true. Find the truth values of \(R \) and \(S \).

Problem 3. Let \(a \in \mathbb{Z} \). Prove the following statement:

\[
\text{if } 5 \mid 2a, \text{ then } 5 \mid a .
\]

Problem 4.

1. Prove the following statement. For every \(a \in \mathbb{R} \),

\[
\text{if } a \geq 4, \text{ then } -\frac{a^2}{4} + a \leq 0.
\]

2. Let \(a \in \mathbb{R} \). Prove the following statement:

\[
(\forall x \in \mathbb{R}, \ x^2 + ax + a > 0) \quad \text{if and only if} \quad (0 < a < 4).
\]

You may want to transform the expression \(x^2 + ax + a \) by completing the square.

Problem 5. Let \(m \in \mathbb{Z} \). Prove that if \(5 \nmid m \), then \(m^2 \equiv 1 \pmod{5} \) or \(m^2 \equiv -1 \pmod{5} \).

Problem 6. Prove the following statement:

\[
\forall a \in \mathbb{Z}, \ (3 \nmid a \implies (\exists b \in \mathbb{Z} \text{ such that } ab \equiv 1 \pmod{3})).
\]

Problem 7.

1. Prove that the product of 5 consecutive integers is a multiple of 5.

2. (not to be handed in but recommended). Prove that the product of 2020 consecutive integers is a multiple of 2020.

Problem 8. We recall that given \(a, b \in \mathbb{Z} \) such that \(ab \neq 0 \), we define the gcd of \(a \) and \(b \) to be the greatest integer that divides both \(a \) and \(b \). We denote it by \(\gcd(a, b) \).

1. Let \(a, b \in \mathbb{Z} \) such that \(ab \neq 0 \). We suppose that there exists \(u, v \in \mathbb{Z} \) such that

\[
1 = au + bv.
\]

Prove that \(\gcd(a, b) = 1 \).

2. Consider the following statement:

\[
\forall a \in \mathbb{Z}, \ b \in \mathbb{Z}, \ d \in \mathbb{N},
(\exists u, v \in \mathbb{Z} \text{ such that } d = au + bv) \implies \gcd(a, b) = d.\]

(a) Write the negation of the statement.

(b) Decide if the statement or its negation is true. Justify your answer.