
Now we move onto PDEs expressed in spherical coordinates (ρ, θ, ϕ). This will lead us to more
Sturm-Liouville problems, to Legendre’s differential equation and polynomials, and then to spherical
harmonics. For this task, let’s solve Laplace’s equation inside the unit sphere. i.e. find u(ρ, θ, ϕ)
satisfying

∇2u =
1

ρ2
(ρ2uρ)ρ +

1

ρ2 sin θ
(sin θ uθ)θ +

1

ρ2 sin2 θ
uϕϕ = 0, (1)

u regular for ρ→ 0, θ → 0, θ → π, u is 2π − periodic in ϕ, u(1, θ, ϕ) = f(θ, ϕ). (2)

The connection between the spherical
polar coordinates and our usual Cartesian
coordinates is

x = ρ sin θ cosϕ,
y = ρ sin θ sinϕ,
z = ρ cos θ;

ρ is distance from the centre;
θ is angle from the pole (related to latitude,
but θ = 0 and π correspond to the poles here);
ϕ is the angle of longitude.

Looking ahead, separation of variables will split the PDE up into three ODEs, with two separation
constants; the ODEs in ρ and θ will be non-constant-coefficient. Two of the ODEs should boil down
to Sturm-Liouville problems so that we can find infinite sets of suitable eigenfunctions; in view of the
various boundary conditions, these should correspond to the problems in the two angles. The general
solution will then contain two infinite sums, with a bunch of constants to be set by demanding that
we satisfy the more complicated, final condition in (2).

1 Solution by separation of variables

We set u = R(ρ)Θ(θ)Φ(ϕ). The PDE can then be re-arranged into

sin2 θ

[
(ρ2R′)′

R
+

(Θ′ sin θ)′

Θ sin θ

]
= −Φ′′

Φ
. (3)

This function of (ρ, θ) or ϕ must equal our first separation constant. As we’re heading to a problem
that should furnish 2π−periodic functions in ϕ, we’ll set this constant to m2, giving the ODE,
Φ′′ +m2Φ = 0, with m = 0, 1, ..., and the usual functions (sinmϕ, cosmϕ or a constant with m = 0)
present in a Fourier series.

The other side of (3) can now be re-arranged into a function of θ equalling a function of ρ:

(Θ′ sin θ)′

Θ sin θ
− m2

sin2 θ
= −(ρ2R′)′

R
; (4)

i.e. we need another separation constant, that we set to −λ.
At this stage, we might be a little stuck in deciding on which sign to to use for the second

separation constant - there’s no obvious physical argument, and the form of the solutions are also
not apparent, so deciding what sign is needed to satisfy the boundary conditions is tricky. A minus
sign is chosen above, and one can attribute this choice to the vast knowledge and infallibility of the
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professor. As someone pointed out in class, one could also be guided by the Sturn-Liouville problem
that one needs to arrive at, which guarantees afterwards that everything works out happily.1

The θ−part now gives the Sturm-Liouville problem,

(Θ′ sin θ)′ + λΘ sin θ − m2Θ

sin θ
= 0

(
[a, b] = [0, π], p(θ) = σ(θ) = sin θ & q(θ) = − m2

sin θ

)
, (5)

given that the regularity conditions we must impose at the poles are of type (ii). Note that 0 ≤ θ ≤ π,
ensuring that p and σ are, indeed, non-negative. The SL ODE looks a bit formidable, though. In fact,
it is not quite as bad as it seems, because the transformation x = cos θ and y(x) = Θ(θ) (indicating
(d/dθ)→ − sin θ(d/dx)) turns it into the simpler-looking, but still non-constant-coefficient, ODE,

d

dx

[
(1− x2)dy

dx

]
+ ν(ν + 1)y − m2y

1− x2
= 0, λ = ν(ν + 1). (6)

The singular points (i.e. the poles) are now at x = ±1, and the corresponding SL problem in x has
[a, b] = [−1, 1], p(x) = 1− x2, σ(x) = 1 and q(x) = −m2/(1− x2).

