Coursework 4: Transforms

(1) Using Fourier transforms, find f(k) = F{u(z,0)} and solve the heat equation on the infinite line
(—o0 < x < 00) subject to the initial conditions

(a> U(I,O) — e—3(:c+a)2,

(b) u(z,0) = z[d(z — a) + é(x + a)],
(¢) u(z,0) = sin(x + a),

where §(z) is Dirac’s delta function and a is a positive parameter.
(2) Consider the integral equation for f(z),

* flx —u)du

@2+$2 b2+u2 )

where a and b are positive parameters. By using the Fourier transform show that there is only a solution
with the form of a regular function if @ > b. Find that solution. What is the solution if a = b?

(3) The Fourier sine transform and its inverse are

Fs{f(x)} = / f(z) sin(kx)dx, Fq 1{f / f(z)sin(kx)d
0
If w — 0 and u, — 0 for x — oo, show that

Fo{ugs(z,t)} = —k?Fs{u(z,t)} + ku(0, ).

and L
—axr _
.7:5{6 } = m (a > 0)
Use the Fourier sine transform to write the solution to
Up = Uge +€ 7 0<az<oo,  u(0,t) =u(x,0) =0,

in terms of an inverse sine transform.

(4) Establish that £{e%} = (s —a)™t, L{t"} = s7" " Inl and L{f(t —a)H(t —a)} = e **f(s). Use a
Laplace transform to solve
Uy + xUp = Xt

for > 0, subject to u(x,0) =0 and u(0,t) = t"e" .

(5) Establish that L{e *§(x —t)} = e~ D2 where §(z) is Dirac’s delta-function. Use a Laplace
transform to solve

Ugt = Ugy + € 0(x — 1), 0 <z < oo, u(0,t) = u(z,0) = u(z,0) =0 & u — 0 as x — oo.



Fourier transforms; warm-ups

(1) Solve the heat equation on the infinite line (—oo < x < 00) subject to the initial conditions
(@) u(w,0) =% (B) ulw,0)=-Ze "/,

(¢) u(x,0)=d(x), (d) w(z,0) = sin Kz,
where §(z) is Dirac’s delta function and « is a constant.

Fourier transforming the heat equation and integrating implies that @(k,t) = f(k)e_kzt, or

u(z,t) Ye~(z=v) /4tdy.

m/f

For (a), the latter gives
e~ /4(1+1)

Vv1+t

The solution to (b) is the x—derivative of the solution to (a)! For (c), using the properties of the delta-
function, we find

u(z,t) =

e—w2/4t

u(z,t) = T

For (d), we have f(k) = —in[6(k — k) — 6(k + k)], and so u = e+t sin k.
(2) Solve the heat equation on the infinite line (—oco < & < 00) subject to the initial conditions
u(z,0) = e /2 sinyx

for some parameter .
We know, or can compute
Fle ™} = me k' /4
The shifting theorems, F{f(ax)} = f(k/a)/|a| and F{e!* f(x)} = f(k — a) therefore imply that

]_—{67902/2} _ \/ﬂe*’“2/2 ]_—{eimxﬂc?/z} _ mef(kiy)Q/Q‘

Hence R 2, 2
Fle™® 2sinya} = —iv2me~® 47/ 25inh k.

Thus,

u(x,t) eike— (K 47*) /2= k%t sinh(vk) dk

l\/ 2

Finally, we use the fact that

00 R co—1X/2a ) ) ) T
/ 7ak +2kX+dek ZX+Y) /4a/ e~ dy = 6(1X+Y) /4a \/7’
—00 —oc0—iX/2a a

equivalent to what was established in class, to obtain

u(z,t) =

1 (v —=2?) ] . Y
exp | —0——% — sin .
112t 2(1+2t) 2 1+ 2t




(3) Solve
up = —tuy, —oo<wz<oo,  u(x,0)=f(z).

Verify your solution by direct substitution into the PDE.

Fourier transforming:
~ 1,2
Gy = —ikta,  —  a(k,t) = f(k)e /2

in view of the transformed initial condition. Hence
() = — / k)it 2 g
’ 21 J_ o

= f(z —1%/2)
We have u; = —tf'(x — t2/2) and u, = f'(z — t2/2) by the chain rule; hence u; = —tu,.

(4) For prescribed g(x) and K (x),
o) = [ K= prwiy

defines an integral equation for f(x). Solve this equation by first taking the Fourier transform, and finding
an expression for f(k), and then undoing the Fourier transform. If K(x) = ag(xz — b), for some constants a
and b, what is f(x)? Find the solution if K(z) = g — gza.

