Coursework 4: Transforms

(1) Using Fourier transforms, find $\hat{f}(k)=\mathcal{F}\{u(x, 0)\}$ and solve the heat equation on the infinite line $(-\infty<x<\infty)$ subject to the initial conditions

$$
\text { (a) } \quad u(x, 0)=e^{-3(x+a)^{2}}
$$

$$
(b) \quad u(x, 0)=x[\delta(x-a)+\delta(x+a)]
$$

(c) $u(x, 0)=\sin (x+a)$,
where $\delta(x)$ is Dirac's delta function and a is a positive parameter.
(2) Consider the integral equation for $f(x)$,

$$
\frac{1}{a^{2}+x^{2}}=\int_{-\infty}^{\infty} \frac{f(x-u) d u}{b^{2}+u^{2}}
$$

where a and b are positive parameters. By using the Fourier transform show that there is only a solution with the form of a regular function if $a>b$. Find that solution. What is the solution if $a=b$?
(3) The Fourier sine transform and its inverse are

$$
\mathcal{F}_{S}\{f(x)\}=\int_{0}^{\infty} f(x) \sin (k x) d x, \quad \mathcal{F}_{S}^{-1}\{f(x)\}=\frac{2}{\pi} \int_{0}^{\infty} f(x) \sin (k x) d k
$$

If $u \rightarrow 0$ and $u_{x} \rightarrow 0$ for $x \rightarrow \infty$, show that

$$
\mathcal{F}_{S}\left\{u_{x x}(x, t)\right\}=-k^{2} \mathcal{F}_{S}\{u(x, t)\}+k u(0, t) .
$$

and

$$
\mathcal{F}_{S}\left\{e^{-a x}\right\}=\frac{k}{a^{2}+k^{2}} \quad(a>0)
$$

Use the Fourier sine transform to write the solution to

$$
u_{t}=u_{x x}+e^{-a x-t}, \quad 0 \leq x<\infty, \quad u(0, t)=u(x, 0)=0
$$

in terms of an inverse sine transform.
(4) Establish that $\mathcal{L}\left\{e^{a t}\right\}=(s-a)^{-1}, \mathcal{L}\left\{t^{n}\right\}=s^{-n-1} n$! and $\mathcal{L}\{f(t-a) H(t-a)\}=e^{-a s} \bar{f}(s)$. Use a Laplace transform to solve

$$
u_{x}+x u_{t}=x t^{n}
$$

for $x \geq 0$, subject to $u(x, 0)=0$ and $u(0, t)=t^{n} e^{-t}$.
(5) Establish that $\mathcal{L}\left\{e^{-t} \delta(x-t)\right\}=e^{-(s+1) x}$, where $\delta(x)$ is Dirac's delta-function. Use a Laplace transform to solve

$$
u_{t t}=u_{x x}+e^{-t} \delta(x-t), \quad 0 \leq x<\infty, \quad u(0, t)=u(x, 0)=u_{t}(x, 0)=0 \& u \rightarrow 0 \text { as } x \rightarrow \infty
$$

Fourier transforms; warm-ups

(1) Solve the heat equation on the infinite line $(-\infty<x<\infty)$ subject to the initial conditions

$$
\begin{aligned}
& \text { (a) } u(x, 0)=e^{-x^{2} / 4}, \text { (b) } u(x, 0)=-\frac{x}{2} e^{-x^{2} / 4} \\
&\left.\begin{array}{rl}
\text { (c) } u(x, 0)=\delta(x), & \text { (d) } u(x, 0)
\end{array}\right)=\sin \kappa x
\end{aligned}
$$

where $\delta(x)$ is Dirac's delta function and κ is a constant.
Fourier transforming the heat equation and integrating implies that $\hat{u}(k, t)=\hat{f}(k) e^{-k^{2} t}$, or

$$
u(x, t)=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} f(y) e^{-(x-y)^{2} / 4 t} d y
$$

