Coursework 5: Method of characteristics

(1) Using the method of characteristics, solve

$$
u_{t}-3 x t^{2} u_{x}=t^{2} x^{2},
$$

for $-\infty<x<\infty$, subject to $u(x, 0)=\cos x$.
(2) Using the method of characteristics, solve

$$
u_{t}+(t-x) u_{x}=x,
$$

for $x \geq 0$, subject to $u(x, 0)=F(x)$ and $u(0, t)=f(t)$.
(3) Solve

$$
u_{t}+(1+u) u_{x}=0, \quad-\infty<x<\infty, \quad t>0, \quad u(x, 0)=\sigma \tan ^{-1} x
$$

for (a) $\sigma=+1$ and (b) $\sigma=-1$. In each case, establish whether the solution continues to exist for all time, finding when and where things go wrong if all goes pear-shaped. Sketch the characteristics diagram and sample snapshots of your solution, indicating any breakdown of the solution.

Bonus: For the case with a shock, sketch a solution for $t=20$ in which an equal-area rule is used to avoid a multi-valued solution. Find the shock speed, and suggest what form the solution takes in the long-time limit.

Sample problems

(1) Using the method of characteristics, solve

$$
x^{2} u_{t}+u_{x}=u^{-2}
$$

for $-\infty<x<\infty$ and $t>0$, subject to $u(x, 0)=f(x)$.
The characteristic equations are

$$
\frac{d x}{d t}=\frac{1}{x^{2}} \quad \& \quad \frac{d u}{d t}=-\frac{1}{x^{2} u^{2}} .
$$

Hence, given that $x=x_{0}$ and $u=f\left(x_{0}\right)$ at $t=0$,

$$
x^{3}=x_{0}^{3}+3 t \quad \& \quad u^{3}=\left[f\left(x_{0}\right)\right]^{3}+3\left(x_{0}^{2}+3 t\right)^{1 / 3}-3 x_{0} .
$$

Replacing x_{0} by $\left(x^{3}+3 t\right)^{1 / 3}$ in the latter gives $u(x, t)$.
(2) Using the method of characteristics, solve

$$
u_{t}+x(1-x) u_{x}=x,
$$

for $-\infty<x<\infty$, subject to $u(x, 0)=0$.
The characteristic equations are

$$
\frac{d x}{d t}=x(1-x) \quad \& \quad \frac{d u}{d t}=x .
$$

Hence, given that $x=x_{0}$ and $u=0$ at $t=0$,
$x=\frac{x_{0} e^{t}}{1-x_{0}+x_{0} e^{t}} \quad$ or $\quad x_{0}=\frac{x}{x+(1-x) e^{t}} \quad \& \quad u=\log \left[1+x_{0}\left(e^{t}-1\right)\right]=\log \left[1+\frac{x\left(e^{t}-1\right)}{x+(1-x) e^{t}}\right]$.
(3) Using the method of characteristics, solve

$$
x^{2} u_{t}+u_{x}=x^{2}
$$

for $x>0$, subject to $u(x, 0)=0$ and $u(0, t)=f(t)$. Provide a condition on $f(t)$ which guarantees that the solution is continuous.

The characteristic equations are

$$
\frac{d x}{d t}=x^{-2} \quad \& \quad \frac{d u}{d t}=1 .
$$

Hence, if $x=x_{0}$ and $u=0$ at $t=0$,

$$
x^{3}=x_{0}^{3}+3 t \quad \& \quad u=t
$$

which is the case for $x^{3}>3 t$. But if the characteristic leaves $x=0$ at $t=t_{0}$ with $u=f\left(t_{0}\right)$, we find instead that

$$
x^{3}=3\left(t-t_{0}\right) \quad \& \quad u=f\left(t_{0}\right)+t-t_{0}=f\left(t-x^{3} / 3\right)+x^{3} / 3 .
$$

If $f(0)=0$, then $u \rightarrow x^{3} / 3=t$ along the dividing characteristic curve $t=x^{3} / 3$, rendering the solution continuous.

Coursework 5: Solutions to actual problems

(1) (2 points) The characteristic equations are

$$
\frac{d x}{d t}=-3 x t^{2} \quad \& \quad \frac{d u}{d t}=t^{2} x^{2}
$$

giving

$$
x=x_{0} e^{-t^{3}} \quad \& \quad u=\cos x_{0}+\frac{1}{6} x_{0}^{2}\left(1-e^{-2 t^{3}}\right) .
$$

Eliminating x_{0} gives

$$
u=\cos \left(x e^{t^{3}}\right)+\frac{1}{6} x^{2}\left(e^{2 t^{3}}-1\right)
$$

(2) (5 points) The characteristic equations are

$$
\frac{d x}{d t}=t-x \quad \& \quad \frac{d u}{d t}=x
$$

Hence, if the characteristic intersects $x=x_{0}$ and $u=F\left(x_{0}\right)$ at $t=0$,

$$
x=\left(x_{0}+1\right) e^{-t}+t-1 \quad \& \quad u=F\left(x_{0}\right)+x_{0}+1+\frac{t^{2}}{2}-t-\left(x_{0}+1\right) e^{-t}
$$

giving

$$
u(x, t)=F\left((x-t+1) e^{t}-1\right)+(x-t+1) e^{t}+\frac{t^{2}}{2}-(x+1) \quad \text { for } x>e^{-t}+t-1
$$

But if the characteristic leaves $x=0$ at $t=t_{0}$ with $u=f\left(t_{0}\right)$, we find instead, for $x<e^{-t}+t-1$, that

$$
x=\left(1-t_{0}\right) e^{t_{0}-t}+t-1 \quad \& \quad u=f\left(t_{0}\right)+\frac{1}{2}\left(t^{2}-t_{0}^{2}\right)-t-\left(1-t_{0}\right) e^{t_{0}-t}+1,
$$

for which the solution is given only implicitly.
(3) (8 points) The characteristic equations are

$$
\frac{d x}{d t}=1+u \quad \& \quad \frac{d u}{d t}=0
$$

Hence, given $u=f\left(x_{0}\right)$ at $t=0$,

$$
x=x_{0}+(1+u) t \quad \text { and } \quad u=\sigma \tan ^{-1}[x-(1+u) t] .
$$

That is, the implicit solution, $x=\sigma \tan u+(1+u) t$, which can be graphed easily at least.
For $\sigma=+1$, the solutions becomes shallower with time, translating to the right. With $\sigma=-1$, however, the steepen whilst translating. A shock forms when u_{x} first diverges:

$$
\left(\sigma \sec ^{2} u+t\right) u_{x}=1
$$

The minimum t for which u_{x} first diverges is therefore at the maximum of $\sec ^{2} u$ when $\sigma=-1$. i.e. a shock forms at $x=t=1$. Afterwards, the solution is multi-valued.

For the bonus (4 points): The shock speed is

$$
\frac{d X}{d t}=-\frac{u^{+}\left(u^{+}-2\right)-u^{-}\left(u^{-}-2\right)}{2\left(u^{+}-u^{-}\right)}=1,
$$

since the profile is symmetrical about $u=0$, implying $u^{+}=-u^{-}$. For large times, $u_{ \pm}$must approach $\mp \frac{1}{2} \pi$, so the solution approaches the step function,

$$
u=\frac{1}{2} \pi \operatorname{sgn}(t-x) .
$$

