Problem 1. We consider subsets A, B and C of the universe Ω.

1. (2 points) Prove that $\overline{A} \subseteq B$ if and only if $A \cup B = \Omega$.

 Solution 1: Suppose that $\overline{A} \subseteq B$. We want to deduce that $A \cup B = \Omega$ and it is enough to deduce that $\Omega \subseteq A \cup B$ (since the other inclusion is clear). So let $x \in \Omega$. If $x \in A$ then $x \in A \cup B$. If $x \notin A$, then $x \in \overline{A}$ so $x \in B$ and therefore $x \in A \cup B$. We have proved that $x \in \Omega$ implies $x \in A \cup B$. So $\Omega \subseteq A \cup B$.

 Solution 2: Suppose that $A \cup B = \Omega$. Now let $x \in \overline{A}$, namely $x \notin A$. Since $x \in \Omega$ we know that x is in A or in B, and since $x \notin A$ we have $x \in B$. Therefore $\overline{A} \subseteq B$.

Using DeMorgan’s law for sets (Book page 165, 8.2).

Suppose that $\overline{A} \subseteq B$. Then

$$A \cup B = \overline{A \cup B} = \overline{A} \cap \overline{B}$$

But $\overline{A} \subseteq B$ so $\overline{A} \cap \overline{B} \subseteq B \cap \overline{B} = \emptyset$ and therefore $\overline{A} \cap \overline{B} = \emptyset$. So $\Omega = A \cup B = \emptyset$.

2. (2 points) Prove that $\overline{A} \subseteq B$ implies $(C \setminus B) \cup A = A$.

 Solution 1: Suppose that $\overline{A} \subseteq B$. By the previous question, note that it is equivalent to $\Omega = A \cup B$. But using the first question again, (exchanging the role of A and B), we see that $\Omega = A \cup B$ is equivalent to $\overline{B} \subseteq A$. Therefore, $\overline{A} \subseteq B$ is equivalent to $\overline{B} \subseteq A$. Under this hypothesis, we want to check that $(C \setminus B) \cup A = A$. The inclusion $A \subseteq (C \setminus B) \cup A$ is clear. For the other inclusion, let $x \in (C \setminus B) \cup A$. It means that $x \in A$ or $x \in C \setminus B$. If $x \in C \setminus B$ then x lies in C but not in B so in particular $x \in \overline{B}$ but $\overline{B} \subseteq A$ so $x \in A$. Therefore $x \in (C \setminus B) \cup A$ implies $x \in A$.

 Solution 2: First recall that $C \setminus B = C \cap \overline{B}$ so $\overline{C \setminus B} = C \cup B$. We have:

$$C \setminus B \cup A = (C \setminus B) \cup A = (C \setminus B) \cap \overline{A} = \overline{(C \setminus B) \cap \overline{A}} = \overline{(C \cup B) \cap \overline{A}} = (C \cap A) \cup (B \cap \overline{A}).$$

Now suppose that $\overline{A} \subseteq B$. Then $B \cap \overline{A} = \overline{A}$ so

$$(C \setminus B) \cup A = \overline{(C \cap A) \cup \overline{A}} = \overline{A} = A.$$

Problem 2. Let $a \in \mathbb{R}$.

1. On the xy-plane, draw the set $A_a = \{(x, x^2 - ax), x \in \mathbb{R}\}$ when $a = 0, a = 1$ and $a = 2$.

2. (3 points) Show that $\bigcap_{a \in \mathbb{R}} A_a = \{(0, 0)\}$.

 Solution: Recall that for $(x, y) \in \mathbb{R}^2$,

 $$(x, y) \in \bigcap_{a \in \mathbb{R}} A_a$$

 means

 $$\forall a \in \mathbb{R}, (x, y) \in A_a$$

 so in particular, here, it means

 $$\forall a \in \mathbb{R}, y = x^2 - ax.$$
Let \((x, y) \in \bigcap_{a \in \mathbb{R}} A_a\). In particular, we have \((x, y) \in A_0\) therefore \(y = x^2\) and \((x, y) \in A_1\) so \(y = x^2 - x\). Together these conditions imply \(x^2 - x = x^2\) so \(x = 0\) and then \(y = 0\). So \((x, y) = (0, 0)\) and \(\bigcap_{a \in \mathbb{R}} A_a \subseteq \{(0, 0)\}\).