For (a), the latter gives

$$
u(x, t)=\frac{e^{-x^{2} / 4(1+t)}}{\sqrt{1+t}}
$$

The solution to (b) is the x-derivative of the solution to (a)! For (c), using the properties of the deltafunction, we find

$$
u(x, t)=\frac{e^{-x^{2} / 4 t}}{\sqrt{4 \pi t}}
$$

For (d), we have $\hat{f}(k)=-i \pi[\delta(k-\kappa)-\delta(k+\kappa)]$, and so $u=e^{-\kappa^{2} t} \sin \kappa x$.
(2) Solve the heat equation on the infinite line $(-\infty<x<\infty)$ subject to the initial conditions

$$
u(x, 0)=e^{-x^{2} / 2} \sin \gamma x
$$

for some parameter γ.
We know, or can compute

$$
\mathcal{F}\left\{e^{-x^{2}}\right\}=\sqrt{\pi} e^{-k^{2} / 4}
$$

The shifting theorems, $\mathcal{F}\{f(a x)\}=\hat{f}(k / a) /|a|$ and $\mathcal{F}\left\{e^{i a x} f(x)\right\}=\hat{f}(k-a)$ therefore imply that

$$
\mathcal{F}\left\{e^{-x^{2} / 2}\right\}=\sqrt{2 \pi} e^{-k^{2} / 2} \quad \mathcal{F}\left\{e^{ \pm i \gamma x-x^{2} / 2}\right\}=\sqrt{2 \pi} e^{-(k \pm \gamma)^{2} / 2}
$$

Hence

$$
\mathcal{F}\left\{e^{-x^{2} / 2} \sin \gamma x\right\}=-i \sqrt{2 \pi} e^{-\left(k^{2}+\gamma^{2}\right) / 2} \sinh \gamma k
$$

Thus,

$$
u(x, t)=\frac{1}{i \sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i k x-\left(k^{2}+\gamma^{2}\right) / 2-k^{2} t} \sinh (\gamma k) d k
$$

Finally, we use the fact that

$$
\int_{-\infty}^{\infty} e^{-a k^{2}+i k X+k Y} d k=e^{(i X+Y)^{2} / 4 a} \int_{-\infty-i X / 2 a}^{\infty-i X / 2 a} e^{-a z^{2}} d z=e^{(i X+Y)^{2} / 4 a} \sqrt{\frac{\pi}{a}}
$$

equivalent to what was established in class, to obtain

$$
u(x, t)=\frac{1}{\sqrt{1+2 t}} \exp \left[\frac{\left(\gamma^{2}-x^{2}\right)}{2(1+2 t)}-\frac{\gamma^{2}}{2}\right] \sin \left(\frac{\gamma x}{1+2 t}\right)
$$

(3) Solve

$$
u_{t}=-t u_{x}, \quad-\infty<x<\infty, \quad u(x, 0)=f(x)
$$

Verify your solution by direct substitution into the PDE.
Fourier transforming:

$$
\hat{u}_{t}=-i k t \hat{u}, \quad \rightarrow \quad \hat{u}(k, t)=\hat{f}(k) e^{-i k t^{2} / 2}
$$

in view of the transformed initial condition. Hence

$$
\begin{gathered}
u(x, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{f}(k) e^{i k x-i k t^{2} / 2} d k \\
\equiv f\left(x-t^{2} / 2\right)
\end{gathered}
$$

We have $u_{t}=-t f^{\prime}\left(x-t^{2} / 2\right)$ and $u_{x}=f^{\prime}\left(x-t^{2} / 2\right)$ by the chain rule; hence $u_{t}=-t u_{x}$.
(4) For prescribed $g(x)$ and $K(x)$,

$$
g(x)=\int_{-\infty}^{\infty} K(x-y) f(y) d y
$$

defines an integral equation for $f(x)$. Solve this equation by first taking the Fourier transform, and finding an expression for $\hat{f}(k)$, and then undoing the Fourier transform. If $K(x)=a g(x-b)$, for some constants a and b, what is $f(x)$? Find the solution if $K(x)=g-g_{x x}$.

