
Coursework 4: Transforms

(1) Using Fourier transforms, find f̂(k) = F{u(x, 0)} and solve the heat equation on the infinite line
(−∞ < x < ∞) subject to the initial conditions

(a) u(x, 0) = e−3(x+a)2 ,

(b) u(x, 0) = x[δ(x− a) + δ(x+ a)],

(c) u(x, 0) = sin(x+ a),

where δ(x) is Dirac’s delta function and a is a positive parameter.

(2) Consider the integral equation for f(x),

1

a2 + x2
=

∫ ∞

−∞

f(x− u)du

b2 + u2
,

where a and b are positive parameters. By using the Fourier transform show that there is only a solution
with the form of a regular function if a > b. Find that solution. What is the solution if a = b?

(3) The Fourier sine transform and its inverse are

FS{f(x)} =

∫ ∞

0

f(x) sin(kx)dx, F−1
S {f(x)} =

2

π

∫ ∞

0

f(x) sin(kx)dk.

If u → 0 and ux → 0 for x → ∞, show that

FS{uxx(x, t)} = −k2FS{u(x, t)}+ ku(0, t).

and

FS{e−ax} =
k

a2 + k2
(a > 0).

Use the Fourier sine transform to write the solution to

ut = uxx + e−ax−t, 0 ≤ x < ∞, u(0, t) = u(x, 0) = 0,

in terms of an inverse sine transform.

(4) Establish that L{eat} = (s − a)−1, L{tn} = s−n−1n! and L{f(t − a)H(t − a)} = e−asf(s). Use a
Laplace transform to solve

ux + xut = xtn,

for x ≥ 0, subject to u(x, 0) = 0 and u(0, t) = tne−t.

(5) Establish that L{e−tδ(x − t)} = e−(s+1)x, where δ(x) is Dirac’s delta-function. Use a Laplace
transform to solve

utt = uxx + e−tδ(x− t), 0 ≤ x < ∞, u(0, t) = u(x, 0) = ut(x, 0) = 0 & u → 0 as x → ∞.
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Fourier transforms; warm-ups

(1) Solve the heat equation on the infinite line (−∞ < x < ∞) subject to the initial conditions

(a) u(x, 0) = e−x2/4, (b) u(x, 0) = −x

2
e−x2/4,

(c) u(x, 0) = δ(x), (d) u(x, 0) = sinκx,

where δ(x) is Dirac’s delta function and κ is a constant.

Fourier transforming the heat equation and integrating implies that û(k, t) = f̂(k)e−k2t, or

u(x, t) =
1√
4πt

∫ ∞

−∞

f(y)e−(x−y)2/4tdy.

For (a), the latter gives

u(x, t) =
e−x2/4(1+t)

√
1 + t

.

The solution to (b) is the x−derivative of the solution to (a)! For (c), using the properties of the delta-
function, we find

u(x, t) =
e−x2/4t

√
4πt

.

For (d), we have f̂(k) = −iπ[δ(k − κ)− δ(k + κ)], and so u = e−κ2t sinκx.

(2) Solve the heat equation on the infinite line (−∞ < x < ∞) subject to the initial conditions

u(x, 0) = e−x2/2 sin γx

for some parameter γ.

We know, or can compute

F{e−x2} =
√
πe−k2/4

The shifting theorems, F{f(ax)} = f̂(k/a)/|a| and F{eiaxf(x)} = f̂(k − a) therefore imply that

F{e−x2/2} =
√
2πe−k2/2 F{e±iγx−x2/2} =

√
2πe−(k±γ)2/2.

Hence
F{e−x2/2 sin γx} = −i

√
2πe−(k2+γ2)/2 sinh γk.

Thus,

u(x, t) =
1

i
√
2π

∫ ∞

−∞

eikx−(k2+γ2)/2−k2t sinh(γk) dk

Finally, we use the fact that

∫ ∞

−∞

e−ak2+ikX+kY dk = e(iX+Y )2/4a

∫ ∞−iX/2a

−∞−iX/2a

e−az2

dz = e(iX+Y )2/4a

√

π

a
,

equivalent to what was established in class, to obtain

u(x, t) =
1√

1 + 2t
exp

[

(γ2 − x2)

2(1 + 2t)
− γ2

2

]

sin

(

γx

1 + 2t

)

.
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(3) Solve
ut = −tux, −∞ < x < ∞, u(x, 0) = f(x).

Verify your solution by direct substitution into the PDE.

Fourier transforming:

ût = −iktû, → û(k, t) = f̂(k)e−ikt2/2

in view of the transformed initial condition. Hence

u(x, t) =
1

2π

∫ ∞

−∞

f̂(k)eikx−ikt2/2dk

≡ f(x− t2/2)

We have ut = −tf ′(x− t2/2) and ux = f ′(x− t2/2) by the chain rule; hence ut = −tux.