For every \(a \in \mathbb{R}\), we have \(0 = 0^2 - a0\) therefore \((0, 0) \in A_a\). So \((0, 0) \in \bigcap_{a \in \mathbb{R}} A_a\) and \(\{(0, 0)\} \subseteq \bigcap_{a \in \mathbb{R}} A_a\).

Problem 3. Chapter 8 Problem 28. **Solution:** We want to prove
\[
\{12a + 25b : a, b \in \mathbb{Z}\} = \mathbb{Z}.
\]

The direct inclusion is clear.

We notice that \(1 = 12(-2) + 25(1)\) therefore for any \(x \in \mathbb{R}\) we have \(x = 12(-2x) + 25x\) and therefore \(x \in \{12a + 25b : a, b \in \mathbb{Z}\}\).

Problem 4. (3 points) Prove
\[
\bigcup_{n \in \mathbb{N}} \left[\frac{1}{n}, 1\right] = (0, 1].
\]

We admit: for every \(x \in \mathbb{R}\), there exists a unique \(m \in \mathbb{Z}\) such that \(x \in [m, m + 1]\). See HW5 Problem 6.

Solution: Recall that for \(x \in \mathbb{R}\),
\[
x \in \bigcup_{n \in \mathbb{N}} \left[\frac{1}{n}, 1\right]
\]
means
\[
\exists n \in \mathbb{N}, \text{ such that } x \in \left[\frac{1}{n}, 1\right].
\]

Let \(x \in \bigcup_{n \in \mathbb{N}} \left[\frac{1}{n}, 1\right]\). There exists \(n \in \mathbb{N}\) such that \(\frac{1}{n} \leq x \leq 1\) therefore \(0 < x \leq 1\) and \(x \in (0, 1]\).

Let \(x \in (0, 1]\). We know that there exists a unique \(m \in \mathbb{Z}\) such that \(\frac{1}{x} \in [m, m + 1]\). Notice that since \(\frac{1}{x} > 0\) we know that \(m \geq 0\) (otherwise we would have \(\frac{1}{x} < m + 1 \leq 0\) and \(\frac{1}{x} < 0\) which is not true). So \(m + 1 \in \mathbb{N}\) and \(\frac{1}{x} < m + 1\) implies \(x > \frac{1}{m + 1}\). So we have \(x \in (\frac{1}{m + 1}, 1]\) which implies \(x \in \left[\frac{1}{m + 1}, 1\right]\).

Problem 5. Let \(A, B\) and \(C\) be sets. For each of the following statements, either prove it is true or give a counterexample.

1. \(\mathcal{P}(A \cup B) \subseteq \mathcal{P}(A) \cup \mathcal{P}(B)\) **Solution:** It is false. Take \(A = \{1\}\) and \(B = \{2\}\). In that case \(A \cup B \in \mathcal{P}(A \cup B)\) but \(A \cup B \notin \mathcal{P}(A) \cup \mathcal{P}(B)\).

2. \(\mathcal{P}(A \cup B) \supseteq \mathcal{P}(A) \cup \mathcal{P}(B)\). **Solution:** It is true. Let \(X \in \mathcal{P}(A) \cup \mathcal{P}(B)\). It means \(X \subseteq A\) or \(X \subseteq B\). But \(A \subseteq A \cup B\) and \(B \subseteq A \cup B\). So in any case, \(X \subseteq A \cup B\) and \(X \in \mathcal{P}(A \cup B)\).

