Snow day notes

1. Using the WKB method, provide an approximation for the eigenvalue, λ, of the problem

$$
y^{\prime \prime}+\lambda^{2} x^{2} y \sin ^{2} x=0, \quad 0 \leq x \leq \frac{\pi}{2}, \quad y(0)=y(\pi / 2)=0 .
$$

The WKB approximation to $y^{\prime \prime}+f(x) y=0, f(x)=\omega^{2}>0$, is

$$
y \sim \frac{1}{\sqrt{\omega}}(a \cos \theta+b \sin \theta), \quad \theta=\int_{x}^{\pi / 2} \omega\left(x^{\prime}\right) d x^{\prime}, \quad f\left(x_{*}\right)=0,
$$

i.e., after applying the boundary condition at $x=\pi / 2$,

$$
y \sim \frac{b}{\sqrt{\omega}} \sin \left[\lambda \int_{x}^{\pi / 2} x \sin x d x\right]=-\frac{b}{\sqrt{\lambda x \sin x}} \sin [\lambda(1-\sin x+x \cos x)]
$$

The naive application of WKB would then demand that

$$
\lambda=n \pi, \quad n=1,2, \ldots,
$$

on using $y(0)=0$.
We can arrive at a better WKB solution by noting that $f(x)$ is no longer large for $x \rightarrow 0$. Here, a local problem applies,

$$
y^{\prime \prime}+\lambda^{2} x^{p-2} y=0,
$$

with $p=6$. The solution that satisfies $y(0)=0$ is $y(x)=A \sqrt{x} J_{1 / p}(z)$, where $J_{\nu}(z)$ is a Bessel function of order ν and $z=2 \lambda x^{p / 2} / p$. The large argument form of the Bessel function implies that

$$
y \sim A \sqrt{x} \sqrt{\frac{2}{\pi z}} \cos \left(z-\frac{1}{2} \nu \pi-\frac{1}{4} \pi\right)=\frac{A}{x} \sqrt{\frac{6}{\pi \lambda}} \cos \left(\frac{1}{3} \lambda x^{3}-\frac{1}{3} \pi\right)
$$

Our WKB solution, on the other hand, for $x \rightarrow 0$ is

$$
y \sim-\frac{b}{x \sqrt{\lambda}} \sin \left[\lambda\left(1-\frac{1}{3} x^{3}\right)\right] \equiv-\frac{b}{x \sqrt{\lambda}} \cos \left(\frac{1}{3} \lambda x^{3}-\lambda-\frac{1}{2} \pi\right),
$$

which implies that

$$
\lambda=n \pi-\frac{1}{6} \pi, \quad n=1,2, \ldots
$$

This gives an excellent approximation to even the smallest eigenvalue. See m550bvp6.m.

2. The integral considered in the last lecture is

$$
I(k)=\int_{0}^{1} \frac{d x}{\left(1-k x^{3}\right)^{3 / 2}}=\sum_{j=0}^{\infty}\binom{-\frac{3}{2}}{j} \frac{(-1)^{j} k^{j}}{3 j+1} \sim 1+\frac{3}{15} k+\frac{15}{56} k^{2}+\frac{7}{32} k^{3}+\ldots
$$

Near $k=1$, we can derive $I \sim \frac{2}{3}(1-k)^{-1 / 2}$. The code m550x.m computes the integral numerically and compares the result with the 4 -term series. Also plotted are the improved series exploiting either multiplicative or additive extraction:

$$
I \sim \frac{g_{0}+g_{1} k+g_{2} k^{2}+g_{3} k^{3}}{\sqrt{1-k}}
$$

and

$$
I \sim \frac{2}{3 \sqrt{1-k}}+g_{0}+g_{1} k+g_{2} k^{2}+g_{3} k^{3}
$$

respectively. Both are big improvements over the range $[0,1)$ for k, especially the latter. For a more quantitative comparison, the code m550x.m quotes the various values at $k=0.9$.