To motivate the last switch (from λ to ν), we look at the ρ−problem, which now can be seen to
revolve around the ODE

(ρ2R′)′ − ν(ν + 1)R = 0. (7)

This is another Euler equation with solutions R ∝ ρα where

α(α+ 1) = ν(ν + 1) −→ α = ν or − ν − 1;

the α−values would have been a lot uglier expressed in terms of λ. In fact, to be definitive, we may

take ν =
√

1
4 + λ − 1

2 ≥ 0 (since λ is not negative, from SL theory). The solutions with ρ−ν−1 are

therefore ruled out because they are not regular for ρ→ 0.
The form of the general solution is therefore

u(ρ, θ, ϕ) =
∑
n

[
1
2a0nρ

ν0ny0n(cos θ) +
∞∑
m=1

(amn cosmθ + bmn sinmθ)ρνmnymn(cos θ)

]
, (8)

where {λmn, ymn(x)} denote the SL eigensolutions to (6), indexed by n, and we have added m as a
subscript as a reminder that it appears as a known parameter in the ODE.

2 Legendre’s ODE

To enjoy the solutions to (6), we divide and conquer. We kick off by considering axisymmetrical
solutions without any dependence on ϕ. i.e. we put m = 0, corresponding to the boundary condition
u(1, θ, ϕ) = f(θ). Equation (6) reduces to

d

dx

[
(1− x2)dy

dx

]
+ ν(ν + 1)y = 0, (9)

which is Legendre’s ODE.

1The most direct way to establish the sign of the separation constant is to multiply (5) by Θ and integrate: after an
intergration by parts and a little re-arrangement, one obtains

λ

∫ π

0

Θ2 sin θ dθ =

∫ π

0

[
(Θ′)2 sin θ +

m2Θ2

sin θ

]
dθ

(sin θ = 0 at the limits of the integral and Θ must be regular). Since both integrals cannot be negative, neither can λ.
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2.1 Lucky guesses

By inspecting this ODE, you might be able to come up with some solutions: e.g. if λ = ν = 0, then

[(1− x2)y′]′ = 0 −→ y′ =
A

1− x2
−→ y = A ln

(
1 + x

1− x

)
+B, (10)

for two integration constants, A and B. The first of these solutions is not regular at x = ±1, but
(λ, y) = (0, B) looks perfectly reasonable. The eigenfunction y(x) = B has no zeros over the interval
[−1, 1] and therefore looks as though it ought to be the first of the SL sequence (remember the SL
oscillation theorem).

You might also be lucky and guess that a second solution is y(x) = Cx, for some constant C.
Plugging this into (9) gives λ = 2 or ν = 1. This solution has exactly one zero over [−1, 1] and
might well be the second of the SL sequence. As the ODE is second-order, there must be another
independent solution for λ = 2. To see what this is, we may use reduction of order: set y = xC(x).
Then, plugging into (9) and clearing the smoke gives

x[(1−x2)C ′]′+2(1−x2)C ′ = 0 =⇒ C ′ =
B

x2(1− x2)
or y = Cx = Ax+B

[
1
2x log

(
1 + x

1− x

)
− 1

]
.

The first term returns our original guessed solution; the second term corresponds to the other solution,
and is again singular at x = ±1.

On a role, you might try a third solution taking the form of a quadratic polynomial; this does
indeed work (after plugging into (9)), provided that y(x) = C(1 − 3x2) and λ = 6 or ν = 2. The
solution has two zeros over [−1, 1]. Wow, said Jurgen. Could the SL eigenfunctions actually be
polynomials with ν = n = 0, 1, 2, ...?