3. \(\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)\). **Solution:** It is true. Let \(X \in \mathcal{P}(A \cap B)\). It means \(X \subseteq A \cap B\) so in particular, \(X \subseteq A\) and \(X \subseteq B\) so \(X \in \mathcal{P}(A)\) and \(X \in \mathcal{P}(B)\).
4. $\mathcal{P}(A \cap B) \supseteq \mathcal{P}(A) \cap \mathcal{P}(B)$. **Solution**: It is true. Let $X \in \mathcal{P}(A) \cap \mathcal{P}(B)$. It means $X \subseteq A$ and $X \subseteq B$ so $X \subseteq A \cap B$ and $X \in \mathcal{P}(A \cap B)$.

5. (1 point) $((A \cup B) \setminus C) \cup (A \cap B \cap C) \subseteq (A \setminus (B \cup C)) \cup (B \setminus (A \cup C))$. **Solution**: It is false (draw a Venn diagram to come up with a counter example). $A = \{1, 2\} \quad B = \{1, 3\} \quad C = \{1, 4\}$. We have $1 \in (A \cup B) \setminus C) \cup (A \cap B \cap C)$ but $(A \setminus (B \cup C)) = \{2\}$ and $(B \setminus (A \cup C)) = \{3\}$ so

$1 \notin (A \setminus (B \cup C)) \cup (B \setminus (A \cup C))$.

Problem 6. For the following relations, decide if they are equivalence relations or not and justify your answer.

1. (1 point) On the set of all lines in the xy plane, we define the relation R by: DRD' if D and D' are orthogonal. **Solution**: It is not an equivalence relation as it is not reflexive.

2. (3 points) On \mathbb{R}, we define the relation R by: xRy if $\cos^2(x) + \sin^2(y) = 1$.

Solution: It is an equivalence relation:

- Reflexivity: for $x \in \mathbb{R}$, we have $\cos^2(x) + \sin^2(x) = 1$ so xRx.
- Symmetry: for $x, y \in \mathbb{R}$, suppose that xRy namely $\cos^2(x) + \sin^2(y) = 1$. Then $\cos^2(y) + \sin^2(x) = (1 - \sin^2(y)) + (1 - \cos^2(x)) = 2 - (\cos^2(x) + \sin^2(y)) = 2 - 1 = 1$ so yRx.
- Transitivity: for $x, y, z \in \mathbb{R}$, suppose that xRy and yRz namely $\cos^2(x) + \sin^2(y) = 1$ and $\cos^2(y) + \sin^2(z) = 1$. Then

\[
\cos^2(x) + \sin^2(z) = \cos^2(x) + \sin^2(y) - \sin^2(y) + \sin^2(z) \\
= \cos^2(x) + \sin^2(y) - (1 - \cos^2(y)) + \sin^2(z) \\
= (\cos^2(x) + \sin^2(y)) + (\cos^2(y) + \sin^2(z)) - 1 = 1 + 1 - 1 = 1
\]

so xRz.

Problem 7. Let R be the relation defined on $\mathbb{R} \times \mathbb{R}$ by

$$(x_1, y_1)R(x_2, y_2) \quad \text{if} \quad x_1^2 + y_1^2 = x_2^2 + y_2^2.$$

1. Check that it is an equivalence relation. This should be straightforward.

2. (1 point) Describe the equivalence classes. You can make a drawing. The equivalence classes are the circles with center 0 in the xy-plane.

Problem 8. Let D denote the set of all lines in the xy-plane which are parallel (or identical) to the line with equation $y = 3x$. Each such line is treated as a subset of $\mathbb{R} \times \mathbb{R}$.

1. Check for yourself that D is a partition of $\mathbb{R} \times \mathbb{R}$. (Not be to handed in).

2. (1 point) Give an equivalence relation \mathcal{R} on $\mathbb{R} \times \mathbb{R}$ whose set of equivalence classes is D. It is the relation \mathcal{R} defined on $\mathbb{R} \times \mathbb{R}$ by

$$(x_1, y_1) \mathcal{R} (x_2, y_2) \quad \text{if} \quad y_2 - y_1 = 3(x_2 - x_1)$$