(4) For prescribed g(x) and K(x),

g(x) =

∫ ∞

−∞

K(x− y)f(y)dy

defines an integral equation for f(x). Solve this equation by first taking the Fourier transform, and finding

an expression for f̂(k), and then undoing the Fourier transform. If K(x) = ag(x− b), for some constants a
and b, what is f(x)? Find the solution if K(x) = g − gxx.

The Fourier transform indicates that

ĝ(k) = K̂(k)f̂(k).

Hence

f(x) =
1

2π

∫ ∞

−∞

ĝ(k)

K̂(k)
eikxdk.

If K(x) = ag(x− b), then K̂(k) = ae−ikbĝ(k) (using a shifting theorem) and so f(x) = δ(x+ b)/a, using
the definition of Dirac’s delta function.

If K(x) = g − gxx, then K̂(k) = (1 + k2)ĝ(k), and so f = F−1{(1 + k2)−1}. This inverse transform
can be determined by either noting that F{e−|x|} = 2/(1 + k2), or by direct computation of the integral
(achieved by extending it to an infinite semi-circular arc on the complex plane and evaluating the residues
of the poles at k = ±i, depending on which is enclosed). Thence, f(x) = e−|x|/2.

(5) The Fourier cosine transform and its inverse are

FC{f(x)} =

∫ ∞

0

f(x) cos(kx)dx, F−1
C {f(x)} =

2

π

∫ ∞

0

f(x) cos(kx)dk.

If u → 0 and ux → 0 for x → ∞, show that

FC{uxx(x, t)} = −k2FC{u(x, t)} − ux(0, t)

and
FC{e−ax} =

a

a2 + k2
.

Use the Fourier cosine transform to write the solution to

ut = uxx, 0 ≤ x < ∞, ux(0, t) = 0, u(x, 0) = e−x,

in terms of an inverse cosine transform.
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Using the definitions and integration by parts,

FC{uxx} =

∫ ∞

0

uxx cos(kx)dx = −ux(0, t) + k

∫ ∞

0

ux sin(kx)dx

= −ux(0, t)− k2
∫ ∞

0

u cos(kx)dx = −ux(0, t)− k2FC{u}.

Then,

FC{e−ax} =

∫ ∞

0

e−ax cos(kx)dx =
1

a
− k

a

∫ ∞

0

e−ax sin(kx)dx =
1

a
− k2

a2

∫ ∞

0

e−ax cos(kx)dx,

giving the needed result.
Applying the cosine transform, we find

∂

∂t
ûC = −k2ûC → ûC(k, t) =

e−k2t

1 + k2
,

where ûC(k, t) = FC{u(x, t)}. Hence

u(x, t) = F−1
C

{

e−k2t

1 + k2

}

.
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Laplace transforms - warm-ups

(1) Establish that L{tn} = s−n−1n! and L{f(t− a)H(t− a)} = e−asf(s). Use a Laplace transform to
solve

x2ut + ux = x2,

for x ≥ 0, subject to u(x, 0) = 0 and u(0, t) = f(t).

Solution: Inserting tn into the definition of the Laplace transform and integrating gives the first result
(as long as Re(s) > 0). Inserting the second function into the definition and then changing the integration
variables gives the second. Laplace transforming the PDE and boundary condition:

sx2u+ ux =
x2

s
, u(0, s) = f(s).

Hence
u = [f(s)− s−2]e−sx3/3 + s−2.

Inverting the transform with the help of the shifting theorem:

u(x, t) = t+
[

x3/3− t+ f(t− x3/3)
]

H
(

t− x3/3
)

.

(2) Compute L{e−|t−a|} for a > 0. Use a Laplace transform to solve

ut + cux = ce−|x−t| u(0, t) = u(x, 0) = 0 & u → 0 as x → ∞,

for c 6= 1 and c = 1.

Solution: We have

L{e−|t−a|} =

∫ a

0

e−st−a+tdt+

∫ ∞

a

e−st+a−tdt =
e−a − e−sa

s− 1
+

e−sa

1 + s
.

Laplace transforming the PDE:

ux +
s

c
u =

e−x − e−sx

s− 1
+

e−sx

1 + s
.

Hence if c 6= 1,

u(x, s) =
c(e−x − e−sx/c)

(1− c)

(

1

s− 1
− 1

s− c

)

+
c(e−sx − e−sx/c)

s(1− c)

(

1

s+ 1
− 1

s− 1

)

Inverting the transform, and using the shifting theorem gives

u(x, t) =
c

(1− c)

[

et−x − ect−x +H(t− x)(2− ex−t − et−x) +H(t− x/c)(ect−x + ex/c−t − 2)
]

.

For c = 1, we have

u(x, s) =
e−x − e−sx

(s− 1)2
+ xe−sx

(

1

s+ 1
− 1

s− 1

)

which gives
u(x, t) = tet−x + (xex−t − tet−x)H(t− x)

(3) Establish that L{eat} = (s− a)−1. Use a Laplace transform to solve

ut + xux = x2,
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for x ≥ 0, subject to u(x, 0) = 0 and u(0, t) = 0.

Solution: Inserting the function into the definition of the Laplace transform and integrating gives the
desired result (as long as Re(s) > a). Laplace transforming the PDE and boundary condition:

su+ xux =
x2

s
, u(0, s) = 0.