The Fourier transform indicates that

$$
\hat{g}(k)=\hat{K}(k) \hat{f}(k)
$$

Hence

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\hat{g}(k)}{\hat{K}(k)} e^{i k x} d k
$$

If $K(x)=a g(x-b)$, then $\hat{K}(k)=a e^{-i k b} \hat{g}(k)$ (using a shifting theorem) and so $f(x)=\delta(x+b) / a$, using the definition of Dirac's delta function.

If $K(x)=g-g_{x x}$, then $\hat{K}(k)=\left(1+k^{2}\right) \hat{g}(k)$, and so $f=\mathcal{F}^{-1}\left\{\left(1+k^{2}\right)^{-1}\right\}$. This inverse transform can be determined by either noting that $\mathcal{F}\left\{e^{-|x|}\right\}=2 /\left(1+k^{2}\right)$, or by direct computation of the integral (achieved by extending it to an infinite semi-circular arc on the complex plane and evaluating the residues of the poles at $k= \pm i$, depending on which is enclosed). Thence, $f(x)=e^{-|x|} / 2$.
(5) The Fourier cosine transform and its inverse are

$$
\mathcal{F}_{C}\{f(x)\}=\int_{0}^{\infty} f(x) \cos (k x) d x, \quad \mathcal{F}_{C}^{-1}\{f(x)\}=\frac{2}{\pi} \int_{0}^{\infty} f(x) \cos (k x) d k
$$

If $u \rightarrow 0$ and $u_{x} \rightarrow 0$ for $x \rightarrow \infty$, show that

$$
\mathcal{F}_{C}\left\{u_{x x}(x, t)\right\}=-k^{2} \mathcal{F}_{C}\{u(x, t)\}-u_{x}(0, t)
$$

and

$$
\mathcal{F}_{C}\left\{e^{-a x}\right\}=\frac{a}{a^{2}+k^{2}}
$$

Use the Fourier cosine transform to write the solution to

$$
u_{t}=u_{x x}, \quad 0 \leq x<\infty, \quad u_{x}(0, t)=0, \quad u(x, 0)=e^{-x}
$$

in terms of an inverse cosine transform.

Using the definitions and integration by parts,

$$
\begin{gathered}
\mathcal{F}_{C}\left\{u_{x x}\right\}=\int_{0}^{\infty} u_{x x} \cos (k x) d x=-u_{x}(0, t)+k \int_{0}^{\infty} u_{x} \sin (k x) d x \\
=-u_{x}(0, t)-k^{2} \int_{0}^{\infty} u \cos (k x) d x=-u_{x}(0, t)-k^{2} \mathcal{F}_{C}\{u\}
\end{gathered}
$$

Then,

$$
\mathcal{F}_{C}\left\{e^{-a x}\right\}=\int_{0}^{\infty} e^{-a x} \cos (k x) d x=\frac{1}{a}-\frac{k}{a} \int_{0}^{\infty} e^{-a x} \sin (k x) d x=\frac{1}{a}-\frac{k^{2}}{a^{2}} \int_{0}^{\infty} e^{-a x} \cos (k x) d x
$$

giving the needed result.
Applying the cosine transform, we find

$$
\frac{\partial}{\partial t} \hat{u}_{C}=-k^{2} \hat{u}_{C} \quad \rightarrow \quad \hat{u}_{C}(k, t)=\frac{e^{-k^{2} t}}{1+k^{2}}
$$

