Math 400 - midterm

Closed book exam; no calculators. Adequately explain the steps you take and answer as much as you can (partial credit awarded).

1. Bugs on a circular petri dish have a density $u(r, \theta, t)$ that evolves according to

$$u_t - \gamma u = \frac{1}{r} (r u_r)_r + \frac{1}{r^2} u_{\theta\theta}, \quad u(1,\theta,t) = 0, \quad u(r,\theta,0) = f(r) \sin \theta.$$

where γ is a constant representing the bug birth rate and f(r) denotes some initial distribution. Solve this problem using separation of variables, and provide a condition on γ that ensures that the bugs will survive for $t \gg 1$.

2. A biologist now takes the bugs and spreads them within a sphere, so that

$$u_t - \gamma u = \frac{1}{r^2} (r^2 u_r)_r, \quad u(1,t) = 0, \quad u(r,0) = 1, \quad u \text{ regular for } r \to 0.$$

Solve this problem using separation of variables. Is it now easier or harder for the bugs to survive?

Helpful information:

Fourier Series:

For a periodic function f(x) with period 2L, the Fourier series is

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right],$$
$$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) \, dx, \quad a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx, \quad b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx.$$

For any non-negative constant ν , Bessel's equation

$$z^{2}y'' + zy' + (z^{2} - \nu^{2})y = 0.$$

has a regular solution, $y(z) = J_{\nu}(z)$, with $J_{\nu}(z) \propto z^{\nu}$ for $z \to 0$, and a singular solution, $y(z) = Y_{\nu}(z)$. For $\nu = 1, J_1(z)$ has an infinite number of zeros, $z = z_n$, with the first at $z = z_1 \approx 3.83$. The more general ODE,

$$x^{2}y'' + (1 - 2\alpha)xy' + (\omega^{2}\beta^{2}x^{2\beta} + \alpha^{2} - \nu^{2}\beta^{2})y = 0,$$

with parameters α , ω , β and $\nu > 0$, has the solutions $x^{\alpha}J_{\nu}(\omega x^{\beta})$ and $x^{\alpha}Y_{\nu}(\omega x^{\beta})$. Note the special case

$$J_{\frac{1}{2}}(z) = \sqrt{\frac{2}{\pi z}} \sin z$$

The **Sturm-Liouville ODE** is

$$[p(x)y']' + \lambda \sigma(x)y + q(x)y = 0, \qquad a < x < b,$$

with $\sigma(x) > 0$ and p(x) > 0. The associated expansion formula using the eigensolutions $\{\lambda_n, y_n(x)\}$ is

$$f(x) = \sum_{n=1}^{\infty} c_n y_n(x), \qquad c_n = \frac{\int_a^b f(x) y_n(x) \sigma(x) dx}{\int_a^b [y_n(x)]^2 \sigma(x) dx}.$$

Helpful trig identities:

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$
 & $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$

Midterm exam - solution

1. (10 points) We separate variables for the PDE, $u = R(r)\Theta(\theta)T(t)$, finding

$$T_t = (\gamma - k^2)T, \qquad \Theta_{\theta\theta} = -m^2\Theta, \qquad r^2 X_{rr} + r X_r + \left(k^2 r^2 - m^2\right)X = 0.$$

Given $u(r, \theta, t)$ must be 2π -periodic in angle and regular for $r \to 0$, the solutions are $T \propto e^{(\gamma-k^2)t}$, $\Theta \propto \sin m\theta$ or $\cos m\theta$ if m = 1, 2, ... or a constant if m = 0, and the Bessel function $J_m(kr)$ (3 points). The boundary condition R(1) = 0 then implies that k must be a zero of $J_m(z)$. However, the initial condition is proportional to $\sin \theta$, so we may take $u(r, \theta, t) \propto \sin \theta$ and set m = 1. Moreover, $k = z_n$, the n^{th} (positive) zero of $J_1(z)$ (*i.e.* $J_1(z_n) = 0$) (2 points). Hence, we write a solution suitable for the initial-value problem,

$$u = \sin \theta \sum_{n=1}^{\infty} c_n J_1(z_n r) e^{(\gamma - z_n^2)t}, \qquad c_n = \int_0^1 f(r) J_1(z_n r) r dr \ \times \ \left[\int_0^1 [J_1(z_n r)]^2 r dr \right]^{-1}$$

using the Sturm-Liouville expansion formula, and given that the radial problem is of SL form with weight function $\sigma = r$ and boundary conditions of type 2 (regularity) at r = 0 and type 1 (mixed, or Dirichlet) at r = 1 (3 points). For large times, the first term of the series dominates with time-dependence $e^{(\gamma - z_1^2)t}$. Thus, bugs die out unless $\gamma > z_1^2 \approx 3.83^2$ (2 points).

2. (10 points) We separate variables: u(r,t) = R(r)T(t), giving

$$\frac{T'}{T} - \gamma = \frac{(r^2 R')'}{r^2 R} = -\lambda.$$

Hence T(t) is proportional to $\exp(\gamma - \lambda)t$ again (1 point). The ODE for R(r) can be written as

$$r^2 R'' + 2rR' + \omega^2 r^2 R = 0.$$

with $\lambda = \omega^2$, which is a Sturm-Liouville ODE with weight function $\sigma(r) = r^2$ and boundary conditions of type 2 (regularity) at r = 0 and type 1 (mixed, or Dirichlet) at r = 1 (2 points). It is also Bessel's equation in disguise – we have the more general ODE quoted in the helpful information, with

$$\alpha = -\frac{1}{2}, \quad \beta = 1, \quad \nu = \frac{1}{2}, \quad R(r) \propto r^{-\frac{1}{2}} J_{\frac{1}{2}}(\omega r) \propto \frac{\sin(\omega r)}{r}$$

(which does not diverge for $r \to 0$). But the boundary condition R(1) = 0 implies that $J_{\nu}(\omega) = 0$. *i.e.* $\omega = n\pi$. (5 points)

Bearing in mind the initial conditions, we now write the solution

$$u(r,t) = \frac{1}{r} \sum_{n=0}^{\infty} c_n \sin(n\pi r) e^{(\gamma - n^2 \pi^2)t}, \quad c_n = \frac{\int_0^1 \sin(n\pi r) r \, dr}{\int_0^1 \sin^2(n\pi r) \, dr} = \frac{2[1 - (-1)^n]}{n\pi}$$

in view of the Sturm-Liouville expansion formula (2 points). It is easier to survive as $\pi < 3.83$ (1 point).