Problem 1. Let
\[f : A \to B \]
\[x \mapsto f(x) \]
be a function. We recall the following definitions:
- For \(Y \) a subset of \(B \), we define \(f^{-1}(Y) = \{ x \in A : f(x) \in Y \} \).
- For \(X \) a subset of \(A \), we define \(f(X) = \{ f(x) : x \in X \} \).

1. For \(x \in X \), what is \(f(\{ x \}) \)?

2. If \(b \in B \setminus f(A) \), what is \(f^{-1}(\{ b \}) \)?

3. For each of the following statement, decide if it is equivalent to “\(f \) is injective”. If it is equivalent, no justification is necessary. If it is not equivalent, justify your answer.

 (a) \(\forall a, a' \in A, f(a) = f(a') \implies a = a' \).

 Solution: Yes, this is equivalent.

 (b) \(\forall b \in B \), there is exactly one element in \(A \) such that \(f(a) = b \).

 Solution: No, this is not equivalent (this statement means that \(f \) is bijective).

 (c) \(\forall b \in B \), the set \(f^{-1}(\{ b \}) \) is empty or contains exactly one element.

 Solution: Yes, this is equivalent.

 (d) \(\forall b \in f(A) \), the set \(f^{-1}(\{ b \}) \) contains exactly one element.

 Solution: Yes, this is equivalent.

 (e) \(\forall a \in A \), \(f^{-1}(\{ a \}) \) contains \(a \).

 Solution: No, this is not equivalent (this statement is true for any function).

 (f) \(\forall a \in A \), \(f^{-1}(\{ a \}) \) contains at most one element.

 Solution: Yes, this is equivalent.

 (g) \(\forall a \in A \), \(f^{-1}(\{ a \}) \) contains exactly one element.

 Solution: Yes, this is equivalent.

4. Likewise, for each of the following statement, decide if it is equivalent to “\(f \) is surjective”. If it is equivalent, no justification is necessary. If it is not equivalent, justify your answer.

 (a) \(\forall a \in A \), \(f(a) \in B \).

 Solution: No, this is not equivalent (this statement is true for any function).

 (b) \(\forall b \in B \), there is exactly \(a \in A \) such that \(f(a) = b \).

 Solution: No, this is not equivalent (this statement means that \(f \) is bijective).

 (c) \(f(A) = B \).

 Solution: Yes, this is equivalent.

 (d) \(f^{-1}(B) = A \).

 Solution: No, this is not equivalent (this statement is true for any function).

 (e) \(f^{-1}(f(A)) = A \).

 Solution: No, this is not equivalent (this statement is true for any function).

 (f) \(f(f^{-1}(B)) = B \).
Problem 2. (3 points) Consider the function

\[f : \mathbb{N} \to \mathbb{Z} \]
\[n \mapsto \begin{cases} (n-1)/2 & \text{if } n \text{ is odd} \\ -n/2 & \text{if } n \text{ is even} \end{cases} \]

Show that \(f \) is bijective by computing its inverse function.

Solution: We define the function

\[g : \mathbb{Z} \to \mathbb{N} \]
\[n \mapsto \begin{cases} 2n+1 & \text{if } n \geq 0 \\ -2n & \text{if } n < 0. \end{cases} \]

(Notice that indeed these values land in \(\mathbb{N} \)). We compute \(f \circ g \) for \(n \in \mathbb{Z} \):

- If \(n \geq 0 \), we have \(f \circ g(n) = f(g(n)) = f(2n+1) = ((2n+1)-1)/2 = n \).
- If \(n \geq 0 \), we have \(f \circ g(n) = f(g(n)) = f(-2n) = -(-2n)/2 = n \).

Therefore \(f \circ g = \text{id}_{\mathbb{Z}} \).

We compute \(g \circ f(n) \) for \(n \in \mathbb{N} \):

- If \(n \) is odd, we have \(g \circ f(n) = g(f(n)) = g((n-1)/2) = 2((n-1)/2) + 1 = n \).
- If \(n \) is odd, we have \(g \circ f(n) = g(f(n)) = g(-n/2) = -2(-n/2) = n \).

