
Solution by separation of variables

Consider the heat equation without any source (i.e. q = 0):

ut = uxx, u(0, t) = u(π, t) = 0, u(x, 0) = f(x).

To solve this problem, we use separation of variables and set

u(x, t) = X(x)T (t), =⇒ XT ′ = TX ′′ or
T ′

T
=
X ′′

X

(prime meaning derivative with respect to argument!). But this last relation demands that a function
of t equals a function of x, which can only be true if both equal a constant since x and t are independent
variables (one can freeze time and vary x, to establish that the function of x is some constant, or fix
spatial position and see what happens in t, to see that the time function must be constant).

We let this “separation constant” be −λ. Hence

T ′ = −λT & X ′′ = −λX.

In other words, we have turned the PDE into two ODEs. The solution for T (t) is proportional
to the exponential e−λt, whereas there are two possible solutions for X(x): sin

√
λx and cos

√
λx,

(multiplied by arbitrary constants). Thus, we may write

u(x, t) = e−λt
(
a cos

√
λx+ b sin

√
λx
)
.

But u(0, t) = 0, or X(0) = 0, implies that we must set a = 0, and u(π, t) = 0, or X(π) = 0 indicates
that

b sin
√
λπ = 0.

Obviously, putting b = 0 is not helpful, and so we must have that λ = n2 where n = 1, 2, ... As
the PDE is linear, we can take all the solutions with different values of n and formulate a linear
superposition to generate a more general solution. Thus, we write

u(x, t) =
∞∑
n=1

bne
−n2t sinnx. (1)

The only other condition that must be satisfied is the initial condition u(x, 0) = f(x), where f(x) is
some prescribed function. Hence, we must select the bn constants so that

f(x) =
∞∑
n=1

bn sinnx. (2)

This looks a lot like part of a Fourier series, and we can satisfy the constraint by setting (see later)

bn =
2

π

∫ π

0
f(x) sinnx dx. (3)

Note: we selected the separation constant to be −λ, not +λ for three reasons:

• with +λ, the space ODE would have been X ′′ = λX, with solutions X(x) ∝ e±
√
λx. But no

combination of these two solutions can be made to vanish at the two points x = 0 and x = π, unless
we reverse the sign of λ and turn the exponentials back into sines and cosines (using Euler’s formula).
In other words, we are forced into the choice −λ by the need to satisfy the boundary conditions.
• with +λ, the time ODE would have solution T (t) ∝ eλt. But diffusion smooths out spatial structure,
and so the temperature should decay with time, not grow exponentially.
• hindsight: had we used +λ, then we would have run into the problems indicated above (mainly
the first), been forced to stop, and reverse the sign of the separation constant to make things work.
Thus, the approach would have been self-correcting, but we would have lost time and inefficiently
done more algebra than needed.
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Simple initial condition:

If the initial condition already has the form of one or more of the solutions in the sum, then we
are done.

e.g. if f(x) = 3 sin 3x, then we keep only the n = 3 term and put bn = 3, leading to

u(x, t) = 3e−9t sin 3x.

Or, for f(x) = sin3 x, we note the helpful trig identity sin3 x = 3
4 sinx − 1

4 sin 3x. Thus, b1 = 3
4 and

b3 = −1
4 , and we find

u(x, t) =
3

4
e−t sinx− 1

4
e−9t sin 3x.

Fourier Series:

For a periodic function f(x) with period 2L, the Fourier series is

f(x) =
1

2
a0 +

∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
with

a0 =
1

L

∫ L

−L
f(x) dx, an =

1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx, bn =

1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx.

The formulae for the cefficients can be established using the helpful integrals,∫ L

−L
cos
(nπx
L

)
dx =

∫ L

−L
sin
(nπx
L

)
dx =

∫ L

−L
cos
(nπx
L

)
sin
(mπx

L

)
dx = 0 (4)∫ L

−L
cos
(nπx
L

)
cos
(mπx

L

)
dx =

∫ L

−L
sin
(nπx
L

)
sin
(mπx

L

)
dx =

{
0, if n 6= m
L, if n = m

(5)

which follow for any integers n and m on using the handy trig formulae,

cos(A±B) = cosA cosB ∓ sinA sinB & sin(A±B) = sinA cosB ± cosA sinB.

With these integrals in hand, one can multiply the Fourier series by one of 1, cos(mπx/L) or
sin(mπx/L), and then integrate x from −L to L. This operation picks out a particular coefficient
from the Fourier series and delivers the preceding formula.