where $\hat{u}_{C}(k, t)=\mathcal{F}_{C}\{u(x, t)\}$. Hence

$$
u(x, t)=\mathcal{F}_{C}^{-1}\left\{\frac{e^{-k^{2} t}}{1+k^{2}}\right\}
$$

Laplace transforms - warm-ups

(1) Establish that $\mathcal{L}\left\{t^{n}\right\}=s^{-n-1} n$! and $\mathcal{L}\{f(t-a) H(t-a)\}=e^{-a s} \bar{f}(s)$. Use a Laplace transform to solve

$$
x^{2} u_{t}+u_{x}=x^{2}
$$

for $x \geq 0$, subject to $u(x, 0)=0$ and $u(0, t)=f(t)$.
Solution: Inserting t^{n} into the definition of the Laplace transform and integrating gives the first result (as long as $\operatorname{Re}(s)>0$). Inserting the second function into the definition and then changing the integration variables gives the second. Laplace transforming the PDE and boundary condition:

$$
s x^{2} \bar{u}+\bar{u}_{x}=\frac{x^{2}}{s}, \quad \bar{u}(0, s)=\bar{f}(s)
$$

Hence

$$
\bar{u}=\left[\bar{f}(s)-s^{-2}\right] e^{-s x^{3} / 3}+s^{-2}
$$

Inverting the transform with the help of the shifting theorem:

$$
u(x, t)=t+\left[x^{3} / 3-t+f\left(t-x^{3} / 3\right)\right] H\left(t-x^{3} / 3\right)
$$

(2) Compute $\mathcal{L}\left\{e^{-|t-a|}\right\}$ for $a>0$. Use a Laplace transform to solve

$$
u_{t}+c u_{x}=c e^{-|x-t|} \quad u(0, t)=u(x, 0)=0 \& u \rightarrow 0 \text { as } x \rightarrow \infty
$$

for $c \neq 1$ and $c=1$.
Solution: We have

$$
\mathcal{L}\left\{e^{-|t-a|}\right\}=\int_{0}^{a} e^{-s t-a+t} d t+\int_{a}^{\infty} e^{-s t+a-t} d t=\frac{e^{-a}-e^{-s a}}{s-1}+\frac{e^{-s a}}{1+s}
$$

Laplace transforming the PDE:

$$
\bar{u}_{x}+\frac{s}{c} \bar{u}=\frac{e^{-x}-e^{-s x}}{s-1}+\frac{e^{-s x}}{1+s} .
$$

Hence if $c \neq 1$,

$$
\bar{u}(x, s)=\frac{c\left(e^{-x}-e^{-s x / c}\right)}{(1-c)}\left(\frac{1}{s-1}-\frac{1}{s-c}\right)+\frac{c\left(e^{-s x}-e^{-s x / c}\right)}{s(1-c)}\left(\frac{1}{s+1}-\frac{1}{s-1}\right)
$$

Inverting the transform, and using the shifting theorem gives

$$
u(x, t)=\frac{c}{(1-c)}\left[e^{t-x}-e^{c t-x}+H(t-x)\left(2-e^{x-t}-e^{t-x}\right)+H(t-x / c)\left(e^{c t-x}+e^{x / c-t}-2\right)\right] .
$$

For $c=1$, we have

$$
\bar{u}(x, s)=\frac{e^{-x}-e^{-s x}}{(s-1)^{2}}+x e^{-s x}\left(\frac{1}{s+1}-\frac{1}{s-1}\right)
$$

which gives

$$
u(x, t)=t e^{t-x}+\left(x e^{x-t}-t e^{t-x}\right) H(t-x)
$$

(3) Establish that $\mathcal{L}\left\{e^{a t}\right\}=(s-a)^{-1}$. Use a Laplace transform to solve

$$
u_{t}+x u_{x}=x^{2}
$$

for $x \geq 0$, subject to $u(x, 0)=0$ and $u(0, t)=0$.
Solution: Inserting the function into the definition of the Laplace transform and integrating gives the desired result (as long as $\operatorname{Re}(s)>a$). Laplace transforming the PDE and boundary condition:

$$
s \bar{u}+x \bar{u}_{x}=\frac{x^{2}}{s}, \quad \bar{u}(0, s)=0
$$

Hence $\bar{u}=x^{2} /[s(s+2)]$ (using an integrating factor of x^{s}, and then the boundary condition to discard the homogeneous solution). Inverting the transform using a partial fraction gives

$$
u(x, t)=\frac{1}{2} x^{2}\left(1-e^{-2 t}\right)
$$

(4) Establish that $\mathcal{L}\{\cos a t\}=s /\left(s^{2}+a^{2}\right)$ and $\mathcal{L}\{\sin a t\}=a /\left(s^{2}+a^{2}\right)$. Use a Laplace transform to show that the solution to

$$
u_{t}+c u_{x}=\cos \omega t \delta(x-t), \quad u(0, t)=u(x, 0)=0 \& x>0
$$

for $c>1$ is

$$
u(x, t)=\frac{\cos [\Omega(x-c t) / c][H(c t-x)-H(t-x)]}{c-1} .
$$

where $\Omega=\omega c /(c-1)$. Show that $u(x, t)=\omega^{-1} \sin \omega t \delta(t-x)$ for $c=1$.
Solution: Inserting the functions into the definition of the Laplace transform and integrating by parts connects the transforms together and then gives the desired result (as long as $\operatorname{Re}(s)>0$). Laplace transforming the PDE and boundary condition:

$$
c \bar{u}_{x}+s \bar{u}=e^{-s x} \cos \omega x, \quad \bar{u}(0, s)=0 .
$$

Hence

$$
\bar{u}(x, s)=\frac{s\left(e^{-s x / c}-e^{-s x} \cos \omega x\right)+\Omega e^{-s x} \sin \omega x}{(c-1)\left(s^{2}+\Omega^{2}\right)} .
$$

Inverting the transform and using a trig relation gives the first result. For $c=1$, we find $\bar{u}(x, s)=$ $\omega^{-1} e^{-s x} \sin \omega x$, and inverting the transform gives the second result.

Actual Solutions

(1) (10 points) Fourier transforming the heat equation and integrating implies that $\hat{u}(k, t)=\hat{f}(k) e^{-k^{2} t}$. Useful results are

$$
\begin{aligned}
\mathcal{F}\left\{e^{-a x^{2}}\right\}=\sqrt{\frac{\pi}{a}} e^{-k^{2} / 4 a}, \quad \mathcal{F}\{f(x-a)\} & =e^{-i k a} \hat{f}(k), \quad \int_{-\infty}^{\infty} \delta(x-a) F(x) d x=F(a), \\
\mathcal{F}\left\{e^{ \pm i x}\right\} & =2 \pi \delta(k \mp 1)
\end{aligned}
$$

(4 points). Hence,
(a) $\hat{f}(k)=\sqrt{\frac{\pi}{3}} e^{\left.i k a-k^{2} / 12\right)}, \quad u(x, t)=\frac{1}{\sqrt{1+12 t}} \exp \left[-\frac{3(x+a)^{2}}{1+12 t}\right]$
(2 points).

$$
\text { (b) } \quad \hat{f}(k)=-2 i a \sin k a, \quad u(x, t)=\frac{a}{2 \sqrt{\pi t}}\left[e^{-(x-a)^{2} / 4 t}-e^{-(x+a)^{2} / 4 t}\right]
$$

(2 points).

$$
\text { (c) } \hat{f}(k)=-i \pi e^{i a} \delta(k-1)+i \pi e^{-i a} \delta(k+1), \quad u(x, t)=e^{-t} \sin (x+a)
$$

