
Laplace’s equation for a disk

In circular polar coordinates, Laplace’s equation ∇2u = 0 takes the specific form,

1

r
(rur)r +

1

r2
uθθ = 0, .

The solution u(r, θ) should be 2π−periodic in angle θ if we deal with an entire disk, and be regular
at the origin r = 0. (We translate back to Cartesian coordinates using x = r cos θ and y = r sin θ.)
A typical Math400-style problem would be to supplement the PDE and these conditions with the
additional boundary condition

u(1, θ) = f(θ)

for some prescribed boundary data f(θ), in the case that we can scale the disk’s radius to unity.
Because there is no further constraint on the 2π− periodic function f(θ), it has the full Fourier series,

f(θ) = 1
2a0 +

∞∑
n=1

(an cosnθ + bn sinnθ),

with the usual integrals prescribing the coefficients:

a0 =
1

π

∫ π

−π
f(θ) dθ, an =

1

π

∫ π

−π
f(θ) cosnθ dθ, bn =

1

π

∫ π

−π
f(θ) sinnθ dθ. (1)

Let’s solve the PDE using an eigenfunction expansion:

u(r, θ) = 1
2A0(r) +

∞∑
n=1

[An(r) cosnθ +Bn(r) sinnθ].

In other words, we represent the angle-dependence of the solution in terms of a Fourier series (no
extensions are needed as the problem is already periodic!). Although we can avoid differentiating
term-by-term by using projection, let’s just plug and chug (after multiplying by r2):

1
2r(rA

′
0)
′ +

∞∑
n=1

[r(rA′n)′ cosnθ + r(rB′n)′ sinnθ] =

∞∑
n=1

n2(An cosnθ +Bn sinnθ),

prime again referring to derivatives with respect to argument (i.e. radial derivatives for coefficients
of the Fourier series). Hence,

r(rA′0)
′ = 0, r(rA′n)′ = n2An & r(rB′n)′ = n2Bn. (2)

The ODEs for An(r) and Bn(r) are the same. In particular,

r2A′′n + rA′n − n2An = 0.

This is an Euler equation, in which the coefficients are not constant (ouch), but for each derivative,
there is a corresponding factor of r. This means that we may find a general solution by posing
An = Crα, where C and α are constants, which implies

[α(α− 1) + α− n2]Crα = (α2 − n2)Crα = 0

(each derivative lowers the power in R(r) by one, but then each factor of r in the adjacent coefficient
restores the power back to what it was, ensuring that Crα works as a trial solution). Thus, for
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something non-trivial, α = ±n but C remains arbitrary, and so An ∝ r±n and Bn ∝ r±n. However,
we also need a regular solution for r → 0, so we must jetison the negative powers. Hence, both An
and Bn are proportional to rn. The other coefficient A0 can be found more directly: two integrals of
the first equation in (2) furnishes

A0(r) = constant+ constant× ln r.

Again, though, we should delete one of these solutions, the logarithm, as it is bad for r → 0. Thus,
A0 = constant.

Finally, since u(r, θ) should match up with f(θ) for r = 1, we must have that A0(1) = a0,
An(1) = an and Bn(1) = bn, and so

u(r, θ) = 1
2a0 +

∞∑
n=1

rn(an cosnθ + bn sinnθ). (3)

Summing the series

Given the definitions of the coefficients of the Fourier series for f(θ) in (1), we have

u(r, θ) =
1

2π

∫ π

−π
f(θ̂) dθ̂ +

∞∑
n=1

rn

π

∫ π

−π
f(θ̂)(cosnθ cosnθ̂ + sinnθ sinnθ̂)dθ̂. (4)

Note that it is essential here to distinguish between the θ of the Fourier series in the solution (3) and
the integration variable that appears in the coefficients in (1); we have accomplished that effortlessly
in (4) by decorating the integration variable by a hat.

The formula for the solution in (4) establishes two things:
• first, it clearly exposes an issue with our solution strategies: both separation of variables (which we
did not use, but follows a parallel path to that used above)1 and the eigenfunction expansion develop
the solution as an infinite series. Worse, all the coefficients must be computed from integrals. Even
if we can compute those integrals explicitly for a given f(θ), the infinite series is hard to work with.
• second, it indicates that a clever use of trig relations might simplify things.

