An alternative viewpoint

If we have a function defined for 0 < x < m, the previous example suggests that we can extend
this function to render it 2w —periodic and odd, ensuring that it may be represented as a Fourier sine
series. In other words, we may use this trick to represent the spatial dependence of the function in
terms of a bunch of sines. This is convenient as we have much understanding of the properties of
such trig functions, including how to differentiate, integrate and manipulate them in general. Thus,
in order to solve the original PDE problem, we might just pose such a series to represent the spatial
dependence of the solution at the outset. i.e. we could simply extend u(z,t) as a 2w—periodic
function and write
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u(x,t) = Z B, sinnx, B, = 7T/0 u(z,t) sinnx dz, (1)
without bothering with separation of variables. This different strategy is more like using a set of
basis vectors to represent any vector in some vector space (but for functions, of course). Importantly,
the sines themselves guarantee that the boundary conditions are automatically taken care of (i.e.
u(0,t) = u(m,t) = 0).

There is one obvious complication: the t—dependence of u(z,t) is necessarily carried through into
the coefficients; i.e. B, = B,(t). Nevertheless, this provides us with a different tool to solve the
PDE: we pose (1) and introduce a similar representation of the initial condition,

u(z,0) = f(z) = nzz:lbn sinnz, by, = i/oﬂ f(x)sinnx dz, (2)

which implies a suitable (i.e. odd, 2r—periodic) extension of f(x). This demands that we impose
the initial conditions,
B, (0) = by,

on the coefficients of the Fourier sine series for the solution.
Now, in view of the properties of the sines, we may introduce (1) into the PDE to find

oo oo
Ut = Ugy — g B, sinnx = — E nan sinnx,
n=1 n=1

where the dot means time derivative. To solve this last relation, we simply match up coefficients of

all the sines: _ , ,
B, = -n’B, — Bu(t) = Bp(0)e ™t = be ™

We thereby arrive at the same solution as found using separation of variables. It is up to you
to decide which method was simpler. This second strategy is sometimes called an eigenfunction
expansion, as we are expanding a function, to be determined, in terms of a set of known functions,
or “eigenfunctions”, a term that is connected to Sturm-Liouville theory (to be discussed in a few
lectures).

Separation of variables versus an eigenfunction expansion

Let’s try out both separation of variable and an eigenfunction expansion on a different problem:
the wave equation on a finite spatial domain,

U = Ugy, 0< <7, up(0,t) =uz(m,t) =0, wu(z,0)=0, wu(x,0)=gx).

Here, we have again scaled space and time to set the coefficients of the PDE (i.e. the wavespeed
C) to unity and the domain length to m. If u(z,t) were to correspond to the deflection of a string,



the (Neumann) boundary conditions would somehow imply that the ends were “free”, and the initial
conditions would imply that the string was straight (u(z,0) = 0) but provided with an instantaneous
velocity (u¢(z,0) = g(x)) at the beginning.

Proceeding with separation of variables, we put u = X (z)7'(t), plug into the PDE and re-arrange:

X// T/l

-,
X T ’

using the same argument as before about the two sides of the equation must equalling a separation
constant. This time, the two ODEs that we obtain are the same:

T + AT = X" + \X =0,

and so the choice of sign for the separation constant delivers the solution pairs, sin v Az and cos vV Az
or sin vVt and cos v \t.

As we are dealing with the wave equation, the solutions should somehow be wavy; i.e. oscillate
in space and time. This is the physical justification for choosing the separation constant —\, rather
than +A. Once more, the mathematical justification comes from the boundary conditions, which will
only work for the —\ choice (if A # 0).

For the current problem, the boundary conditions demand X’(0) = 0 and X’(7) = 0. Thus, in
order to enforce the first condition, we want A cos Vx as our space solution, rather than B sin Vz
(for arbitrary constants A and B); the second boundary condition demands that

VAAsin VAT = 0.

We again avoid the trivial solution with A = 0, and conclude once more that A = n?, withn = 1,2, ....
However, this time there is a further possibility: A = 0, which corresponds to X (x) = constant (the
ODE for X is now X” = 0, but the option X o z is ruled out by X’(0) = 0). This alternative
solution is not trivial, so we better keep it too.

Turning now to the time solution, we have T' = Ccosnt or Dsinnt if A\ = n?, with two more
arbitrary constants C and D. For A = 0, the ODE for T'(¢) is just 7" = 0, and so we have T'= C'+ Dt.
The initial condition 7°(0) = 0, though, indicates that C' = 0 for either of these possibilities.