The Fourier transform indicates that

Hence

fa) = — / IE) ke gy,
27 ) R(h)

If K(2) = ag(z —b), then K (k) = ae~"**§(k) (using a shifting theorem) and so f(x) = 6(z+b)/a, using
the definition of Dirac’s delta function.

If K(z) = g — gaa, then K(k) = (1 + k?)g(k), and so f = F~'{(1 + k?)~'}. This inverse transform
can be determined by either noting that f{e’m} = 2/(1 + k?), or by direct computation of the integral
(achieved by extending it to an infinite semi-circular arc on the complex plane and evaluating the residues
of the poles at k = +i, depending on which is enclosed). Thence, f(z) = e~1%l/2.

(5) The Fourier cosine transform and its inverse are

Feli@} = [ f@yeostiadn,  Fo (s =2 [ s costkaran.
0 0
If w — 0 and u, — 0 for x — oo, show that

Fof{uze(z,t)} = sz]-'c{u(x,t)} — ug(0,1)

and a
Fole ) = ———.
cole™ = o
Use the Fourier cosine transform to write the solution to
Up = Ugg, 0<z<oo0, u.(0,t) =0, u(z,0) = e™ 7,

in terms of an inverse cosine transform.



Using the definitions and integration by parts,

Folugs ) = / Ugy cOs(kx)dr = —u,(0,t) + k/ Uy sin(kx)dx
0 0

= —u,(0,t) — l<:2/ ucos(kx)dr = —u,(0,t) — k> Fo{u}.
0

Then,

1k 1 k2 [

o0 o0
Fele ¥} = / e " cos(kr)dr = — — 7/ e”“sin(kr)dr = - — — e~ cos(kx)dz,
0 0 a a”Jo

a a

giving the needed result.
Applying the cosine transform, we find
o efkr“’t
—lc = —k* — io(k,t) = ——
5; oc o) tc(k,t) EEE

where tc(k,t) = Fo{u(z,t)}. Hence

. ekt
u(z,t) = Fgo T



Laplace transforms - warm-ups

(1) Establish that £{t"} = s In! and L{f(t — a)H(t — a)} = e 2*f(s). Use a Laplace transform to
solve
J:Qut + Uy = x2,
for > 0, subject to u(x,0) = 0 and w(0,t) = f(t).
Solution: Inserting t" into the definition of the Laplace transform and integrating gives the first result

(as long as Re(s) > 0). Inserting the second function into the definition and then changing the integration
variables gives the second. Laplace transforming the PDE and boundary condition:

z? —=
s+, = - u(0,s) = f(s).

Hence B .
= [f(s)— s e /3 4 572,

Inverting the transform with the help of the shifting theorem:

u(z,t) =t+ [2%/3 —t+ f(t—2/3)| H (t — 2%/3).

(2) Compute L{e~I*=%l} for a > 0. Use a Laplace transform to solve

—|z—t]

ug + cuy, = ce w(0,t) = u(z,0) =0 & u — 0 as = — oo,

forc# 1 and ¢ = 1.
Solution: We have

a e
ﬁ{e—\t—a|} :/ e—st—a—i—tdt +/ e—st+a—tdt _ e
0 a

—a _ o—sa e—sa

s—1 +1+s'

Laplace transforming the PDE:
—ST —ST

e — € e

s—1 +1+5'

_ S_
Uy + —U =
c

Hence if ¢ # 1,

u(x’s)c(e‘”e”/c)( 11 >+c(e“e”/c)( 1 1 >

(1-2¢) s—1 s—c¢ s(1—r¢) s+1 s—1

Inverting the transform, and using the shifting theorem gives

u(zx,t) =

-0 T et L H(t—2)(2— P — ) 4 H(t — x/c) (e 4 e/t - 2)} .
—c

For ¢ = 1, we have

which gives
u(w,t) = te! ™" + (xe* " —te!"")H(t — )

(3) Establish that £{e%} = (s — a)~!. Use a Laplace transform to solve
Ut + TU, = x2,

5



for > 0, subject to u(z,0) =0 and u(0,¢) = 0.