In particular, cos(A−B) = cosA cosB+sinA sinB and so the integral within the sum is equivalent
to ∫ π

−π
f(θ̂) cosn(θ − θ̂)dθ̂. (5)

Now we recall that cosA = 1
2(eiA + e−iA). Interchanging the sum and integral in (4), and using these

helpful relations now furnishes

u(r, θ) =
1

2π

∫ π

−π
f(θ̂)

{
1 +

∞∑
n=1

[(
reiA

)n
+
(
re−iA

)n]}
dθ̂, A = θ − θ̂.

1We pose u(r, θ) = R(r)Θ(θ); the PDE can then be manipulated into

r(rR′)′

R
= −Θ′′

Θ
.

Since this is a function of r on the left, but a function of θ on the right, both sides must equal a separation constant. At
this stage, since we know that we will need 2π−periodic functions as solutions for Θ(θ), we set that separation constant
to be 0 or −n2, with n = 1, 2, .... The first of these choices gives Θ = constant; the second gives Θ ∝ sinnθ or cosnθ.
The ODEs that we need to solve for R(r) just correspond to those in (2), for the two choices of separation constant.
Hence R = constant or R ∝ rn, using the same arguments. Assembling the general solution from all of this gives (3).
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But
1

1− z
=

∞∑
n=0

zn or
z

1− z
=

∞∑
n=1

zn.

Hence we can sum the series to write

u(r, θ) =
1

2π

∫ π

−π
f(θ̂)

[
1 +

reiA

1− reiA
+

re−iA

1− re−iA

]
dθ̂ =

1− r2

2π

∫ π

−π

f(θ̂) dθ̂

1 + r2 − 2r cos(θ − θ̂)
.

This is Poisson’s solution to the Laplace equation for a unit disk. We have successfully reduced the
infinite series with all its integrals for the coefficients to a single integral. “Wow” as Jurgen Klopp
would say.

Poisson’s solution takes the form of an integral of the form

u(r, θ) =

∫ π

−π
G(r, θ − θ̂)f(θ̂) dθ̂.

The factor G(r, θ− θ̂) comes from monkeying around with the Fourier series in the manipulations we
conducted above. That is equivalent to saying that it is a property of the detailed form of the PDE
that we started with (i.e. Laplace’s equation in circular polar coordinates). Once we have figured out
this function, however, to get the solution of the PDE for any boundary function f(θ̂), we just do the
integral in θ̂. This idea goes well beyond Laplace’s equation. In this sense, G(r, θ − θ̂) corresponds
to a type of Green function for the PDE, and the solution above corresponds to expressing it as a
“boundary integral.” Such notions play a prominent role in Math 401. For Math400, however, the
fact that we managed to sum the series and write the solution as a single integral is mainly “cool”,
but one wonders whether it can be done for other problems. In fact, the series solution can also be
summed for the wave equation.

Summing the series for the wave equation; d’Alembert again

Consider the problem:

utt = c2uxx, 0 ≤ x ≤ π, u(0, t) = u(π, t) = 0, u(x, 0) = f(x), ut(x, 0) = g(x).

We have left a wavespeed constant c in the PDE here, for no particular reason other than one often
sees it there before scaling it away (an exercise that we will refrain from here, for once).

We can solve the PDE either by separation of variables or an eigenfunction expansion. Separation
of variables with u(x, t) = X(t)T (t) gives

X ′′

X
=

T ′′

c2T
= −n2, n = 1, 2, ...,

with a sensible, and by now very obvious, choice for the separation constant. Hence the general
solution is

u(x, t) =
∞∑
n=1

(bn cosnct+Bn sinnct) sinnx. (6)

The arbitrary constants, bn and Bn, need to be picked to satisfy the initial conditions. By taking
odd, 2π−periodic extensions, we may express those initial conditions in the form

u(x, 0) = f(x) =

∞∑
n=1

fn sinnx & ut(x, 0) = g(x) =

∞∑
n=1

gn sinnx.
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Hence, bn ≡ fn and Bn = gn/(nc).
All this indicates that

u(x, t) =
∞∑
n=1

(
fn cosnct+

gn
nc

sinnct
)

sinnx.