2.2 Series solution and recurrence relation for coefficients

Armed with this insight, let’s try a series solution,

y =
∞∑
j=0

cjx
j . (11)

Plugging this into the ODE gives

∞∑
j=0

{(j + 2)(j + 1)cj+2 + [ν(ν + 1)− j(j + 1)]cj}xj = 0. (12)

To arrive at this relation, we used the fact that

[(1− x2)y′]′ =
∞∑
j=0

[j(j − 1)xj−2 − j(j + 1)xj ]cj ≡
∞∑
l=0

(l + 2)(l + 1)xlcl+2 −
∞∑
j=0

j(j + 1)xjcj

after setting j = l + 2 in the first sum, then discarding l = −2 and l = −1 in view of the factor
(l + 2)(l + 1). Switching the integer over which we sum from l back to j in the first term then leads
to (12).

Consequently, as (12) must hold for every value of x,

cj+2 =
j(j + 1)− ν(ν + 1)

(j + 1)(j + 2)
cj . (13)
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This recurrence relation delivers the coefficient cj+2 in terms of cj . Therefore, if we specify c0, we
may compute the sequence {c0, c2, c4, ...}. Alternatively, we can specify c1 and compute the sequence
{c1, c3, c5, ...}. This means that we can construct two independent series with either even or odd
powers of x. i.e. the solutions must be either even or odd (something that could have been predicted
from Legendre’s equation, which is invariant under the reflection x → −x). For the former, we take
c0 6= 0 and c1 = 0; for the latter, we set c1 6= 0 and c0 = 0. More dramatically, if ν is an even integer
n, the even series beginning with c0 terminates at cnx

n (since cn+2 = 0 by (13)), leaving an even
polynomial of degree n. Similarly, if ν = n is an odd integer, the odd series beginning with c1 also
terminates at cnx

n, furnishing an odd polynomial.
In other words, the SL eigensolutions are

λ = n(n+1), n = 0, 1, 2, ..., y(x) = Pn(x) = c0+c2x
2+...+cnx

n or c1x+c3x
3+...+cnx

n, (14)

along with (13). Note that, for this set and because of the first value for λ, it is convenient to begin
our indexing of the SL sequence with n = 0, rather than n = 1, as done previously.

2.3 The first few Legendre polynomials

To make the polynomials into special functions, we need a normalization to eliminate the freedom in
the choice of either c0 or c1. The tradition is to take Pn(1) = 1, and we then arrive at the Legendre
polynomials. Given our earlier “guesses”, we observe that the first three are

P0(x) = 1, P1(x) = x, P2(x) = 3
2x

2 − 1
2 . (15)

We can use the recurrence relation and normalization to compute Pn(x) directly for each n. e.g.
for n = 3, we have

P3(x) = c1x+ c3x
3 & c3 = 1×2−3×4

2×3 c1 = −5
3c1. Then P3(1) = c1(1− 5

3) = 1 =⇒ c1 = −3
2 ,

giving
P3(x) = 5

2x
3 − 3

2x.

For n = 4, similar calculations indicate that c4 = −7
6 , c2 = −10c0 and c0 = 3

8 , giving

P4(x) = 35
8 x

4 − 15
4 x

2 + 3
8 .

This obviously gets a little unwieldy for bigger n.
Figure 1 plots some of the Legendre polynomials. Each time n is raised by one, another zero

appears in Pn(x); the polynomials become wigglier. There is not a lot else worth saying about their
spatial form.

For each λ = n(n + 1), the other independent solution is not regular at x = ±1 and is usually
denoted as Qn(x). In view of the earlier guessed solutions, the first two must be

Q0 = 1
2 ln

(
1 + x

1− x

)
& Q1 = 1

2x log

(
1 + x

1− x

)
− 1,

having imposed a different normalization (which can be viewed as insisting that Qn diverges as
−1

2 ln(1 − x) when x → 1). In fact, regular solutions to (9) can only be found if λ takes the value
n(n + 1) for n = 0, 1, 2, .... Otherwise, with λ 6= n(n + 1), the best one can do is is to make the
solution regular at one of the singular points, x = ±1, but it remains irregular at the other singular
point.
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Figure 1: Legendre polynomials for n = 0, 1, ..., 6.

2.4 Orthogonality and expansion

From SL theory we know that the Legendre polynomials must satisfy the orthogonality relation,∫ 1

−1
PnPm dx = 0 if n 6= m (16)

(the weight function for Legendre’s equation is σ(x) = 1). In other words, they are examples of
“orthogonal polynomials”.

