Math 400 - midterm

Closed book exam; no calculators. Adequately explain the steps you take and answer as much as you can (partial credit awarded).

1. Bugs on a circular petri dish have a density $u(r, \theta, t)$ that evolves according to

$$
u_{t}-\gamma u=\frac{1}{r}\left(r u_{r}\right)_{r}+\frac{1}{r^{2}} u_{\theta \theta}, \quad u(1, \theta, t)=0, \quad u(r, \theta, 0)=f(r) \sin \theta
$$

where γ is a constant representing the bug birth rate and $f(r)$ denotes some initial distribution. Solve this problem using separation of variables, and provide a condition on γ that ensures that the bugs will survive for $t \gg 1$.
2. A biologist now takes the bugs and spreads them within a sphere, so that

$$
u_{t}-\gamma u=\frac{1}{r^{2}}\left(r^{2} u_{r}\right)_{r}, \quad u(1, t)=0, \quad u(r, 0)=1, \quad u \text { regular for } r \rightarrow 0
$$

Solve this problem using separation of variables. Is it now easier or harder for the bugs to survive?

Helpful information:

Fourier Series:

For a periodic function $f(x)$ with period $2 L$, the Fourier series is

$$
\begin{gathered}
f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] \\
a_{0}=\frac{1}{L} \int_{-L}^{L} f(x) d x, \quad a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x .
\end{gathered}
$$

For any non-negative constant ν, Bessel's equation

$$
z^{2} y^{\prime \prime}+z y^{\prime}+\left(z^{2}-\nu^{2}\right) y=0
$$

has a regular solution, $y(z)=J_{\nu}(z)$, with $J_{\nu}(z) \propto z^{\nu}$ for $z \rightarrow 0$, and a singular solution, $y(z)=Y_{\nu}(z)$. For $\nu=1, J_{1}(z)$ has an infinite number of zeros, $z=z_{n}$, with the first at $z=z_{1} \approx 3.83$. The more general ODE,

$$
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\omega^{2} \beta^{2} x^{2 \beta}+\alpha^{2}-\nu^{2} \beta^{2}\right) y=0
$$

with parameters α, ω, β and $\nu>0$, has the solutions $x^{\alpha} J_{\nu}\left(\omega x^{\beta}\right)$ and $x^{\alpha} Y_{\nu}\left(\omega x^{\beta}\right)$. Note the special case

$$
J_{\frac{1}{2}}(z)=\sqrt{\frac{2}{\pi z}} \sin z
$$

The Sturm-Liouville ODE is

$$
\left[p(x) y^{\prime}\right]^{\prime}+\lambda \sigma(x) y+q(x) y=0, \quad a<x<b
$$

with $\sigma(x)>0$ and $p(x)>0$. The associated expansion formula using the eigensolutions $\left\{\lambda_{n}, y_{n}(x)\right\}$ is

$$
f(x)=\sum_{n=1}^{\infty} c_{n} y_{n}(x), \quad c_{n}=\frac{\int_{a}^{b} f(x) y_{n}(x) \sigma(x) d x}{\int_{a}^{b}\left[y_{n}(x)\right]^{2} \sigma(x) d x}
$$

Helpful trig identities:

$$
\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \quad \& \quad \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B
$$

Midterm exam - solution

1. (10 points) We separate variables for the PDE, $u=R(r) \Theta(\theta) T(t)$, finding

$$
T_{t}=\left(\gamma-k^{2}\right) T, \quad \Theta_{\theta \theta}=-m^{2} \Theta, \quad r^{2} X_{r r}+r X_{r}+\left(k^{2} r^{2}-m^{2}\right) X=0
$$

Given $u(r, \theta, t)$ must be 2π-periodic in angle and regular for $r \rightarrow 0$, the solutions are $T \propto e^{\left(\gamma-k^{2}\right) t}, \Theta \propto \sin m \theta$ or $\cos m \theta$ if $m=1,2, \ldots$ or a constant if $m=0$, and the Bessel function $J_{m}(k r)$ (3 points). The boundary condition $R(1)=0$ then implies that k must be a zero of $J_{m}(z)$. However, the initial condition is proportional to $\sin \theta$, so we may take $u(r, \theta, t) \propto \sin \theta$ and set $m=1$. Moreover, $k=z_{n}$, the $n^{t h}$ (positive) zero of $J_{1}(z)$ (i.e. $J_{1}\left(z_{n}\right)=0$) (2 points). Hence, we write a solution suitable for the initial-value problem,

$$
u=\sin \theta \sum_{n=1}^{\infty} c_{n} J_{1}\left(z_{n} r\right) e^{\left(\gamma-z_{n}^{2}\right) t}, \quad c_{n}=\int_{0}^{1} f(r) J_{1}\left(z_{n} r\right) r d r \times\left[\int_{0}^{1}\left[J_{1}\left(z_{n} r\right)\right]^{2} r d r\right]^{-1}
$$

using the Sturm-Liouville expansion formula, and given that the radial problem is of SL form with weight function $\sigma=r$ and boundary conditions of type 2 (regularity) at $r=0$ and type 1 (mixed, or Dirichlet) at $r=1$ (3 points). For large times, the first term of the series dominates with time-dependence $e^{\left(\gamma-z_{1}^{2}\right) t}$. Thus, bugs die out unless $\gamma>z_{1}^{2} \approx 3.83^{2}$ (2 points).
2. (10 points) We separate variables: $u(r, t)=R(r) T(t)$, giving

$$
\frac{T^{\prime}}{T}-\gamma=\frac{\left(r^{2} R^{\prime}\right)^{\prime}}{r^{2} R}=-\lambda
$$

Hence $T(t)$ is proportional to $\exp (\gamma-\lambda) t$ again (1 point). The ODE for $R(r)$ can be written as

$$
r^{2} R^{\prime \prime}+2 r R^{\prime}+\omega^{2} r^{2} R=0
$$

with $\lambda=\omega^{2}$, which is a Sturm-Liouville ODE with weight function $\sigma(r)=r^{2}$ and boundary conditions of type 2 (regularity) at $r=0$ and type 1 (mixed, or Dirichlet) at $r=1$ (2 points). It is also Bessel's equation in disguise - we have the more general ODE quoted in the helpful information, with

$$
\alpha=-\frac{1}{2}, \quad \beta=1, \quad \nu=\frac{1}{2}, \quad R(r) \propto r^{-\frac{1}{2}} J_{\frac{1}{2}}(\omega r) \propto \frac{\sin (\omega r)}{r}
$$

(which does not diverge for $r \rightarrow 0$). But the boundary condition $R(1)=0$ implies that $J_{\nu}(\omega)=0$. i.e. $\omega=n \pi$. (5 points)

Bearing in mind the initial conditions, we now write the solution

$$
u(r, t)=\frac{1}{r} \sum_{n=0}^{\infty} c_{n} \sin (n \pi r) e^{\left(\gamma-n^{2} \pi^{2}\right) t}, \quad c_{n}=\frac{\int_{0}^{1} \sin (n \pi r) r d r}{\int_{0}^{1} \sin ^{2}(n \pi r) d r}=\frac{2\left[1-(-1)^{n}\right]}{n \pi}
$$

in view of the Sturm-Liouville expansion formula (2 points). It is easier to survive as $\pi<3.83$ (1 point).