Therefore \(g \circ f = \text{id}_{\mathbb{N}} \). So \(f \) has an inverse function (namely \(g \)) and \(f \) is bijective.

1. (2 points) There exists a function \(f : \mathbb{R} \to \mathbb{R} \) and a subset \(X \) of \(\mathbb{R} \) such that \(f^{-1}(f(X)) \neq X \).

Solution: True. Take for example \(f : \mathbb{R} \to \mathbb{R} \) defined by \(f(x) = x(x-1)(x-2) \). Let \(X = \{0\} \). Then \(f(X) = \{0\} \) and \(f^{-1}(f(X)) = \{0,1,2\} \neq X \). (I take here on purpose a function which is not injective (it is surjective but it does not matter). Why?)

- You could have taken \(f(x) = x^2 \). Which choice for \(X \) then?
- Is there a function \(f : \mathbb{R} \to \mathbb{R} \) and a subset \(Y \) of \(\mathbb{R} \) such that \(f(f^{-1}(Y)) \neq Y \)? Pick a non surjective function like \(f(x) = e^x \).

2. (2 points) For any function \(f : A \to B \) and any subset \(Y \) of \(B \), we have \(f(f^{-1}(Y)) \subseteq Y \).

Solution: True. Let \(y \in f(f^{-1}(Y)) \). It means that there exists \(x \in f^{-1}(Y) \) such that \(f(x) = y \). But \(x \in f^{-1}(Y) \) means that \(f(x) \in Y \). So \(y \in Y \). Extra question: prove that if \(f \) is surjective then these sets are equal.

3. (2 points) For any function \(f : A \to B \) and any subset \(X \) of \(A \), we have \(f^{-1}(f(X)) \subseteq X \).

Solution: False. See question 1. Extra question: prove that if \(f \) is injective then these sets are equal.

4. (6 points) The range of the function

\[f : [0, +\infty) \to \mathbb{R} \]
\[x \mapsto \frac{x^2 - 1}{x^2 + 1} \]
is $[-1,1)$ and there exists a bijective function $[0, +\infty) \rightarrow [-1,1)$. Prove $f([0, +\infty)) = [-1,1)$.

Solution: True.

- We first prove $f([0, +\infty)) = [-1,1)$.

 Let $y \in f([0, +\infty))$. It means that there exists $x \in [0, +\infty)$ such that $f(x) = y$ namely

 $\frac{x^2 - 1}{x^2 + 1} = y$.

 But $-x^2 \leq x^2$ so $-x^2 + 1 \leq x^2 + 1$ and $-\frac{x^2 - 1}{x^2 + 1} \leq 1$ so $y \geq -1$.

 Also, $-1 < 1$ so $x^2 - 1 < x^2 + 1$ and $\frac{x^2 - 1}{x^2 + 1} < 1$ so $y < 1$.

- Let $y \in [-1,1)$. Since $\frac{1+y}{1-y} \geq 0$ we may consider the element $\sqrt{\frac{1+y}{1-y}}$ and we call it x.

 Obviously we have $x \geq 0$. Furthermore

 $f(x) = \sqrt{\frac{1+y}{1-y}}^2 - 1 = \frac{\frac{1+y}{1-y} - 1}{\sqrt{\frac{1+y}{1-y}}^2} = \frac{1+y - 1 + y}{1+y + 1 - y} = \frac{2y}{2} = y$.

 So we have proved that our $y \in [-1,1)$ can be written in the form $f(x)$ for some $x \in [0, +\infty)$.

 This means exactly that $y \in f([0, +\infty))$.