Funks with Jumps

If f(x) has a discontinuity at x = x∗, the Fourier series converges to 1
2f
− + 1

2f
+, where f− is the

limit of f(x) as x approaches x∗ from the left, and f+ is the limit of f(x) as x approaches x∗ from the
right. Thus, if f(x) is defined to be anything other than 1

2f
− + 1

2f
+ at the jump, the Fourier series

will not converge to f(x) at x = x∗. At any jumps of f(x), the Fourier series can display persistent
“ringing” if truncated at a finite number of terms because smooth functions (i.e. sines and cosines)
are being used to represent something that is discontinuous. This is “Gibbs phenomenon”.

Even and odd functions

A function is even if f(x) = f(−x); it is odd if f(x) = −f(−x). In view of these properties∫ L

−L
(Even Funk)dx = 2

∫ L

0
(Even Funk)dx &

∫ L

−L
(Odd Funk)dx = 0.
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Cosine is even (cos(−κx) = cosκx, for constant κ); sine is odd (− sin(−κx) = sinκx).
• Products of even functions remain even; i.e. if f(x) and g(x) are both even, then f(x)g(x) is even.
• Products of odd functions are also even: if f(x) and g(x) are both odd, then f(x)g(x) is even.
• If f(x) is even and g(x) is odd, then f(x)g(x) is odd.
It follows that∫ L

−L
(Even Funk) cosκx dx = 2

∫ L

0
(Even Funk) cosκx dx &

∫ L

−L
(Even Funk) sinκx dx = 0,∫ L

−L
(Odd Funk) cosκx dx = 0 &

∫ L

−L
(Odd Funk) sinκx dx = 2

∫ L

0
(Odd Funk) sinκx dx.

This means that for an even function, the coefficients of the sine terms of the Fourier series must
vanish (bn = 0), and we arrive at the “Fourier cosine series”,

f(x) =
1

2
a0+

∞∑
n=1

an cos
(nπx
L

)
, a0 =

2

L

∫ L

0
f(x)dx, an =

2

L

∫ L

0
f(x) cos

(nπx
L

)
dx (f EVEN).

Similarly, an odd function has a0 = an = 0 and the “Fourier sine series”,

f(x) =
∞∑
n=1

bn sin
(nπx
L

)
, bn =

2

L

∫ L

0
f(x) sin

(nπx
L

)
dx (f ODD). (6)

Periodic extensions

If f(x) or u(x, t) is defined only for 0 ≤ x ≤ π and satisfies f(0) = f(π) = u(0, t) = u(π, t) = 0
then we can use the fact there is no information for x < 0 and x > π to extend both functions however
we want. In particular, we can demand that the two functions are odd over −π ≤ x ≤ π, and then
periodically extend them by insisting that f(x) = f(x + 2π) and u(x, t) = u(x + 2π, t). This makes
f(x) and u(x, t) into odd periodic functions with period 2π. Both therefore can be represented by
an odd Fourier series like that in (6) (with L = π). This strategy can be referred to as “making the
odd 2π−periodic extension” of the functions, and establishes (from Fourier series theory) that it is
mathematically justifiable to represent both the initial condition and the solution to our PDE in the
manner of (1)–(3).

The issue is: “how do we know that any old function defined on 0 < x < π can be represented as
an infinite series of sine functions?” Could a finite number suffice? Do sine functions have the right
or enough properties? The answers are “Because Fourier series theory tells us that this is so”, “No”
and “Yes”, once we make the odd periodic extension.

All that said, however, the only purpose of the extension is to mathematically justify (1)–(3), which
follow immediately from using separation of variables and the helpful integrals in (4)-(5) (along that
path, we write down the general solution (1) and the constraint imposed by the initial condition (2),
then integrate that constraint after multiplying by sinmx to arrive at (3); the Fourier series formulae,
though, and in particular (6), allow us to skip the final step).

An example

If f(x) = x(π − x), introducing the odd 2π−periodic extension of this function we arrive at

x(π − x) =
∞∑
n=1

bn sinnx, bn =
2

π

∫ π

0
x(π − x) sinnx dx =

4

n3π
[1− (−1)n],

after integrating by parts twice. The PDE solution is then (1), with this set of bn’s. It works because
u(x, t) can be extended as an odd 2π−periodic function.
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