Problem 1. Prove each of the following.

1. (2 points) The number $\sqrt[3]{2}$ is not a rational number.
 Solution We use proof by contradiction. Suppose $\sqrt[3]{2}$ is rational. Then we can write $\sqrt[3]{2} = \frac{a}{b}$ where $a, b \in \mathbb{Z}$, $b > 0$. We can assume further that $\gcd(a, b) = 1$. We have
 \[
 \sqrt[3]{2} = \frac{a}{b} \quad \Rightarrow \quad 2 = \frac{a^3}{b^3} \quad \Rightarrow \quad 2b^3 = a^3.
 \]
 So a^3 is even. Since any product of odd number is odd, we must have a is even. Hence we can write $a = 2c$ for some $c \in \mathbb{Z}$. Now we have
 \[
 2b^3 = (2c)^3 = 8c^3 \quad \Rightarrow \quad b^3 = 2(2c^3).
 \]
 Hence b^3 is even. Again since any product of odd number is odd, we must have b is even. So 2 divides both a and b, contradicting $\gcd(a, b) = 1$. Therefore, $\sqrt[3]{2}$ is irrational.

2. (2 points) The number $\log_2(3)$ is not a rational number.
 Solution We use proof by contradiction. Suppose $\log_2(3)$ is rational. Then we can write $\log_2(3) = \frac{a}{b}$ where $a, b \in \mathbb{Z}$, $b > 0$. Since $\log_2(3)$ is positive, we can also assume $a > 0$. So we have
 \[
 \log_2(3) = \frac{a}{b} \quad \Rightarrow \quad 3 = 2^{\frac{a}{b}} \quad \Rightarrow \quad 3^b = 2^a.
 \]
 Since b is an integer and the product of odd integers is odd, 3^b is odd. Since $a \geq 1$ is an integer, 2^a is divisible by 2, hence it is even. This is a contradiction since a number cannot be both even and odd. Thus, $\log_2(3)$ is irrational.

3. (2 points) Let $x \in \mathbb{R}$ satisfy $x^7 + 5x^2 - 3 = 0$. Then x is not a rational number.
 Solution We use proof by contradiction. Suppose $x^7 + 5x^2 - 3 = 0$ and x is rational, so we can write $x = \frac{a}{b}$ where $a, b \in \mathbb{Z}$, $b > 0$ where a and b have no common factors. Then
 \[
 \left(\frac{a}{b}\right)^7 + 5\left(\frac{a}{b}\right)^2 - 3 = 0 \quad \Rightarrow \quad a^7 + 5a^2b^5 - 3b^7 = 0
 \]
 Since a and b have no common factors, they cannot both be even. We consider the other cases.
 - If a and b are both odd, then $a^7, 5a^2b^5$, and $-3b^7$ are all odd. Since the sum of odd numbers is odd, $a^7 + 5a^2b^5 - 3a^7$ is odd. Since 0 is even, we get a contradiction.
• If \(a \) is even and \(b \) is odd, then \(a^7 \) and \(5a^2b^5 \) are both even \(-3b^7 \) and \(b \) is odd. So \(a^7 + 5a^2b^5 - 3a^7 \) is odd. Since 0 is even, we get a contradiction.

• If \(a \) is odd and \(b \) is even, then \(a^7 \) is odd and \(5a^2b^5 \) and \(-3b^7 \) are both even. So \(a^7 + 5a^2b^5 - 3a^7 \) is odd. Since 0 is even, we get a contradiction.

In each case we get a contradiction, so \(x \) is not rational.

4. (2 points) Let \(a, b, c \in \mathbb{Z} \). If \(a^2 + b^2 = c^2 \), then \(a \) or \(b \) is even.

Solution Let \(a, b, c \in \mathbb{Z} \) and assume for a contradiction that \(a^2 + b^2 = c^2 \) and \(a \) and \(b \) are both odd namely there exist \(k, m \in \mathbb{Z} \) such that \(a = 2k + 1 \) and \(b = 2m + 1 \) for some \(m \in \mathbb{Z} \).

Then we see that \(a^2 + b^2 = (2k + 1)^2 + (2m + 1)^2 = 4k^2 + 4k + 4m^2 + 4m + 2 \).

First way of concluding: Since \(a^2 + b^2 = 2(2k^2 + 2m^2 + 2k + 2m + 1) \), \(a \) or \(b \) has to be even.