Again, this is an infinite series with coefficients given by integrals. For the first term in the sum, we
use the trig relation, sinA cosB = 1

2 sin(A+B) + 1
2 sin(A−B), to write

1

2

∞∑
n=1

fn sinn(x+ ct) +
1

2

∞∑
n=1

fn sinn(x− ct).

But the Fourier series itself indicates that

f(z) =
∞∑
n=1

fn sinnz,

irrespectively of what z actually is. Hence the first part of the solution is simply

1
2f(x+ ct) + 1

2f(x− ct).

The second part,

∞∑
n=1

gn
nc

sinnct sinnx ≡
∞∑
n=1

gn
2nc

[cosn(x− ct)− cosn(x+ ct)]

(using sinA sinB = 1
2 cos(A−B)− 1

2 cos(A+B)), is a bit more complicated because of the factor of
n in the denomintor. We deal with this term by first noting that∫ z2

z1

g(z) dz =
∑
n=1

gn

∫ z2

z1

sinnz dz =
∑
n=1

gn
n

(cosnz1 − cosnz2).

Thus,

u(x, t) = 1
2f(x+ ct) + 1

2f(x− ct) +
1

2c

∫ x+ct

x−ct
g(z) dz. (7)

But, because the right-hand side here can be simply thought of as the sum of a function of x − ct
and another function of x+ ct, i.e. u(x, t) = F (x− ct) +G(x+ ct), we have arrived at d’Alembert’s
solution.

More directly

To obtain d’Alembert’s solution more directly, we note that we can change variables to solve
utt = c2uxx much more easily: let ξ = x − ct and η = x + ct. Changing variables, we then set
u(x, t) = U(ξ, η). The chain rule now implies that

∂

∂x
≡ ∂

∂η
+

∂

∂ξ
&

∂

∂t
≡ c

(
∂

∂η
− ∂

∂ξ

)
.

Under the change of variable, the wave equation therefore becomes

c2
(
∂

∂η
− ∂

∂ξ

)2

U = c2
(
∂

∂η
+

∂

∂ξ

)2

U −→ 4c2Uξη = 0.
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Thus, U = F (ξ) +G(η). The initial conditions now demand that

F (x) +G(x) = f(x) & − cF ′(x) + cG′(x) = g(x), or F (x)−G(x) = −1

c

∫
g dx+ C,

for some arbitrary constant of integration C. Hence,

F (x) = 1
2f(x)− 1

2c

∫
g dx+ 1

2C & G(x) = 1
2f(x) +

1

2c

∫
g dx− 1

2C. (8)

The final constants ±1
2C are irrelevant as we require the combo F (x− ct) +G(x+ ct), and we now

arrive at (7).
Note that our derivation of d’Alembert’s solution here pays no attention to the boundary con-

ditions. In fact, it looks like we have a solution for an infinite line; the two pieces to the solution
(F (x − ct) and G(x + ct)) correspond to disturbances that propagate at fixed speed c either to the
right or left. The two pieces look free to travel off to x → ±∞. Equation (8) merely indicates how
the specific initial conditions split up into the two disturbances. This is illustrated in figure 1.
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Figure 1: Graphical illustration of d’Alembert’s solution without any boundaries.

However, our solution of the wave equation by separation of variables for the interval 0 ≤ x ≤ π
also ended up giving d’Alembert’s solution, once we suitably extended all the functions outside
the original interval in such a way to satisfy the boundary conditions. All this leads to a physical
interpretation of the odd, 2π−periodic extension of the various functions of the original wave-equation
problem. Key is an insight into how the boundary conditions can be taken care of by using the concept
of images; cf. figure 2. But altogether this involves a lot of drawing that I will do on the blackboard.
Figure 3 presents the general idea.
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Figure 2: Image systems for Dirichlet and Neumann boundary conditions at x = 0. Red shows the
solution G(x+ct) incident from the left; green is the image which travels to the right; the combination
of both, the actual solution, is the thick grey line (dashed lines indicate the original envelopes of the
wave packets, with less wiggles). For u(0, t) = 0, there is an odd mirror image, leading to perfect
destructive interference on the boundary. For ux(0, t) = 0, there is an even mirror image, leading to
perfect constructive interference on the boundary.

Figure 3: Image systems for Dirichlet and Neumann boundary conditions at x = 0 and x = π.
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