Problem 1. Consider three statements P, Q, R statements.

1. Using truth tables, recall the proof of the logical equivalence between

$$P \land (Q \lor R) \text{ and } (P \land Q) \lor (P \land R).$$

This is one of the distributivity laws.

2. Deduce the other distributivity law namely the logical equivalence between

$$P \lor (Q \land R) \text{ and } (P \lor Q) \land (P \lor R).$$

without using a truth table but instead using DeMorgan’s laws.

3. Let P, Q, R and S be statements. Suppose that

$$P \text{ is false and } (R \Rightarrow S) \iff (P \land Q) \text{ is true.}$$

Find the truth values of R and S.

Problem 2. Prove the following statement:

Let a and b be integers. If $(a - 2)^2(ab + 2)$ is odd, then a and b are odd.

Problem 3. 1. Prove the following statement. For every $a \in \mathbb{R}$.

if $a \geq 4$, then $-\frac{a^2}{4} + a \leq 0$.

2. Let $a \in \mathbb{R}$. Prove the following statement:

$$(x^2 + ax + a > 0 \text{ for every } x \in \mathbb{R}) \text{ if and only if } (0 < a < 4).$$

You may want to transform the expression $x^2 + ax + a$ by completing the square.

Problem 4. Write the negation of the following statements. Avoid using ”there is no”, ”is not” as much as possible. You may use the sign \neq.

1. There is a problem that has no solution.

2. Every house in this city has at least 4 windows.

3. For any $x \in \mathbb{R}$, if $x > 10$ then $2^{-x} < 1$.

4. For every $z \in \mathbb{Z}$, there exist numbers $x \in \mathbb{Z}$ and $y \in \mathbb{Z}$ such that $z^2 = x^2 + y^2$.

Problem 5. (Chapter 4 Exercise 8). Suppose a is an integer. Prove the following statement:

if $5|2a$, then $5|a$.