Lumping all the possible solutions back together, we arrive at a general solution

1 o0
u(x,t) = §a0t + Z % cos na sinnt,

n=1

after compactly rewriting all the combos of arbitrary constants so that

1 oo
g(z) = u(x,0) = 500 + Z @y, COS NT; (3)
n=1
i.e. a Fourier cosine series.
Now, if we extend g(x) and u(z,t) beyond 0 < 2 < 7 as even 27m—periodic functions, then we
know that it is justified to represent them in terms of Fourier cosine series. In other words, we expand

g(x) as in (3), with

ag = / glr)dz &  ap= 2/ g(@) cosnz da, (4)
0 0

s

and we have solved the PDE.



The eigenfunction expansion follows a parallel route: we first note that the boundary conditions,
Uz (0,t) = ug(m,t) = 0, are automatically satisfied by the cosines of the Fourier series. Hence we use
an even 2m—periodic extension in order to justify the expansion,

o
u(z,t) = %Ao(t) + Z Ay (t) cosnz,
n=1
where the coefficients are again all dependent on time. Plugging into the PDE indicates that
1. . 0
§A0(t) + nz:l Ay (t) cosnx = — nz:l n?A,(t) cos n.

Matching the coefficients of the constant term and the cosines now furnishes the ODEs
Ay=0 & A, =-n%4,.

Hence Ag(t) is a linear function of ¢, whereas A, (t) is given by cosnt or sinnt. Demanding the same
extension of the initial conditions indicates that we impose

Ag(0)=4,(00=0 &  Ag(0) = ag, An(0) = ay,
once we expand g(x) as in (3)-(4). We then arrive at

Aolt) =aot &  An(t) = Zsinnt,
n

which provides the same solution for u(x,t) as that from separation of variables.

Some additional notes
* Had the spatial domain of the PDE been 0 < x < L, rather than 0 to 7, we would have had to
use the more general version of the Fourier series formulae, but nothing would have otherwise been
different.
* Evidently, Dirichlet boundary conditions, u(0,t) = u(m,t) = 0, lead to a representation of the
solution as a Fourier sine series, whereas Neumann conditions, u,(0,t) = uy(m,t) = 0, lead to a
Fourier cosine series.
* For different combos of boundary conditions (e.g. u(0,t) = u,(w,t) = 0), things can get slightly
more complicated, obscuring the type of extension that is required to mathematically justify the
expansions. However, the simple trick of integrating the initial condition after multiplying by one, a
cosine or a sine will always provide the formula for the coefficients of the Fourier series.
* Eigenfunction expansions can be used to solve inhomogeneous PDEs. e.g.

U = Uy + q(z,t), w(0,t) =u(m t) =0, wu(xz,0)=0.
We introduce (1) for the solution, along with the expansion

q(z,t) = Z Qn(t) sinnx, Qn(t) = 2 /7r q(z,t)sinnz dz,
n=1 0

™

corresponding to the odd 2w —periodic extension of the source term. We then must solve the ODEs,

Bn = _nQBn + Qn(t)7 Bn(o) =0.



Technical drawbacks:

In some ways, posing the series solution, plugging into the PDE and matching coefficients is simpler
and quicker than using separation of variables. However, there are some hidden issues. First, we need
to use the best set of eigenfunctions. This is guided by the boundary conditions in the preceding two
problems: u(0,t) = u(m,t) = 0 can be satisfied by the sines of the Fourier series, motivating the odd
2w —periodic extension and the corresponding eigenfunctions; with u,(0,t) = u,(mw,t) = 0 it is more
natural to employ cosines. Note that, if the eigenfunctions do not automatically satisfy the boundary
conditions, those constraints must still be imposed on the series representation of the solution; this
corresponds to adding extra algebraic constraints, which complicates the solution procedure terribly,
rendering the strategy unworkable except as a numerical technique.

Another mathematical concern comes from the need, in the approach taken above, to differentiate
the infinite Fourier series. This is problematic as such series cannot always be differentiated term by
term, as the following example illustrates.

Consider f(z) = x. The odd 2m—periodic extension of this function gives the sawtooth wave,

flz)=2, —-rm<z<m, f(z)=f(z+2n).
The even 2w —periodic extension is, however, the triangular waveform
flz)=|z|, —-nm<z<m flx)=f(x+2m).

Both are illustrated in figure 1.
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Figure 1: Periodic extensions of f(z) = x. The blue line is the original function; the red lines are the
extensions. The black lines show snapshots of the solution of the heat equation using these extensions
as initial conditions. In the first case, the overlaid plot shows the Gibbs phenomenon associated with
the representation of the discontinuous initial condition by the truncated Fourier series.

The first of these extensions has jumps at x = 4, where the Fourier series converges to the mean
value of f(£m) = 0 (which ensures that the boundary conditions are satisfied if this was the initial



condition for a PDE with u(0,t) = u(m,t) = 0). The representation as a Fourier sine series is

. 2 " 2
f(x) = an sinnz, b, = /0 xsinnx dr = %(—1)”“.

T
More explicitly,
f(z) =2 (sinz — %sian—&—%sin?)x—...) & f'(z) =2 (cosx — cos 2z + cos 3z — ...) .