Second way of concluding: We have \(a^2 + b^2 = 2(2k^2 + 2m^2 + 2k + 2m + 1) \). Since, \((2k^2 + 2m^2 + 2k + 2m + 1) \in \mathbb{Z} \), we see that \(c^2 \) is even, which implies \(c \) is even. So there exists \(n \in \mathbb{Z} \) such that \(c = 2n \) and we get

\[
a^2 + b^2 = (2k + 1)^2 + (2m + 1)^2 = 4k^2 + 4k + 4m^2 + 4m + 2 = 4n^2 = c^2,
\]

which implies that

\[
2 = 4n^2 - (4k^2 + 4k + 4m^2 + 4m) = 4(n^2 - k^2 - m^2 - k - m).
\]

Since \((n^2 - k^2 - m^2 - k - m) \in \mathbb{Z} \), this implies \(4 \mid 2 \), which is a contradiction. Therefore \(a \) or \(b \) has to be even.

5. (2 points) There do not exist \(a, n \in \mathbb{N} \) such that \(a^2 + 35 = 7^n \).

For \(k \in \mathbb{N} \), we admit that \(7 \mid k^2 \) implies \(7 \mid k \).

Solution: Assume for a contradiction that there exist \(a, n \in \mathbb{N} \) such that \(a^2 + 35 = 7^n \). Then we see that \(a^2 = 7(7^{n-1} - 5) \) and \(7 \mid a^2 \) so \(7 \mid a \) namely there exist \(m \in \mathbb{Z} \) such that \(a = 7m \). But then plugging this into the original equation, we get \(49m^2 + 35 = 7^n \). Dividing both sides by 7, we get \(7m^2 + 5 = 7^{n-1} \). Now, we have two cases for \(n \).

• If \(n = 1 \), then we see that the equation becomes \(7m^2 + 5 = 1 \), which is a contradiction since the left hand side is greater than 5.

• If \(n \) is greater than 1, then \(n - 1 > 0 \) and hence \(7 \mid 7^{n-1} \). Since \(7m^2 + 5 = 7^{n-1} \), we see that \(7^{n-1} - 7m^2 = 5 \). This is also a contradiction since left hand side is divisible by 7 whereas the right hand side is not.

Therefore we see that there do not exist \(a, n \in \mathbb{N} \) such that \(a^2 + 35 = 7^n \).

Problem 2.

1. (2 points) Show that \(\sqrt{3} \) is not a rational number.

Solution: Proof by contradiction. Suppose that \(\sqrt{3} \) is a rational number. Then we may write it in the form \(\frac{a}{b} \) where \(a \in \mathbb{Z} \), \(b \in \mathbb{N} \) and \(\gcd(a, b) = 1 \). So

\[
3b^2 = a^2.
\]
This implies that 3 divides a^2 and therefore 3 divides a (this is because if $3 \nmid a$ then $a \equiv 1 \mod 3$ or $a \equiv 2 \mod 3$ and in any case $a^2 \equiv 1 \mod 3$ so $3 \nmid a^2$). Saying 3 divides a means that there exists $k \in \mathbb{Z}$ such that $a = 3k$. But then

$$3b^2 = 3^2k^2$$

so $b^2 = 3k^2$ and 3 divides b^2 and therefore 3 divides b (as we just verified in the above brackets). So 3 divides both a and b which contradicts the fact that gcd$(a, b) = 1$. Since we found a contradiction, it means that our initial hypothesis was false namely it is false that $\sqrt{3}$ is a rational number.

2. (2 points) Deduce that $\sqrt{3} + \sqrt{43}$ is not a rational number.

Solution: Assume $\sqrt{3} + \sqrt{43}$ is a rational number and call it r. Then $(r - \sqrt{3}) = 43$ so

$$r^2 - 2\sqrt{3}r = 40$$

and

$$r^2 - 40 = 2\sqrt{3}r .$$

Then

- either $r = 0$ but then plugging this above gives $0 = 40$, contradiction.
- or $r \neq 0$ and $\sqrt{3} = \frac{r^2 - 40}{2r} \in \mathbb{Q}$. Contradiction.

In any case we have a contradiction so r is not in \mathbb{Q}.

Problem 3. (2 points) Prove the equation $4x^2 + 5y^2 = 7$ has no integer solutions. (Hint: Think about this equation modulo 4.)

Solution Suppose there are integers x and y satisfying $4x^2 + 5y^2 = 7$. Then

$$4x^2 + 5y^2 \equiv 7 \mod 4$$

$$0x^2 + 1y^2 \equiv 3 \mod 4$$

$$y^2 \equiv 3 \mod 4$$

However, we are in one of the four following cases:

Case 1 If $y \equiv 0 \mod 4$, then $y^2 \equiv 0^2 \equiv 0 \mod 4$.