(2 points).
(2) (4 points) The Fourier Transform of the integral equation is

$$
\mathcal{F}\left\{\frac{1}{x^{2}+a^{2}}\right\}=\hat{f}(k) \mathcal{F}\left\{\frac{1}{x^{2}+b^{2}}\right\} \quad \text { or } \quad \hat{f}(k)=\frac{b}{a} e^{-(a-b)|k|}
$$

which will only give a regular function for $f(x)$ on inverting the transform if $a>b$ (2 points). Then,

$$
f(x)=\frac{b(a-b)}{\pi a\left[(a-b)^{2}+x^{2}\right]}
$$

For $a=b, \hat{f}(k)=1$ and so $f(x)=\delta(x)$ (2 points).
(3) (4 points) Using the definitions and integration by parts,

$$
\mathcal{F}_{S}\left\{u_{x x}\right\}=\int_{0}^{\infty} u_{x x} \sin (k x) d x=-k \int_{0}^{\infty} u_{x} \cos (k x) d x=k u(0, t)-k^{2} \int_{0}^{\infty} u \sin (k x) d x
$$

leading to the first result. Then,

$$
\mathcal{F}_{S}\left\{e^{-a x}\right\}=\int_{0}^{\infty} e^{-a x} \sin (k x) d x=\frac{k}{a} \int_{0}^{\infty} e^{-a x} \cos (k x) d x=\frac{k}{a^{2}}-\frac{k^{2}}{a^{2}} \int_{0}^{\infty} e^{-x} \sin (k x) d x
$$

giving the other needed result (2 points). Applying the sine transform to the PDE , we find

$$
\frac{\partial}{\partial t} \hat{u}_{S}+k^{2} \hat{u}_{S}=\frac{k e^{-t}}{a^{2}+k^{2}} \quad \rightarrow \quad \hat{u}_{S}(k, t)=\frac{k\left(e^{-t}-e^{-k^{2} t}\right)}{\left(a^{2}+k^{2}\right)\left(k^{2}-1\right)}
$$

where $\hat{u}_{S}(k, t)=\mathcal{F}_{S}\{u(x, t)\}$, and then $u(x, t)=\mathcal{F}_{S}^{-1}\left\{\hat{u}_{S}(k, t)\right\}$ (2 points).
(4) (5 points) Inserting the functions into the definition of the Laplace transform and integrating, integrating by parts, or changing variables, gives all the desired results (as long as $\operatorname{Re}(s)>a$ and $\operatorname{Re}(s)>0$, for the first two, respectively) (1 point). Laplace transforming the PDE and boundary condition:

$$
\bar{u}_{x}+s x \bar{u}=\frac{x n!}{s^{n+1}}, \quad \bar{u}(0, s)=\frac{n!}{(s+1)^{n+1}}
$$

Hence, using the integrating factor $e^{s x^{2} / 2}$,

$$
\bar{u}=n!e^{-s x^{2} / 2}\left[\frac{1}{(s+1)^{n+1}}-\frac{1}{s^{n+2}}\right]+\frac{n!}{s^{n+2}}
$$

(3 points). Inverting the transform using the shifting theorem:

$$
u(x, t)=\left[\left(t-x^{2} / 2\right)^{n} e^{x^{2} / 2-t}-\frac{\left(t-x^{2} / 2\right)^{n+1}}{n+1}\right] H\left(t-x^{2} / 2\right)+\frac{t^{n+1}}{n+1}
$$

(2 points).
(5) (5 points) Inserting the function into the definition of the Laplace transform gives the desired result (1 point). Laplace transforming the PDE gives

$$
\bar{u}_{x x}-s^{2} \bar{u}=-e^{-(s+1) x} .
$$

Hence,

$$
\bar{u}(x, s)=\frac{e^{-s x}\left(1-e^{-x}\right)}{1+2 s}
$$

given that $\bar{u} \rightarrow 0$ for $x \rightarrow \infty$, which rules out the solution $e^{s x}$ when $\operatorname{Re}(s)>0$ (3 points). Inverting the transform gives

$$
u(x, t)=\frac{1}{2}\left(1-e^{-x}\right) e^{(x-t / 2)} H(t-x)
$$

(1 point).