Hence u = x2/[s(s+ 2)] (using an integrating factor of xs, and then the boundary condition to discard the
homogeneous solution). Inverting the transform using a partial fraction gives

u(x, t) =
1

2
x2(1− e−2t).

(4) Establish that L{cos at} = s/(s2 + a2) and L{sin at} = a/(s2 + a2). Use a Laplace transform to
show that the solution to

ut + cux = cosωt δ(x− t), u(0, t) = u(x, 0) = 0 & x > 0,

for c > 1 is

u(x, t) =
cos[Ω(x− ct)/c][H(ct− x)−H(t− x)]

c− 1
.

where Ω = ωc/(c− 1). Show that u(x, t) = ω−1 sinωt δ(t− x) for c = 1.

Solution: Inserting the functions into the definition of the Laplace transform and integrating by parts
connects the transforms together and then gives the desired result (as long as Re(s) > 0). Laplace trans-
forming the PDE and boundary condition:

cux + su = e−sx cosωx, u(0, s) = 0.

Hence

u(x, s) =
s(e−sx/c − e−sx cosωx) + Ωe−sx sinωx

(c− 1)(s2 +Ω2)
.

Inverting the transform and using a trig relation gives the first result. For c = 1, we find u(x, s) =
ω−1e−sx sinωx, and inverting the transform gives the second result.
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Actual Solutions

(1) (10 points) Fourier transforming the heat equation and integrating implies that û(k, t) = f̂(k)e−k2t.
Useful results are

F{e−ax2} =

√

π

a
e−k2/4a, F{f(x− a)} = e−ikaf̂(k),

∫ ∞

−∞

δ(x− a)F (x)dx = F (a),

F{e±ix} = 2πδ(k ∓ 1)

(4 points). Hence,

(a) f̂(k) =

√

π

3
eika−k2/12), u(x, t) =

1√
1 + 12t

exp

[

−3(x+ a)2

1 + 12t

]

(2 points).

(b) f̂(k) = −2ia sin ka, u(x, t) =
a

2
√
πt

[

e−(x−a)2/4t − e−(x+a)2/4t
]

(2 points).

(c) f̂(k) = −iπeiaδ(k − 1) + iπe−iaδ(k + 1), u(x, t) = e−t sin(x+ a)

(2 points).

(2) (4 points) The Fourier Transform of the integral equation is

F{ 1

x2 + a2
} = f̂(k)F{ 1

x2 + b2
} or f̂(k) =

b

a
e−(a−b)|k|

which will only give a regular function for f(x) on inverting the transform if a > b (2 points). Then,

f(x) =
b(a− b)

πa[(a− b)2 + x2]
.

For a = b, f̂(k) = 1 and so f(x) = δ(x) (2 points).

(3) (4 points) Using the definitions and integration by parts,

FS{uxx} =

∫ ∞

0

uxx sin(kx)dx = −k

∫ ∞

0

ux cos(kx)dx = ku(0, t)− k2
∫ ∞

0

u sin(kx)dx,

leading to the first result. Then,

FS{e−ax} =

∫ ∞

0

e−ax sin(kx)dx =
k

a

∫ ∞

0

e−ax cos(kx)dx =
k

a2
− k2

a2

∫ ∞

0

e−x sin(kx)dx,

giving the other needed result (2 points). Applying the sine transform to the PDE, we find

∂

∂t
ûS + k2ûS =

ke−t

a2 + k2
→ ûS(k, t) =

k(e−t − e−k2t)

(a2 + k2)(k2 − 1)

where ûS(k, t) = FS{u(x, t)}, and then u(x, t) = F−1
S {ûS(k, t)} (2 points).

(4) (5 points) Inserting the functions into the definition of the Laplace transform and integrating,
integrating by parts, or changing variables, gives all the desired results (as long as Re(s) > a and Re(s) > 0,
for the first two, respectively) (1 point). Laplace transforming the PDE and boundary condition:

ux + sxu =
xn!

sn+1
, u(0, s) =

n!

(s+ 1)n+1
.
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Hence, using the integrating factor esx
2/2,

u = n!e−sx2/2

[

1

(s+ 1)n+1
− 1

sn+2

]

+
n!

sn+2

(3 points). Inverting the transform using the shifting theorem:

u(x, t) =

[

(

t− x2/2
)n

ex
2/2−t −

(

t− x2/2
)n+1

n+ 1

]

H(t− x2/2) +
tn+1

n+ 1

(2 points).

(5) (5 points) Inserting the function into the definition of the Laplace transform gives the desired
result (1 point). Laplace transforming the PDE gives

uxx − s2u = −e−(s+1)x.

Hence,

u(x, s) =
e−sx(1− e−x)

1 + 2s

given that u → 0 for x → ∞, which rules out the solution esx when Re(s) > 0 (3 points). Inverting the
transform gives

u(x, t) =
1

2
(1− e−x)e(x−t/2)H(t− x)

(1 point).
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