If we put = = 0, the series for f'(z) =2(1—1+1—...) is undefined, but should provide f’(0) = 1. In

fact, we should find f’(z) = 1, except at the jumps, where the derivative cannot be defined. In other
words, differentiating the series, which was originally convergent, can turn it into a divergent one.

The reason that this happens is precisely because of the jumps in the function. Awkwardly, our
methodology for solving PDEs involves introducing various periodic extensions outside the original
domain of the PDE, which usually introduces jumps into the extended functions or their derivatives,
as the example above demonstrates.

Despite this, as long as f(z) is not singular somewhere and does have a Fourier cosine or sine
series (as with the example), there is nothing wrong with using this function as our initial condition
for the heat equation: for the Neumann conditions u(0,?) = ug(m,t) = 0, the situation corresponds
to the even extension shown at the bottom of figure 1. Given that

2 (7 2 (7 2 .
a=—[ xde=m & an=— [ wcosnzrdr=—5[(-1)" - 1]
™ Jo ™ Jo ™

for this extension, the PDE solution is

9t 25

w(z,t) =37 — 2 (e "cosz + e ¥ cos 3z + gz cosbr + ...) .
This solution, truncated to the three terms shown, is also plotted in figure 1 by the thinner black
lines, for the times t = %0, %, 1 and 3.

Similarly, with the Dirichlet conditions u(0,t) = u(m,t) = 0, the odd 2r—periodic extension gives

—4

u(z,t) =2 (e 'sinw — %e tsin 22 + %679 Le~t

tsin 3z — 7€ 6t sin 4 + %6725

tsin 5x) ,

which is again plotted in figure 1. Also included in the figure is the representation of the initial
condition by the series truncated to the five terms given in the equation; this truncation shows the
persistent ringing of the Gibbs phenomenon, and signifies that five terms provides a poor approxima-
tion.

The snapshots of the PDE solutions shown in figure 1 display an important property of the
diffusion equation: the solutions have discontinuities in either the initial condition or its derivative,
as a result of the conflict between the boundary and initial conditions. i.e. f(x) = x cannot satisfy
f(m) = 0 without introducing a jump discontinuity (for the first case); nor can this function satisfy
f(0) = f'(r) = 0 without adding jumps in derivative (in the second case). However, the PDE
solution u(z,t) for any finite time ¢ > 0 is different: the additional exponential factors, e 't < 1 for
t > 0, in the Fourier series solution for u(z,t) or uy(z,t) accelerate the convergence and ensure that
these series are never divergent. The consequence can be seen in figure 1: the solution or its space
derivative immediately become continuous after the initial moment. This is the impact of diffusion,
which smooths any jump structure over an infinitely short time. It also means that we can accept
conflicts between the initial and boundary conditions, but still find a nice solution. However, this
is a feature of the diffusion equation and not always true; in the theory of PDEs, people consider
carefully when the PDE, initial and boundary conditions all lead to a sensible solution. Especially



for nonlinear PDEs, sensible solutions cannot always be found, as we shall see at the end of Math400
when solving problems with the method of characteristics. In other problems (such as with the wave
equation, which simply propagates spatial structure around without any smoothing), the solution can
be sensible, but the discontinuities present in the initial condition may remain for all time.

Projection

The discussion above suggests that jump discontinuities in the initial condition or its derivative
are not necessarily problematic for solving the heat equation. However, the worry remains that we
needed to differentiate term-by-term when using the eigenfunction expansion, which is a dangerous
operation for an infinite series. However, term-by-term differentiation is not, in fact, necessary to
arrive at the ODEs for the coefficients. An alternative, but more longwinded, approach is to use
projection.

Consider u; = g, with u(0,t) = u(m,t) = 0. The eigenfunction expansion is (1). Instead of
plugging and chugging with the series and PDE, let’s instead take the PDE, mutiply by sinnz and

v ™
/ ug sinnx do = / Uy SIN X d.
0 0

The partial time derivative can be slipped outside the integral, at which point it is equivalent to an
ordinary derivative. Then, because both the sin nx and u(x,t) vanish at the endpoints of the integral,
two integration by parts on the other term gives

integrate:

d K ™
— usinnz dz = —n2/ usinnz dz.
dt Jo 0
But this is just equivalent to B, = —n?B, in view of the definition of B, (t) from the Fourier

series formulae. i.e. we can arrive at the ODEs for the coefficients by projecting the PDE onto each
eigenfunction (by which we mean the operation of multiplying by that eigenfunction and integrating
in x). Thus, the projection avoids any term-by-term differentiation but eventually gives the same
result as doing that whilst plugging, chugging and matching. All that is needed is that a Fourier
series exist for u(z,t).

For those wanting to see more about all this, Haberman’s book has a chapter on Fourier series,
including a detailed discussion of when one can differentiate term-by-term.