Solution: Inserting the function into the definition of the Laplace transform and integrating gives the
desired result (as long as Re(s) > a). Laplace transforming the PDE and boundary condition:

2

SU + TUy = x—, %(0,s) = 0.
S

Hence u = 2%/[s(s + 2)] (using an integrating factor of #*, and then the boundary condition to discard the
homogeneous solution). Inverting the transform using a partial fraction gives

1
u(z,t) = 5302(1 —e ),

(4) Establish that L£{cosat} = s/(s®> + a®) and L{sinat} = a/(s®> + a?). Use a Laplace transform to
show that the solution to

Ut + cuy = coswt §(x — t), u(0,t) = u(z,0) =0 & = > 0,

forc>11is
cos[Q(z — ct)/c][H(ct —x) — H(t — x)] .

c—1
where Q = we/(c — 1). Show that u(x,t) = w™lsinwt 6(t — z) for ¢ = 1.

u(z,t) =

Solution: Inserting the functions into the definition of the Laplace transform and integrating by parts
connects the transforms together and then gives the desired result (as long as Re(s) > 0). Laplace trans-
forming the PDE and boundary condition:

S

Cly + su = e *F coswr, (0, s) = 0.

Hence

—sz/c —sz

— e % coswz) + Qe ** sinwzx
(c=1)(s2+9Q2)

s(e

u(x,s) =

Inverting the transform and using a trig relation gives the first result. For ¢ = 1, we find u(x,s) =

w™le™ssinwx, and inverting the transform gives the second result.



Actual Solutions

(1) (10 points) Fourier transforming the heat equation and integrating implies that a(k, t) = f(k)e=*"t.
Useful results are

oo

]__{e,m?} _ \/Zek2/4a’ F{f(z—a)} = e~ *af(k), [ d(z — a)F(x)dx = F(a),

Flet®y =2n5(k ¥ 1)
(4 points). Hence,

(k) = o | Teikai?/12) S S B C s
@ 50 =\ [5R D et = e [T
(2 points).
(b) f(k) = —2iasinka, u(w,t) = 72\6/;7 [e_(m_a)z/‘“‘ — e_(‘”"'“)z/‘”}
(2 points).
(¢) f(k) = —ime§(k — 1) +ime 5(k +1), wu(x,t)=e 'sin(z+ a)
(2 points).

(2) (4 points) The Fourier Transform of the integral equation is

1
2 + a?

v b= f(k)]:{x@#—kl)?} or f(k) = é@*(a*b)\kl

a
which will only give a regular function for f(x) on inverting the transform if @ > b (2 points). Then,

b(a —b)
wal(a — b)2 + 22]’

fx) =

For a = b, f(k) =1 and so f(z) = 6(z) (2 points).

(3) (4 points) Using the definitions and integration by parts,

Fs{ugs} = / Uy sin(kz)dr = fk/ Uy cos(kx)dx = ku(0,t) — k2/ usin(kx)dz,
0 0 0

leading to the first result. Then,

_ R k[ koK,
Fg{e ¥} = e~ gin(kx)dx = — e~ cos(kr)dr = - — — e~ " sin(kx)dx,
0 0 0

a a? a?
giving the other needed result (2 points). Applying the sine transform to the PDE, we find

ket k(e=t — e=F't)

a ” i
i k)= e gmnE o

EAS‘F]CZLALS =

where dg(k,t) = Fs{u(z,t)}, and then u(x,t) = Fg'{is(k,t)} (2 points).

(4) (5 points) Inserting the functions into the definition of the Laplace transform and integrating,
integrating by parts, or changing variables, gives all the desired results (as long as Re(s) > a and Re(s) > 0,
for the first two, respectively) (1 point). Laplace transforming the PDE and boundary condition:

. _ an! B B n!
Um+8$u—w, U(O,S)—W



Hence, using the integrating factor ese*/ 2,

u=nle

7s:v2/2 1 1 n'
(8+ 1)n+1 - sn+2 + 8n+2

(3 points). Inverting the transform using the shifting theorem:

thrl
n+1

(t—a2/2)" "
n+1

u(z,t) = [(t—xz/Z)nez2/2t— ]H(t—x2/2)+

(2 points).

(5) (5 points) Inserting the function into the definition of the Laplace transform gives the desired
result (1 point). Laplace transforming the PDE gives

Upy — $°U = —e~ (T2,

Hence,
_ e (1 —e™ ™)
u(x,s) = 1125

given that @ — 0 for £ — oo, which rules out the solution e** when Re(s) > 0 (3 points). Inverting the
transform gives

(o, 1) = %(1 N L) ()

(1 point).