Any sensible function F (x) can also be expanded in terms of the polynomnials, via the expansion
formulae,

F (x) =

∞∑
n=0

dnPn(x), dn =

∫ 1
−1 F (x)Pn(x) dx∫ 1
−1[Pn(x)]2 dx

. (17)

Had F (x) = f(θ), as in our original axisymmetrical PDE problem, this would have corresponded to

f(θ) =

∞∑
n=0

dnPn(cos θ), dn =

∫ π
0 f(θ)Pn(cos θ) sin θ dθ∫ π
0 [Pn(cos θ)]2 sin θ dθ

. (18)

In other words, the solution to (1)-(2) with u(1, θ) = f(θ) must be

u(ρ, θ) =
∞∑
n=0

dnPn(cos θ)ρn (19)

(given that we now see that νmn → n), with dn prescribed as above.

2.5 Some other charming properties

Generating function:

1√
1− 2xt+ t2

=

∞∑
n=0

Pn(x)tn. (20)

Rodrigues’ formula:

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n. (21)

A useful integral (appearing in the expansion formulae):∫ 1

−1
[Pn(x)]2 dx =

2

2n+ 1
. (22)
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Recurrence relation for the polynomials themselves:

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x) (23)

All these, and much, more more, can be found in textbooks or online at Wikipedia or DLMF.
The usual route to establishing them involves playing around with some combo of Legendre’s ODE,
(13) and the orthogonality condition, or one of the preceding properties. Although one can easily get
lost admist all these charming details, we will avoid straying too far from our path of solving PDEs
in Math 400.

3 Associated Legendre functions

Our original interest was in the SL ODE in (6) rather than the simpler one in (9). So coming up
with Legendre polynomials to solve (9) doesn’t look that helpful right now. In fact, this is not the
case at all. Amazingly enough, the regular solutions to (6) are CPmn (x), where C is arbitrary, λ is
again n(n+ 1) with n = 0, 1, 2, ... and Pmn (x) is an associated Legendre function that is given by

Pmn (x) = (−1)m(1− x2)m/2 d
m

dxm
[Pn(x)]. (24)

In other words, νmn is again n, the solutions to (6) can be extracted from suitable derivatives of
the Legendre polynomials, and we have another Jurgen Wow moment. Note that conventions are not
always followed, and sometimes the (−1)m is omitted in (24). This can cause a bit of a headache at
times.

We won’t establish (24) generally, but let’s at least consider m = 1: from Legendre’s ODE we
note

d

dx

[
(1− x)2P ′′n − 2xP ′n + n(n+ 1)Pn

]
=

[
(1− x)2

d2

dx2
− 4x

d

dx
− 2 + n(n+ 1)

]
P ′n = 0. (25)

The first derivative term in the ODE for P ′n is different from that in the original Legendre ODE (we
have −4 d

dx rather than −2 d
dx), but this can be adjusted with the substitution, P ′n = Y (x)/

√
1− x2.

We then obtain

(1− x2)Y ′′ − 2xY ′ + n(n+ 1)Y − Y

1− x2
= 0, (26)

which is (6) with m = 1. i.e. we may take P 1
n(x) = −

√
1− x2P ′n. In the same way, but with more

effort, one can differentiate Legendre’s equation m times, plug in dmPn/dx
m = Y/(1 − x2)m/2, to

arrive at (6), verifying (24). There is therefore nothing esoteric here, just repeated differentiation and
a simple substitution (designed to adjust the first derivative term in the ODE for dmPn/dx

m).
As with the Legendre polynomials, there is another, independent solution to (6) for λ = n(n+ 1).

That solution is again irregular at x = ±1, and is normally denoted by Qmn (x).
Finally, SL theory implies the orthogonality condition and expansion formulae:∫ 1

−1
Pmn P

m
j dx =

{
0 n 6= j,
2(n+m)!/[(2n+ 1)(n−m)!] n = j,

(27)

g(x) =

∞∑
n=0

dnP
m
n (x), dn =

(2n+ 1)(n−m)!