Case 2 If $y \equiv 1 \mod 4$, then $y^2 \equiv 1^2 \equiv 1 \mod 4$.

Case 3 If $y \equiv 2 \mod 4$, then $y^2 \equiv 2^2 \equiv 0 \mod 4$.

Case 4 If $y \equiv 3 \mod 4$, then $y^2 \equiv 3^2 \equiv 1 \mod 4$.

This is a contradiction. Hence, the equation has no integer solutions.

Problem 4. For this problem, we are going to use the following result: if

$$f : A \rightarrow B$$

**is a bijection between finite sets A and B, then A and B have the same number of elements. In fact we say that they have the same cardinality and we write $|A| = |B|$.

For any set X, denote by $\{0, 1\}^X$ the set of all functions $X \rightarrow \{0, 1\}$. That is,

$$\{0, 1\}^X = \{ f : f \text{ is a function from } X \text{ to } \{0, 1\} \}.$$
1. For \(n \in \mathbb{N} \), define the set \(X_n = \{1, \ldots, n\} \). How many elements are there in \(\{0,1\}^{X_n} \)? We could actually prove this by induction but feel free to just give the answer without justification based on your intuition.

Solution: this cardinality is \(2^n \) (same as number of possible outcomes if you play heads and tails \(n \)-times).

2. Let \(X \) be any set. For each subset \(Y \subseteq X \), define \(f_Y \) to be the function

\[
 f_Y : X \rightarrow \{0,1\} \\
 x \mapsto \begin{cases}
 1 & \text{if } x \in Y \\
 0 & \text{if } x \in X \setminus Y
 \end{cases}
\]

This is called the characteristic of \(Y \) (see how it keeps track of the elements in \(Y \)).

(a) (1 point) When \(X = \mathbb{R} \) and \(Y = [0, 1] \), draw the graph of \(f_Y \).

(b) (1 point) When \(X = \mathbb{R} \) and \(Y = [0, +\infty) \), draw the graph of \(f_Y \).

Solution: see last page.

(c) (2 points) Now back to the general case of \(X \). Prove that the function

\[
 F : \mathcal{P}(X) \rightarrow \{0,1\}^X \\
 Y \mapsto f_Y
\]

is a bijection by giving the inverse of \(F \).

Solution: We define the following function:

\[
 G : \{0,1\}^X \rightarrow \mathcal{P}(X) \\
 f \mapsto f^{-1}(\{1\})
\]

We prove that \(F \circ G = \text{id}_{\{0,1\}^X} \) and \(G \circ F = \text{id}_{\mathcal{P}(X)} \).

- Proof that \(F \circ G = \text{id}_{\{0,1\}^X} \): Let \(f \in \{0,1\}^X \). By definition, \(F \circ G(f) = F(f^{-1}(\{1\})) \) is the function

\[
 F(f^{-1}(\{1\})) : X \rightarrow \{0,1\} \\
 x \mapsto \begin{cases}
 1 & \text{if } x \in f^{-1}(\{1\}) \text{ namely if } f(x) = 1 \\
 0 & \text{if } x \notin f^{-1}(\{1\}) \text{ namely if } f(x) \neq 1 \text{ namely if } f(x) = 0
 \end{cases}
\]

so we see that in fact \(F(f^{-1}(\{1\})) = f \) and \(F \circ G(f) = f \).

- Proof that \(G \circ F = \text{id}_{\mathcal{P}(X)} \): Let \(Y \in \mathcal{P}(X) \) namely \(Y \subseteq X \). By definition,

\[
 G \circ F(Y) = F_Y^{-1}(\{1\}) = \{x \in X : F_Y(x) = 1\} = \{x \in X : f_Y(x) = 1\}.
\]

But by definition of \(F_Y \), we have \(Y = \{x \in X : f_Y(x) = 1\} \) (\(f_Y \) is precisely the function that takes value 1 at elements of \(Y \) and value 0 outside of \(Y \)). So \(G \circ F(Y) = Y \).

3. Prove that \(\mathcal{P}(X_n) \) has cardinality \(2^n \).

Solution: We proved in 2.(c) that \(\mathcal{P}(X_n) \) and \(\{0,1\}^{X_n} \) have the same cardinality and in 1. that \(\{0,1\}^{X_n} \) has cardinality \(2^n \).
graph of f_Y

$x = \mathbb{R}$
$y = [0, 1]$