- This above proves that the range of f is $[-1,1)$ so we can define the function

 $g: [0, +\infty) \rightarrow [-1,1)$

 $x \mapsto \frac{x^2 - 1}{x^2 + 1}$

 It is surjective by construction. We prove that it is injective. Let $x, x' \in [0, +\infty)$ such that $g(x) = g(x')$. It means

 $\frac{x^2 - 1}{x^2 + 1} = \frac{x'^2 - 1}{x'^2 + 1}$

 So

 $x^2 x'^2 - x'^2 + x^2 - 1 = x^2 x'^2 - x'^2 + x'^2 - 1$ namely

 $2x^2 = 2x'^2$

 so $x^2 = x'^2$. Since both $x \geq 0$ and $x' \geq 0$ this implies $x = x'$. So g is injective. We have prove that g is a bijective function $[0, +\infty) \rightarrow [-1,1)$.

Problem 4. Consider the function

$f: \mathbb{R} \rightarrow [-1, +\infty)$

$x \mapsto x^2 + 2x$

1. Show that f is well defined namely that: $\forall x \in \mathbb{R}$, we have $x^2 + 2x \geq -1$.

2. (3 points) What is $f^{-1}([0])$? $f^{-1}([-4])$? $f^{-1}([-1])$?

3. (3 points) Show that Range(f) = $[-1, +\infty)$.

4. (3 points) Is the function f injective, surjective, bijective?
5. (1 point) Now we consider the function

\[g : \mathbb{R} \rightarrow (-1, +\infty) \quad x \mapsto f(e^x) \]

Show that the function \(g \) is not surjective.

Solution:

1. For any \(x \in \mathbb{R} \), we have \((x + 1)^2 = x^2 + 2x + 1 \geq 0\) so \(x^2 + 2x \geq -1 \).

2. \(f^{-1}([0]) = \{0, -2\} \). \(f^{-1}([-4]) = \emptyset \). \(f^{-1}([-1]) = \{-1\} \).

3. Let \(y \in [-1, +\infty) \). We want to show that there exists \(x \in \mathbb{R} \) such that \(f(x) = y \) namely \(x^2 + 2x - y = 0 \). To study this equation, we compute its discriminant \(\Delta = 4 + 4y \) which is \(\geq 0 \) since \(y \geq 1 \). Therefore, this equation has a solution (in fact it has two solutions \(x = -1 + \sqrt{1+y} \) or \(x = -1 - \sqrt{1+y} \)). This proves that \(y \in \text{Range}(f) \).

So for any \(y \in [-1, +\infty) \) we have \(y \in \text{Range}(f) \) so \([-1, +\infty) \subseteq \text{Range}(f) \). Therefore \(\text{Range}(f) = [-1, +\infty) \).

4. Surjective (Question 3), not injective (because \(f^{-1}([0]) \) has more than 1 element).

5. We show that \(g \) is not surjective.

 Method 1: We prove that \(\text{Range}(g) \neq [-1, +\infty) \) (namely in fact we prove that \(\text{Range}(g) \) is "smaller" than \([1, +\infty)\)) by direct proof. Let \(y \in \text{Range}(g) \). It means that there exists \(x \in \mathbb{R} \) such that \(y = f(e^x) \) namely \(y = e^{2x} + 2e^x \) so \(y > 0 \). So the elements in \(\text{Range}(g) \) are all \(> 0 \) and \(g \), which has target space \([-1, +\infty)\), is not surjective.

 Method 2: We prove that \(\text{Range}(g) \neq [-1, +\infty) \) by contradiction. Suppose that \(\text{Range}(g) = [-1, +\infty) \). Then \(-1 \in \text{Range}(g) \). So there exists \(x \in \mathbb{R} \) such that \(g(x) = -1 \). It means that \(f(e^x) = -1 \) namely \(e^x \in f^{-1}([-1]) \). But we computed earlier that \(f^{-1}([-1]) = \{-1\} \). So \(e^x = -1 \). This cannot be true so there is no \(x \) in \(\mathbb{R} \) such that \(g(x) = -1 \). And we proved \(\text{Range}(g) \neq [-1, +\infty) \).