2(n+m)!

∫ 1

1

g(x)Pmn (x) dx. (28)

The result for
∫ 1
−1[P

m
n ]2dx is a generalization of the useful integral in (22) (and can be proved using

Rodrigues’ formula).
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3.1 Some simple Legendre functions and negative order

The factor (1− x2)m/2 in (24) ensures that Pmn (x) is still a polynomial if m is even. Conversely, for
m odd, Pmn (x) consists of a polynomial multiplied by the factor

√
1− x2 ≡ sin θ. For n = 2 or 3 and

low m, we have

P 1
2 = −3x

√
1− x2, P 2

2 = 3(1− x2), P 1
3 = 3

2(1− 5x2)
√

1− x2, P 2
3 = 15x(1− x2), (29)

Because Pn(x) is a polynomial of degree n, dnPn/dx
n is a constant. Therefore when n = m, the

associated Legendre function is just

Pnn (x) = (−1)n(1− x2)n/2 (2n)!

2nn!
, (30)

where the final constant factor follows from Rodrigues’ formula in (21). For example, with n = m = 1,

P 1
1 (x) = −

√
1− x2 ≡ − sin θ. (31)

For our PDE problem, this implies that the boundary condition f(θ, φ) = sin θ sinϕ leads to the
solution u(ρ, θ, ϕ) = ρ sin θ sinϕ.

It must also be true that
Pmn (x) = 0 for m > n. (32)

Later, we see that this result allows a truncation of the eigenfunction expansion.
The parameter m is sometimes called the “order” of the associated Legendre function Pmn (x);

n is the “degree”. At the moment the order is purely positive and Pmn (x) only defined for m > 0.
However, it proves useful to extend this definition so that the order can be negative. In particular, it
proves convenient to do this by setting

P−mn (x) =
(−1)m(n−m)!

(n+m)!
Pmn (x). (33)

4 General solution of the PDE; Spherical harmonics

At last, we use the preceding results to write the general solution to the PDE in (1):

u =

∞∑
n=0

[
1
2a0nρ

nPn(cos θ) +

n∑
m=1

(amn cosmϕ+ bmn sinmϕ)ρnPmn (cos θ)

]
, (34)

where we have used (32). The boundary condition at ρ = 1 can be dealt with by first expanding
f(θ, ϕ) as a Fourier series in ϕ:

f = 1
2α0(θ) +

∞∑
m=1

[αm(θ) cosmϕ+ βm(θ) sinmϕ],

α0

αm
βm

 =
1

π

∫ π

−π
f(θ, ϕ)

 1
cosmϕ
sinmϕ

 dϕ, (35)

matching up the coefficients with those from (34), and then using the expansion formulae in (28):a0namn
bmn

 =
(2n+ 1)(n−m)!

2(n+m)!

∫ π

0
Pnm(cos θ)

α0(θ)
αm(θ)
βm(θ)

 sin θ dθ. (36)
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This calculation can be cleaned up considerably by defining spherical harmonics. To begin, we
note that, by Euler’s formula the cosines and sines in (34) can be replaced by the exponentials e±imϕ.
Therefore, by switching notation for the arbitrary constants (to Amn ), we could just as well write the
single double sum,

u =

∞∑
n=0

n∑
m=−n

Amn ρ
nY m

n (cos θ, ϕ), (37)

where we have used the extension to negative order in (33). and defined the expansion functions,

Y m
n (θ, ϕ) =

√
(2n+ 1)(n−m)!

