Problem 1. We consider subsets A, B and C of the universe Ω.

1. Prove that $\overline{A} \subseteq B$ if and only if $A \cup B = \Omega$.
2. Prove that $\overline{A} \subseteq B$ implies $(C \setminus B) \cup A = A$

Problem 2. Let $a \in \mathbb{R}$.

1. On the xy-plane, draw the set $A_a = \{(x, x^2 - ax), x \in \mathbb{R}\}$ when $a = 0$, $a = 1$ and $a = 2$.
2. Show that $\bigcap_{a \in \mathbb{R}} A_a = \{(0, 0)\}$.

Problem 3. Chapter 8 Problem 28. (You can use ideas from HW5 Problem 4).

Problem 4. Prove
\[\bigcup_{n \in \mathbb{N}} \left[\frac{1}{n}, 1 \right] = (0, 1). \]

We admit: for every $x \in \mathbb{R}$, there exists a unique $m \in \mathbb{Z}$ such that $x \in [m, m+1)$. See HW5 Problem 6.

Problem 5. Let A, B and C be sets. For each of the following statements, either prove it is true or give a counterexample.

1. $\mathcal{P}(A \cup B) \subseteq \mathcal{P}(A) \cup \mathcal{P}(B)$
2. $\mathcal{P}(A \cup B) \supseteq \mathcal{P}(A) \cup \mathcal{P}(B)$
3. $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$
4. $\mathcal{P}(A \cap B) \supseteq \mathcal{P}(A) \cap \mathcal{P}(B)$
5. $(A \cup B) \setminus C) \cup (A \cap B \cap C) \subseteq (A \setminus (B \cup C)) \cup (B \setminus (A \cup C))$.

Problem 6. For the following relations, decide if they are equivalence relations or not and justify your answer.

1. On the set of all lines in the xy plane, we define the relation R by: $D \sim D'$ if D and D' are orthogonal.
2. On \mathbb{R}, we define the relation R by: $x \sim y$ if $\cos^2(x) + \sin^2(y) = 1$.

Problem 7. Let \mathcal{R} be the relation defined on $\mathbb{R} \times \mathbb{R}$ by
\[(x_1, y_1) \mathcal{R} (x_2, y_2) \text{ if } x_1^2 + y_1^2 = x_2^2 + y_2^2. \]

1. Check that it is an equivalence relation.
2. Describe the equivalence classes. You can make a drawing.

Problem 8. Let \mathcal{D} denote the set of all lines in the xy-plane which are parallel (or identical) to the line with equation $y = 3x$. Each such line is treated as a subset of $\mathbb{R} \times \mathbb{R}$.

1. Check for yourself that \mathcal{D} is a partition of $\mathbb{R} \times \mathbb{R}$. (Not be to handed in).
2. Give an equivalence relation \mathcal{R} on $\mathbb{R} \times \mathbb{R}$ whose set of equivalence classes is \mathcal{D}.