Problem 1. 1. (1 point mostly for presentation since these things are in the book). Given two statements S and T:

(a) (De Morgan’s Laws) See Textbook 2.6. From the truth tables (you had to give them), one sees that statements $\neg(S \land T)$ and $(\neg S) \lor (\neg T)$ are logically equivalent.

(b) After giving the truth table, one observes that $\neg(S \implies T)$ is logically equivalent to $S \land \neg T$.

2. Consider the following statement: If it is raining then I will take the bus, and otherwise I will ride my bicycle.

(a) (2 points) We introduce following statements.

\[
\begin{align*}
P &: \text{it is raining} \\
Q &: \text{I will take the bus} \\
R &: \text{I will ride my bicycle.}
\end{align*}
\]

The statement above can be converted into: $(P \implies Q) \land (\neg P \implies R)$.

(b) Negation of the above statement:

i. (2 points) with symbols. Using Question 1 (a), we know that $\neg[(P \implies Q) \land (\neg P \implies R)]$ is logically equivalent to

$$(\neg P \implies Q) \lor (\neg(\neg P \implies R)).$$

Using Question 1 (b), we know that $\neg(P \implies Q)$ is logically equivalent to $P \land \neg Q$, and $\neg(\neg P \implies R)$ is logically equivalent to $\neg P \land \neg R$. So $\neg[(P \implies Q) \land (\neg P \implies R)]$ is logically equivalent to

$$(P \land \neg Q) \lor (\neg P \land \neg R).$$

ii. (2 points) in plain English. It rains and I do not take the bus, or it does not rain and I do not ride my bicycle.

Problem 2. Consider the following two sets of natural numbers.

\[
A = \{2x - 1 : x \in \mathbb{N}\} = \{1, 3, 5, 7, 9, \ldots\}
\]

\[
B = \{3x : x \in \mathbb{N}\} = \{3, 6, 9, 12, 15, \ldots\}
\]

Give a description of the following two sets. A list of the first ten elements followed by \ldots is sufficient.

1. (1 point) $\{x \in \mathbb{N} : (x \in A) \text{ or } (x \in B)\} = \{1, 3, 5, 6, 7, 9, 11, 12, 13, 15, \ldots\}$

2. (2 points) $\{x \in \mathbb{N} : (x \in A) \implies (x \in B)\}$. It may be helpful to use the fact that $S \implies T$ is logically equivalent to $\neg S \lor T$ which can be seen by comparison of the truth tables. Therefore,

\[
\begin{align*}
\{x \in \mathbb{N} : (x \in A) \implies (x \in B)\}
&= \{x \in \mathbb{N} : (x \notin A) \text{ or } (x \in B)\} \\
&= \{x \in \mathbb{N} : x \text{ is even or } x \text{ is a multiple of 3}\} \\
&= \{2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21 \ldots\}
\end{align*}
\]
3. (2 points) We proceed as above:

\[\{ x \in \mathbb{N} : (x \in B) \implies (x \in A) \} = \{ x \in \mathbb{N} : (x \not\in B) \text{ or } (x \in A) \} = \{ x \in \mathbb{N} : x \text{ is not a multiple of } 3 \text{ or } x \text{ is odd} \} = \{ 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20 \ldots \} \]

4. (2 points) From the two previous questions, we get:

\[\{ x \in \mathbb{N} : (x \in A \implies x \in B) \text{ and } (x \in B \implies x \in A) \} = \{ 2, 3, 4, 8, 9, 10, 14, 15, 16 \ldots \} \]

Problem 3. (4 points) Let \(x \in \mathbb{R} \). Suppose that \(|x| > 10 \). Then

- either \(x > 10 \) and then \(x - 10 > 0 \) and \(x - 4 > 0 \), therefore \((x - 10)(x - 4) > 0 \). But \((x - 10)(x - 4) = x^2 - 14x + 40 \) so we have proved that \(x^2 + 40 > 14x \).
- or \(x < -10 \) and then \(14x < 0 \) while \(x^2 + 40 > 0 \). So \(14x < 0 < x^2 + 40 \) and therefore \(x^2 + 40 > 14x \).

Problem 4. Let \(a, b, \) and \(c \) be integers. Consider the statements:

\[P: c \text{ divides } ab \]
\[Q: c \text{ divides } a \]
\[R: c \text{ divides } b \]

1. (2 points) Write the statement \(P \implies Q \lor R \) in words: \(c \) divides \(ab \) implies that \(c \) divides \(a \) or \(c \) divides \(b \).