4π(n+m)!
eimϕPmn (cos θ). (38)

Because of (27) and ∫ π

−π
e−im1ϕeim2ϕdϕ =

{
0 m1 6= m2,
2π m1 = m2,

(39)

we observe ∫ π

0

[∫ π

−π
(Y m1
n1

)∗Y m2
n2

dϕ

]
sin θ dθ = δn1n2δm1m2 , (40)

where the star denotes complex conjugation and δjk denotes the Kronecker delta (the order of the
double integral matters here and the ϕ integral needs to be performed first). Consequently, we can
read off immediately the values of the coefficients in (37):

Amn =

∫ π

−π

∫ π

0
(Y m
n )∗f(θ, ϕ) sin θ dθ dϕ (41)

(where the integration order no longer matters).
The orthonormal eigenfunctions are the spherical harmonics. They form a complete set with

which one can expand any sensible function of the two angles, θ and ϕ, and satisfy the PDE

1

sin θ

∂

∂θ

[
sin θ

∂Y m
n

∂θ

]
+

1

sin2 θ

∂2Y m
n

∂ϕ2
= −n(n+ 1)Y m

n . (42)

5 The wave equation for a sphere

Now let’s consider the wave equation for the ringing of a spherical fluid drop of unit radius. i.e., find
u(ρ, θ, ϕ, t), satisfying

utt =
1

ρ2
(ρ2uρ)ρ +

1

ρ2 sin θ
(sin θ uθ)θ +

1

ρ2 sin2 θ
uϕϕ,

u regular for ρ→ 0, θ → 0, θ → π,
u is 2π − periodic in ϕ,

u = 0 at ρ = 1.
(43)

We also need two initial conditions, but we won’t be interested in any particular initial-value problem
below.

We begin using the eigenfunction expansion,

u =
∞∑
n=0

n∑
m=−n

Rmn (ρ, t)Y m
n (cos θ, ϕ). (44)

Plugging in to the wave equation and using (42) furnishes a PDE for each coefficient:

∂2Rmn
∂t2

=
1

ρ2
∂

∂ρ

(
ρ2
∂Rmn
∂ρ

)
− n(n+ 1)

ρ2
Rmn . (45)
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We can separate variables to solve this equation, which leads to solutions with time dependences of
cosωt and sinωt, for some separation constant −ω2. Imposing the boundary conditions in ρ then
determines ω (from another SL problem). Following this route, the general solution for u(ρ, θ, ϕ, t)
would involve a triple sum over n, m and a third integer indexing the SL eigensolutions in ρ.

Alternatively, if we are not interested in a specific initial-value problem, but simply the “normal-
mode” frequencies at which the drop could ring, we can instead adopt the time dependence in Rmn =
Rmn(ρ)e−ωt, to arrive at the ODE

R′′mn +
2

ρ
R′mn + ω2Rmn −

n(n+ 1)

ρ2
Rmn = 0. (46)

This is Bessel’s equation in disguise (i.e. it is an example of the more general ODE that leads to
Bessel functions noted in Notes V; α = 1

2 , β = 1, α2 − ν2 = −n(n + 1)). The solutions that are
regular for ρ→ 0 are

Rmn = Cmnρ
− 1

2Jn+ 1
2
(ωρ), (47)

for some constant Cmn. The half-integer versions of Jν(z) are called “spherical Bessel functions”
(precisely because they commonly appear in PDE problems with spherical coordinates like (43)).
The outer boundary condition now demand that the frequencies ω must be dictated by Jn+ 1

2
(ω) = 0.

Spherical Bessel functions can be written more explicitly in terms of trig functions (Bessel functions
in general can not). We have already seen this with J 1

2
(z).

Note that ω depends only on n and not m. i.e. all normal modes with the same n, but different m
have the same frequency of oscillation. There are (2n+ 1) of these modes as m runs from −n to +n.
The frequencies are independent of m because the original drop was spherically symmetric, the PDE
(43) has no ϕ−dependent coefficients, and any oscillations cannot tell the difference between east
and west in the current coordinate system. Adding any additional effect that does distinguish east
from west breaks this symmetry and splits up the frequencies of (2n+ 1)−modes that arise for each
n. The removal of the (2n+ 1)−fold “degeneracy” of the frequencies corresponds to the origin of the
Zeeman splitting of spectral lines by a magnetic field, and underlies how astronomers have searched
for clues about the rotation rates and magnetic fields of stars by studying pulsation frequencies.
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