2. (1 point) Give an example of integers \(a, b \) and \(c \) for which the statement in part 1. is false. When \(c = 6 \), \(a = 2 \) and \(b = 3 \) we have \(c \) divides \(ab \) and yet \(c \) does not divide \(a \) and \(c \) does not divide \(b \).

Problem 5. (4 points) Let \(n \in \mathbb{Z} \). We want to prove:

If \(4 \) divides \(n - 1 \), then \(n \) is odd and \((-1)^{\frac{n-1}{2}} = 1\).

Suppose that \(4 \) divides \(n - 1 \). It means that there is \(m \in \mathbb{Z} \) such that \(n - 1 = 4m \). Therefore we have: \(n = 4m + 1 = 2(2m) + 1 \) is an odd number. Furthermore \(\frac{n-1}{2} = 2m \) is an even number. This implies \((-1)^{\frac{n-1}{2}} = (-1)^{2m} = ((-1)^2)^m = 1\).

Problem 6. 1. (3 points) Let \(n \in \mathbb{Z} \). Prove that if \(5n \) is even then \(n \) is even.

- By direct proof. Suppose that \(5n \) is even. It means that there is \(m \in \mathbb{Z} \) such that \(5n = 2m \). Then \(n = 5n - 4n = 2m - 4n = 2(m - 2n) \). Since \(m - 2n \in \mathbb{Z} \), this proves that \(n \) is an even number.
• By contrapositive. We are going to prove that
if \(n \) is not even, then \(5n \) is not even

namely

if \(n \) is odd then \(5n \) is odd.

Suppose that \(n \) is odd. It means that there is \(m \in \mathbb{Z} \) such that \(n = 2m + 1 \). Then
\[
5n = 5(2m + 1) = 10m + 5 = 2(5m + 2) + 1.
\]
Since \(5m + 2 \in \mathbb{Z} \), this proves that \(5n \) is odd.

2. (3 points) Let \(n \in \mathbb{Z} \). Prove that if 5 divides \(n \) and 2 divides \(n \), then 10 divides \(n \).

Suppose that 5 divides \(n \) and 2 divides \(n \). The first hypothesis means that there is \(m \in \mathbb{Z} \) such that \(n = 5m \). The second hypothesis means that \(n \) is even, namely that \(5m \) is even. We know by the previous question that "5m is even" implies that "\(m \) is even" namely there is \(k \in \mathbb{Z} \) such that \(m = 2k \). So we have \(n = 5m = 10k \) with \(k \in \mathbb{Z} \). Therefore 10 divides \(n \).

3. (2 points) Is the following statement true?

For \(n \in \mathbb{Z} \), if 6 divides \(n \) and 2 divides \(n \), then 12 divides \(n \).

This statement means that for all possible \(n \in \mathbb{Z} \), if 6 and 2 both divide \(n \) then necessarily 12 divides \(n \). If we pick \(n = 6 \), then we do have "6 and 2 both divide \(n \" and yet "12 does not divide \(n \". Therefore the statement is false because it fails for at least one \(n \in \mathbb{Z} \) (namely \(n = 6 \)).

You were not asked to provide as many details as what follows. But please read the discussion because later we will work on negating statements and it may be a challenging topic. So this is a good preparation.

More formally, for \(n \in \mathbb{Z} \), we introduce the statements:

\[
P : 6 \text{ divides } n
\]
\[
Q : 2 \text{ divides } n
\]
\[
R : 12 \text{ divides } n.
\]

We are working on the statement:

For any/all \(n \in \mathbb{Z} \), we have \((P \land Q) \implies R\).

We wonder: is it true that for all possible \(n \in \mathbb{Z} \) we have \((P \land Q) \implies R\)?

To prove that it is false, we just need to provide one example of \(n \in \mathbb{Z} \) for which

• we do not have \((P \land Q) \implies R\), namely
• for which we have \(\neg[(P \land Q) \implies R]\), namely
• for which we have \((P \land Q) \land \neg R\).

This is what we did above: for \(n = 6 \), the statements \(P \) and \(Q \) are both true so \((P \land Q)\) is true, and yet \(R \) is not true. So for \(n = 6 \) we have \((P \land Q) \land \neg R\).